
Lightweight Ontology-Based Tools for Managing

Observational Data

Shawn Bowers, Riley Englin, Carlos Fonseca, Paul Jewell, Lauren Joplin, Patrick
Mosca, Tyler Pacheco, Jacob Troxel, Tyler Weeks

Deptartment of Computer Science, Gonzaga University, Spokane, WA, USA

Abstract. We describe recent ontology and annotation editing capabilities to a
specialized data management system for observational data. The system supports
observations and measurements explicitly, allowing users to upload observational
data sets as well as semantically describe and query data sets using formal OWL-
DL ontologies. Recent extensions allow users to extend observational ontologies
with domain-specific terms as well as provide detailed semantic annotations using
a “markdown”-based approach. In addition, we describe a new implementation
of the system using standard semantic web technologies for managing OWL-DL
ontologies and RDF triples. Our approach supports a wide variety of observa-
tional data, and is especially targeted at helping scientists manage heterogeneous
biodiversity and ecological data by allowing access to data through a common
and generic observations and measurements data model.

1 Introduction

Performing an ecological analysis to study phenomena across geographic, temporal, or
biological scales typically requires access to a variety of existing (already collected)
observational data sets. A major challenge when performing such an analysis is under-
standing and reconciling the structural and semantic differences among data sets. In
particular, data sets often differ in the number of attributes, the names of similar at-
tributes, the relationships implied between attributes, and the coding conventions used
for representing information within data sets. These differences not only make discov-
ering relevant data difficult, but also requires researchers to spend considerable time
interpreting and integrating potential data sets for use within any particular analysis.
We aim to help address these challenges by providing a suite of lightweight, ontology-
based tools that allow researchers to semantically describe, access, and analyze hetero-
geneous data sets (either their own, or those collected for use in research studies). In this
paper, we describe tools that have recently been developed within the ObsDB system
[5], which provides data management support built on top of a generic ontology model
for formally representing observations and measurements [6]. Within ObsDB, data sets
are viewed as semantically described collections of observations. In particular, when
data is registered with ObsDB, it is converted automatically into the appropriate ob-
servational structure (and represented within the current version of ObsDB as an RDF
graph). This approach allows otherwise hard to manage, heterogeneous table structures
to be viewed and accessed uniformly as collections of observations and measurements.

2

ObsDB System

ObsDB Interpreter External Application

(ObsQL) Query Processor

evaluate and store
query results

query
validation

External Applications

Annotation Engine
(Materialization)

Tabular
Data (CSV)

Exploratory Data
Analysis
R System

Parameterized
R Scripts

RDF Graph
Triple Store

(Jena TDB)

store

Ontology Management

Ontology
Loader

Annotation
 “markdown”

Ontology
“markdown”

The OWL API HermiT Reasoner

Annotation
Loader

Data
Loader

OWL-DL
Ontologies

Fig. 1. Overview of the ObsDB system architecture.

The tools we have developed leverage a “markdown”-based approach for defining
ontologies, for specifying data-level semantic annotations (from which data is “shred-
ded” into the observational model), and for expressing data discovery queries. The
“markdown” is then converted automatically within ObsDB (see Figure 1) into corre-
sponding descriptions in OWL-DL (for representing ontologies), RDF (for storing ob-
servation and measurement instances), and SPARQL (for executing discovery queries
and filtering collections). ObsDB also allows observations and measurements from mul-
tiple data sets to be merged into “virtual” observation collections (RDF graphs), which
can be saved and further accessed and queried. Ontologies within ObsDB allow ob-
servations and measurements to carry rich semantic descriptions, including the types
of entities observed, the characteristics of entities measured, the context in which ob-
servations were made, and detailed measurement standards (units) for facilitating unit
conversion. ObsDB also supports an expressive query language for selecting data sets
and filtering data by observation and measurement types. For instance, users can specify
queries to find all data sets that contain specific measurements of entities (e.g., diameter
and height measurements of trees), relationships and constraints among entities (e.g.,
the length of branches on trees of a minimum height and at specific elevations), and
the use of desired measurement standards (e.g., in meters). Similar queries can also be
expressed to obtain all observations (either within or across collections) matching such
criteria, where unit conversions are automatically applied as needed. Through integra-
tion with the R system 1, analytical scripts can also be called from within ObsDB to
perform a variety of exploratory analyses over observation collections.

1 http://www.r-project.org

http://www.r-project.org

3

In this paper, we extend our prior work on ObsDB [5,8] by describing recent ex-
tensions to the system, focusing in particular on new support for ontology modeling,
annotation, and querying, and its implementation over underlying semantic web tech-
nologies. We demonstrate our “markdown”-based approach using examples drawn from
real-world ecological data, and also describe our ongoing and future work on further
extending ObsDB with the goal of helping researchers more effectively manage hetero-
geneous observational data.

Figure 1 shows the main architectural components of ObsDB. The ObsDB system
is implemented in Java and can be used from within other (external) applications (via
API calls) or by using the ObsDB interpreter. ObsDB manages user loaded data set
files, semantic annotation files, and ontology files. Ontologies are converted to OWL-
DL files by ObsDB and are stored and managed using the OWL API2. Annotation files
can be applied to data sets to produce a “materialized” set of RDF triples (an RDF
Graph). All RDF data is stored within ObsDB using the Jena triple store3 technology.
Users can query RDF Graphs using the ObsDB query processor, which converts high-
level queries expressed in ObsQL (the query language of ObsDB) into corresponding
SPARQL queries. As part of the query evaluation process, ObsDB uses the HermiT
OWL-DL reasoner for query expansion (which is also used to verify semantic annota-
tions are semantically consistent). Finally, R scripts can be defined and registered with
ObsDB to perform statistical and analytical operations over RDF Graphs stored within
ObsDB.

The rest of this paper describes these features in more detail. Section 2 describes the
underlying observations ontology employed by ObsDB and its newly supported ontol-
ogy “markdown” approach. Section 3 describes the new semantic annotation approach
employed by ObsDB. Section 4 briefly describes ObsQL and its new implementation
in ObsDB. Finally, Section 5 concludes by describing related work and our future di-
rections for ObsDB.

2 Ontology Creation and Management

The ObsDB system is built on a recent version of the Extensible Observation Ontol-
ogy (OBOE) [6]4. The OBOE model is implemented in OWL-DL and is compatible
with the O&M ISO standard developed by the Open Geospatial Consortium (OGC) [1].
Figure 2 shows the top-level classes and properties supported by OBOE (the primary
“OBOE core” classes). An observation is made of an entity (e.g., biological organisms,
geographic locations, or environmental features, etc.) and primarily serves to group a
set of measurements together to form a single observation event. A measurement as-
signs a value to a characteristic of the observed entity (e.g., the height of a tree), where
a value is represented through a special class (similar to the notion of value partitions
in [15]). Measurements also include standards (e.g., units) for relating values across
measurements, and can specify additional information including collection protocols,

2 http://owlapi.sourceforge.net/
3 http://jena.apache.org/documentation/tdb/
4 See https://code.ecoinformatics.org/code/semtools/trunk/dev/
oboe/oboe.1.1rc1/oboe-core.owl

http://owlapi.sourceforge.net/
http://jena.apache.org/documentation/tdb/
https://code.ecoinformatics.org/code/semtools/trunk/dev/oboe/oboe.1.1rc1/oboe-core.owl
https://code.ecoinformatics.org/code/semtools/trunk/dev/oboe/oboe.1.1rc1/oboe-core.owl

4

Characteristic Measurement

Protocol Standard Value

Observation Entity
ofEntity (1:1)

hasContext (0:*)

hasMeasurement (0:*)

ofCharacteristic (1:1)

usesProtocol (1:1) usesStandard (1:1) hasValue (1:1)

Fig. 2. Main concepts and properties in the ObsDB observations ontology (OBOE).

methods, precision, and accuracy (not all of which are shown in Figure 2). An obser-
vation (event) can occur within the context of zero or more other observations, e.g.,
an observation of a tree specimen may have been made within a specific geographic
location, and the geographic location provides important information for interpreting
and comparing tree measurements. In this case, by establishing a context relationship
between the tree and location observations, the measured values of the location are as-
sumed to be constant with respect to the measurements of the tree. Context forms a
transitive relationship among observations. A key feature of the model is its ability for
users to assert properties of entities (as measurement characteristics or contextual rela-
tionships) without requiring these properties to be interpreted as inherently (or always)
true of the entity. Depending on the context an entity was observed in, its properties
may take on different values. For instance, the diameter of a tree changes over time, and
the diameter value often depends on the protocol used to obtain the measurement. The
observation and measurement structure of Figure 2 allows RDF-style assertions about
entities while allowing for properties to be contextualized (i.e., the same entity can have
different values for a characteristic under different contexts), which is a crucial feature
for modeling scientific data [6]. The primary differences between O&M and OBOE are
that (1) OBOE was designed to explicitly be represented in OWL-DL; and (2) OBOE
treats an observation (event) as a collection of measurements, allowing observations to
be defined within a context hierarchy (which implicitly applies to an observation’s asso-
ciated measurements) as opposed to O&M which requires each measurement’s context
to be stated explicitly.

Figure 3 shows the main classes and properties defined in OBOE for representing
measurement standards, including units of measure. Every measurement unit is asso-
ciated with a measurement characteristic (e.g., length, mass, time, area, volume, etc.)
and the set of units are divided into four subclasses. A base unit represents a unit that
cannot be naturally divided into smaller units. Examples include meter, gram, second,
kelvin, and so on. A prefixed unit applies a prefix (represented as a literal value) to a

5

Index Unit

Standard

Categorical
Standard

DerivedUnit

CompositeUnit

PrefixedUnit BaseUnit
hasUnit (=1)

!"#$

%&'!()*$

hasPrefixMultiplier

hasPower

hasUnit (=1)

hasUnit (>1)

Fig. 3. The basic class hierarchy for describing measurement units (OBOE).

base unit. Examples include kilogram (with base unit gram and multiplier 1000) and
centimeter (with base unit meter and multiplier 0.01). A derived unit assigns a power
(other than 1) to either a prefixed or base unit. Examples include meter squared (m2),
hertz (s−1), and microliter (mm3). A composite unit combines 2 or more derived, pre-
fixed, or base units. Examples include meter per second (which is composed of meter
and a derived per second unit, i.e., m× s−1) as well as “dimensionless” units like gram
per gram (g/g) in which retaining the original units is often needed for interpreting and
integrating data.

Users of ObsDB can create their own ontologies that extend OBOE with domain-
specific terms when annotating data. ObsDB supports a lightweight “markdown” syntax
for describing terms, which was developed specifically to support OBOE modeling con-
structs and common modeling patterns. The advantage of having a lightweight syntax
is that it allows non-expert users in OWL-DL to create and edit terms as needed, with-
out needing to learn DL syntax (required, e.g., in Protege5 or if editing OWL-DL/RDF
syntax directly). Ontologies expressed in the lightweight syntax are automatically con-
verted to the corresponding OWL-DL representation by ObsDB (see Figure 1). The
lightweight syntax is based on YAML6 and provides support for the following tasks:

(i). Importing domain-specific OBOE ontologies for extension;

5 http://protege.stanford.edu/
6 http://www.yaml.org/

http://protege.stanford.edu/
http://www.yaml.org/

6

(ii). Creating entity, characteristic, and protocol hierarchies;
(iii). Defining characteristic qualifiers (e.g., to specify an “average” length charac-

teristic where “average” denotes the qualifier);
(iv). Creating base, prefixed, derived, and composite units;
(v). Specifying unit conversions; and
(vi). Defining categorical measurement standards.

For instance, the following example establishes a simple class hierarchy using the Ob-
sDB lightweight ontology syntax:

!Entity
name: "Organism"
childClass:

!Entity
name: "Tree"
basic types of trees
childClass:

!Entity
name: "DominantTree"
comment: "A tree that extends above surrounding ...

childClass:
!Entity
name: "OvertoppedTree"
comment: "A tree that cannot sufficiently extend its crown ...
equivalentClass: "SuppressedTree"

...
different species of trees
childClass:

!Entity
name: "DouglasFir"
equivalentClass: "Pseudotsuga_menziesii"
comment: "See Garrison et al., 1972"

...

In this example, a tree class is defined as a subclass of a generic organism class. The
tree class is also defined with three subclasses (dominant, overtopped, and Douglas
fir). Each class has a name and an optional comment. In addition, equivalent classes
(i.e., synonyms) can be specified as in the case of an overtopped tree (defined as being
equivalent to a suppressed tree) and with Douglas fir (where in addition to the common
name the taxonomic name is also given). The following defines an example physical
characteristic.

import char: "http://code.ecoinformatics.org/.../oboe-characteristics.owl"
!PhysicalCharacteristic

name: "DiameterAtBreastHeight"
parentClass: "char:Diameter"

Here diameter at breast height (DBH) is defined as a subclass of the diameter class,
which is imported from another ontology (as given by the import statement). The
following example defines a simple base unit, composite unit, and unit conversion.

!BaseUnit
name: "Meter"
characteristic: "oboe:Length"

!CompositeUnit
name: "MeterPerSecond"
characteristic: "oboe:Speed"
allUnits:

- "Meter"
- !Derived

7

baseUnit: "Second"
power: -1

!UnitConversion
name: "FootToMeter"
source: "Foot"
target: "Meter"
multiplier: 0.3048
offset: 0

In this example, the composite unit is defined over the base unit meter and a derived
unit defined “on the fly” (i.e., without providing a specific name to the unit). Finally,
the following illustrates a simple categorical standard definition.

!CategoricalStandard
name: "TreeGrowthVigorStandard"
comment: "Standard values for good, fair, and poor tree growth vigor"
values: "TreeGrowthVigorValue" {"good_tree_growth_vigor",

"fair_tree_growth_vigor", "poor_tree_growth_vigor"}

In this case, we are defining a value partition (as in [15]) consisting of three values
representing good, fair, and poor tree growth.

After starting the ObsDB interpreter, users can load ontology files using the load
onto command. When loading an ontology file, a namespace prefix and URI is also
assigned to the ontology for use within ObsDB. For instance, the following shows the
result of starting ObsDB and loading the “ont1.yml” ontology file:

ObsDB v1.0
Type ’help’ for a list of commands. Type ’quit’ to quit ObsDB.
> import onto ’ont1.yml’ as ’ont1’ using ’http://obsdb.org/ont1’
Ontology created
Ontology loaded

In this case, we are assigning the ontology the namespace prefix “ont1” and the URI
“http://obsdb.org/ont1”. Once loaded, the ontology can be accessed via the namespace.
Ontologies can also be updated using the ObsDB update onto command, which
allows ontologies to be modified without having to remove (or drop) an ontology and
then load the updated version.

In general, we have found that using a lightweight approach such as this has a num-
ber of benefits for specifying OBOE extensions and for annotating data. In particular,
the approach allows new ontology terms and entire ontologies to be quickly and easily
created by simply opening and editing a text file, and the high-level syntax supports
otherwise complex description-logic definitions without requiring users to be experts in
description logic (which is often the case in Protege’s OWL-DL editor). The latter is
especially an issue in ontologies like OBOE that leverage description logic constraints
that must be maintained, e.g., via modeling patterns such as value partitions and various
class and property restrictions. Once a user loads an ontology into ObsDB, the system
automatically performs syntax and semantic validation (e.g., checking for inconsisten-
cies). Together with the lightweight text-based syntax, this allows for rapid editing,
loading, and validation of OBOE ontology extensions.

3 Observational Data Sets and Semantic Annotations

Semantic annotations in ObsDB define how to translate a tabular data set into a corre-
sponding collection of semantically relevant observations and measurements. Semantic

8

STAND PLOT TAG SPP YEAR DBH CANCLASS VIGOR
B388 1 3319 PSME 1999 22.5 C 1
B388 1 3320 PSME 1999 16 I 1
B388 2 3336 PSME 1999 33 D 1
B388 2 3339 CACH 1999 5.8 S 1
B646 1 1817 PSME 1999 22 C 1
B646 1 1815 CACH 1999 5.7 I 1
B684 2 2207 ALRU 1999 19.9 C 1

...

Fig. 4. Example data set consisting of tree (allometry) observations and measurements.

annotations are defined using semantic templates [8] that specify the observation and
measurement types (and their various relationships) for the data set. The observations
and measurements given by each template are automatically filled in (to create obser-
vation and measurement instances) based on user-defined mappings from data set at-
tributes to measurement types. For instance, consider the example data set in Figure 4.
This data set7 consists of eight attributes and approximately three thousand rows of data
(only six of the rows are shown in the figure). The first two attributes specify contex-
tual information concerning the stand and plot where the tree was observed. We can
annotate these attributes using the annotation “markdown” syntax supported by ObsDB
as follows. For instance, the attribute denoting the stand is annotated by the semantic
template:

import ont1: ’http://obsdb.org/ont1’
observation ’StandObs’:

entity: ’ont1:Stand’
measurement:

characteristic: ’obs:Name’
value: ’$STAND’

entityKey: ’$STAND’

which creates an observation individual of a stand entity for each unique value of the
STAND attribute in the data set (thus, for stand B388, B646, and B684 in Figure 4). The
measurement in this case is simply the name of the stand, which is taken directly from
the attribute values. The entityKey field of the template specifies that each unique value
should generate a new observation (as opposed to each row, regardless of the STAND
value, generating a new observation). In this example, we also import a domain-specific
ontology and assign a namespace prefix to be used to refer to corresponding classes
within the annotation file. Similar to the stand template, the following template can be
used to annotate the plot information in the data set.

observation ’PlotObs’:
entity: ’ont1:Plot’
measurement:

characteristic: ’obs:Name’
value: ’$PLOT’

context: ’StandObs’q
entityKey: ’$PLOT’ within ’StandObs’

7 Based on one of the many data sets available on the H.J. Andrews Experimental Forest LTER
site (http://andrewsforest.oregonstate.edu/).

http://andrewsforest.oregonstate.edu/

9

Here the plot is nested within the stand, and so each plot observation has as context the
corresponding stand observation. In this data set, the names of plots across stands are
not unique (e.g., stand B288 contains a plot 1 as does stand B646). This information is
denoted using the “within” keyword. Although not included here, additional measure-
ments can also be added to the template, e.g., the area of the plot (which in this case
could be specified as a constant value assuming all plots are of the same area). The year
attribute would be annotated similarly to the stand as follows.

observation ’YearObs’:
entity: ’ont1:TimePeriod’
measurement:

characteristic: ’ont1:Year’
value: ’$YEAR’

entityKey: ’$YEAR’

The remaining attributes would be annotated via a single tree observation template:

observation ’TreeObs’:
entity: match ’$CANCLASS’ with

’D’ => ’ont1:DominantTree’
’S’ => ’ont1:SuppressedTree’
...

entity: match ’$SPP’ with
’PSME’ => ’ont1:Pseudotsuga_menziesii’
’CACH’ => ’ont1:Castanopsis_chrysophylla’
’ALRU’ => ’ont1:Alnus_rubra’
...

measurement:
characteristic: ’obs:Name’
value: ’$TAG’

measurement:
characteristic: ’ont1:DiameterAtBreastHeight’
standard: ’ont1:Meter’
value: ’$DBH’

measurement:
characteristic: ’ont1:Vigor’
standard: ’ont1:TreeGrowthVigorStandard’
value: match ’$VIGOR’ with

’1’ => individual: ’ont1:good_tree_growth_vigor’
’2’ => individual: ’ont1:fair_tree_growth_vigor’
’3’ => individual: ’ont1:poor_tree_growth_vigor’

context: ’PlotObs’, ’YearObs’
entityKey: ’$TAG’

In this example, the entity is defined by two separate attributes: the CANCLASS
attribute specifies the canopy class the tree belongs to; and the SPP attribute specifies
the tree species. In both cases, attribute values are mapped to ontology classes (i.e.,
a value such as “PSME” denotes a specific species type). Each tree observation also
has three associated measurements: the (tag) name of the tree, the diameter at breast
height (measured in meters); and the growth vigor. For the tree’s vigor, each value in
the dataset is mapped to a specific OWL-DL individual value (as opposed to a class)
that is defined in the corresponding vigor standard of the ontology example of Section 2.
Finally, each tree observation is made within the context of its corresponding plot and
the year in which the observation was made.

Data sets and annotations are loaded independently in ObsDB. The import table
command is used to register a CSV file denoting a data set with ObsDB. For example,
the following command can be used to load the example table of Figure 4.

10

> import table ’table1.csv’ as ’table1’
File copied to /data/tables/ directory.
File loaded.

Annotations are loaded into ObsDB using the import annotation command:
> import annotation ’annot1.txt’ as ’annot1’
File copied to /data/annotations/ directory.
File loaded.

Once loaded, annotations can be applied to tables to generate an RDF graph of corre-
sponding observation and measurement instances using the ObsDB apply command:

> apply ’annot1’ to ’table1’ as ’coll1’ using ’http://obsdb.org/coll1’
Generating Data From Files
Annotation: data/annotations/annot1.oal
Table: data/tables/table1.csv
Output Triples: data/graphs/coll1.ttl

Here “coll1” is used to name the resulting named RDF graph, which is given the cor-
responding URI. ObsDB performs the following steps when applying an annotation to
a table: (1) it verifies the annotation and data file are both syntactically correct; (2) it
verifies the imported ontologies exist and that they have been loaded into ObsDB; (3)
it generates the corresponding observations and measurements (i.e., by materializing
the semantic annotation templates); and (4) it uses the HermiT OWL-DL reasoner to
add inferred axioms (based on ontology definitions and constraints) to the RDF Graph,
and ensures the resulting graph is consistent. Adding inferred axioms is performed to
support query expansion within ObsDB. The resulting RDF Graph is stored within Ob-
sDB and can then be further accessed and queried. [8] describes an earlier version of
the materialization algorithm used by ObsDB. The approach used in the current version
of ObsDB extends this work by supporting more complex value matching annotation
primitives (as shown above, e.g., with the canopy class and vigor measurements) as
well as by materializing data sets to named RDF Graphs as opposed to an underlying
relational database representation.

4 Data Discovery and Analysis

Once data sets are semantically annotated and converted into their corresponding RDF
graphs, they can be accessed directly from within ObsDB. There are three main ways
to access data sets: (1) using the find command to issue data discovery queries to lo-
cate observation collections (RDF graphs of observations and measurements); (2) using
the query command to select observations within or across data sets, the results of
which can be viewed or used to create new observation collections that subset existing
collections or combine multiple existing collections; or (3) using the exec command
to apply statistical and analytical functions to query results (using built-in aggregation
operators or by calling external R scripts).

Each of the above ways to access observation collections are expressed in ObsDB
using the high-level query language ObsQL [6]. ObsQL queries are similar in spirit to
XPath queries for XML in that ObsQL is designed to provide a simple syntax for ex-
pressing common data discovery and subsetting operations. For example, the following
ObsQL find expression can be used to locate all observation collections that contain
observations of trees:

11

> find ont1:Tree []
Matching Graphs

coll1

This example returns the set of matching observation collections (i.e., RDF graphs),
which in this case consists of the “coll1” example of Section 3. All ObsQL find and
query expressions are rewritten by ObsDB into corresponding SPARQL queries. For
instance, the above ObsQL expression is converted by ObsDB into the SPARQL ASK
query:

PREFIX obs: <https://code.ecoinformatics.org/.../oboe-core.owl#>
PREFIX char: <https://code.ecoinformatics.org/.../oboe-characteristics.owl#>
PREFIX ont1: <http://obsdb.org/ont1#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
...
ASK {?temporaryObservationVariable0 obs:ofEntity ?temporaryVariable0 .
?temporaryVariable0 rdf:type ont1:Tree .}

As another example, we can refine the search above to look for only those collections
that have a specific type of tree with a specific type of measurement:

> find ont1:DouglasFir [ont1:DiameterAtBreastHeight]
Matching Graphs

coll1

ObsQL also supports context constraints using the -> operator. For example, the fol-
lowing expressions locates collections that contain observations of Douglas Fir trees
made within named plots:

> find ont1:DouglasFir [ont1:DiameterAtBreastHeight] -> ont1:Plot [obs:Name]
Matching Graphs

coll1

While the above expression is relatively straightforward to express in ObsQL, the cor-
responding SPARQL query is considerably more verbose:

...
ASK {?tempObsVar0 obs:ofEntity ?tempVar0 .

?tempVar0 rdf:type ont1:DouglasFir .
?tempObsVar0 obs:hasMeasurement ?tempMeasVar0 .
?tempMeasVar0 obs:ofCharacteristic ?tempPlaceholder0 .
?tempPlaceholder0 rdf:type ont1:DiameterAtBreastHeight .
?tempMeasVar0 obs:hasValue ?tempPlaceholder1 .
?tempPlaceholder1 obs:hasCode ?tempVar1Code .
?tempObsVar1 obs:ofEntity ?tempVar2 .
?tempVar2 rdf:type ont1:Plot .
?tempObsVar1 obs:hasMeasurement ?tempMeasVar1 .
?tempMeasVar1 obs:ofCharacteristic ?tempPlaceholder2 .
?tempPlaceholder2 rdf:type obs:Name .
?tempMeasVar1 obs:hasValue ?tempPlaceholder3 .
?tempPlaceholder3 obs:hasCode ?tempVar3Code .
?tempObsVar0 obs:hasContext ?tempObsVar1 .}

We note that while ObsQL expressions are generally more concise and easier to specify
than their corresponding SPARQL queries (in part, because ObsQL is tailored specif-
ically to supporting queries over OBOE models), only a subset of SPARQL can be
expressed in ObsQL. In addition to the above example, it is also possible to specify
multiple contexts for an observation, for example:

12

> find ont1:IntermediateTree [] -> (ont1:Stand [], ont1:TimePeriod [])
Matching Graphs

coll1

finds all collections with an observation of the given tree type within the context of both
a stand and a time period. Note that here the stand is an indirect context for the corre-
sponding tree since the tree has a plot as context, and the plot has the stand as context.
It is also possible to query for observations and measurements within a collection. For
example, the following query returns the diameter values of all codominant trees within
coll1:

> query ont1:CodominantTree [ont1:DiameterAtBreastHeight $d] in coll1

| temporaryVariable0 | d |
================================
:ID1004	"10.3"
:ID1017	"13.1"
:ID10286	"48.9"
:ID10299	"46"
...

Here, $d is a “place holder” variable for specifying output values. Note that although
not shown here, multiple place holder variables can be given per query. Also, remov-
ing the “in” clause above will result in ObsDB querying all collections for matching
observations.

Basic computations can also be performed on data when using ObsQL. For instance,
when querying it is possible to select a specific unit from which ObsDB will apply
appropriate unit conversions. For example, in this query:

> query ont1:CodominantTree [ont1:DiameterAtBreastHeight $d ont1:Foot] in coll1

| temporaryVariable0 | d |
===
:ID1004	"33.79265091863517"
:ID1017	"42.979002624671914"
:ID10286	"160.43307086614172"
:ID10299	"150.91863517060366"
...

ObsDB uses the foot-to-meter unit conversion of Section 2 to convert the diameters in
coll1 from meters to feet (since conversions are invertible). As another example, Ob-
sDB can also perform statistical summaries of query results. For instance, the following
query computes for each plot the average Douglas Fir tree diameter (in meters):

> exec avg $d by $p in coll1 where
ont1:DouglasFir [ont1:DiameterAtBreastHeight $d ont1:Meter]
-> ont1:Plot $p

| ?p | mean |
=======================
:ID908	13.4
:ID10203	59.51429
:ID7	24.6
:ID10837	155.4143
...

13

ObsDB supports the standard aggregate operations supported by SPARQL including
average, mean, count, max, min, median, range, and standard deviation. Finally, custom
R scripts can be used from within ObsDB. Each R script must contain a comment header
denoting the name of the operation (for use within an exec command) and the variables
that will be passed into the script (the script inputs). As a simple example, the following
commented R script can be used to draw a basic histogram from within ObsDB.

#name: hist
#argument: $x A vector of x-axis variables
x=$x
hist(x)

Once defined, this script can be called from within ObsDB as follows.

> exec hist $d in coll1 where
ont1:CodominantTree [ont1:DiameterAtBreastHeight $d > 75 ont1:Meter]

The result of this command generates the histogram shown in Figure 5, showing the
distribution of codominant tree diameters greater than 75 m in the underlying data set.
This example also demonstrates an ObsQL query that performs a logical comparison
on measurement values.

In general, ObsQL is designed to provide scientists with the ability to search for
relevant data sets based on domain-specific ontology classes as well as perform basic
exploratory analyses through the subselection of relevant observations and measure-
ments of data sets, by applying aggregate operations, and by applying simple R analysis
scripts. Although not shown in the examples above, ObsDB also allows the results of
queries to be stored in new observation collections using the as keyword. This provides
a basic form of data integration, in which observations from multiple data sets can be
combined into a single collection, without having to perform similar operations directly
on structurally heterogeneous tabular data sets.

5 Related Work and Future Directions

This paper described extensions to our prior work on semantic annotation and providing
access to observational data through the OBOE model [6]. An early version of ObsDB
was presented in [5], which did not directly support ontology editing and semantic an-
notations. Instead, the approach assumed that data was already “materialized” into RDF
triples, which could then be loaded into the system. Similarly, ontologies were assumed
to be defined outside of the system and accessible through resolvable URIs. The early
version of ObsDB also employed a relational database system for storing and querying
observational data, which lead to a number of performance issues as well as limiting its
interoperability with other semantic web technologies. In [8] we described an approach
for supporting semantic annotation templates. This work also relied on observations
and measurements being stored using a relational database system. [8] also gives a for-
mal specification of annotations along with alternative implementation strategies (in the
spirit of classical data integration view-based approaches, e.g., [12,11]). Taken together,
we extend our prior work by providing: an ontology editing “markdown” language de-
signed specifically for OBOE; additional annotation constructs (for value mappings);

14

Histogram of x

x

Fr
eq
ue
nc
y

80 100 120 140 160 180

0
5

10
15

20
25

Fig. 5. Example histogram produced via an R script run in ObsDB.

a new ObsDB implementation over a popular RDF triple store system (Jena TDB);
automated unit conversion; and extended query capabilities (e.g., value comparisons,
grouping operations, and a wide range of aggregate operations).

A number of systems have recently been developed that leverage observation-based
conceptual and ontology models. Some examples include [13] which describes and
compares four implementations of the OGC’s sensor observations service [2] for ac-
cessing and querying real-time sensor data (and which relies on O&M for represent-
ing observations), [10] which describes a system for managing resources based on
hydrological observations (focusing on supporting large-scale observatory networks),
and [16] which describes an implementation of a water quality portal that integrates
a number of data sets via observational ontologies. ObsDB largely differs from these
approaches by providing a personal data management system (as opposed to targeted
applications over an observational model), with support for ontology-based data anno-
tation, ontology editing, and various forms of exploratory query support. Annotations
have been studied in various forms in the database literature (e.g., [9,4]), and as men-
tioned previously, our approach is similar to the more general use of views in data
integration. Finally, the need for uniform mechanisms to describe observational data
has led to many proposals for observational data models and ontologies (e.g., [14,3,7]).
ObsDB is largely complementary to these efforts by providing a framework for man-
aging observational data according to a generic observational model (based on OBOE)
that supports the use of domain-specific ontologies, and a high-level query language for
discovering and accessing observations (within and across datasets).

Our ongoing and future work on ObsDB is focused on further extending support
for exploratory analysis of observational data via the R system. We are also interested
in developing tools within ObsDB to support comparing data sets based on their an-
notations. For instance, given two observation collections, we would like to determine

15

how closely they “match” in terms of observation and measurement types and to au-
tomatically create mappings and transformations to unify the collections into a single
integrated annotation template (for further analysis). We are also interested in develop-
ing support in R to access observations stored in ObsDB, e.g., to be able to program-
matically load one or more observation collections through R calls to perform more
sophisticated analyses (within an R script).

Acknowledgements

This work supported in part through NSF grants IIS-1118088, DBI-0743429, and DBI-
0753144.

References

1. OGC: Observations and measurements encoding standard (O&M): http://www.
opengeospatial.org/standards/om

2. OGC: Sensor observation service (SOS): http://www.opengeospatial.org/
standards/sos

3. Semantic Web for Earth and Environmental Terminology (SWEET), http://sweet.
jpl.nasa.gov/sweet/

4. An, Y., Mylopoulos, J., Borgida, A.: Building semantic mappings from databases to ontolo-
gies. In: AAAI (2006)

5. Bowers, S., Kudo, J., Cao, H., Schildhauer, M.P.: Obsdb: A system for uniformly storing and
querying heterogeneous observational data. In: eScience. pp. 261–268 (2010)

6. Bowers, S., Madin, J.S., Schildhauer, M.P.: A conceptual modeling framework for expressing
observational data semantics. In: ER. pp. 41–54 (2008)

7. C. Mungall, et al.: Integrating phenotype ontologies across multiple species. Genome Biol-
ogy 11(R2) (2010)

8. Cao, H., Bowers, S., Schildhauer, M.P.: Approaches for semantically annotating and discov-
ering scientific observational data. In: International Confere on Database and Expert Systems
Applications (DEXA). pp. 526–541 (2011)

9. Geerts, F., Kementsietsidis, A., Milano, D.: Mondrian: Annotating and querying databases
through colors and blocks. In: ICDE. p. 82 (2006)

10. Horsburgh, J.S., Tarboton, D.G., Maidment, D.R., Zaslavsky, I.: Components of an environ-
mental observatory information system. Computers & Geosciences 37(2), 207–218 (2011)

11. Kolaitis, P.G.: Schema mappings, data exchange, and metadata management. In: PODS
(2005)

12. Lenzerini, M.: Data integration: a theoretical perspective. In: PODS. pp. 233–246 (2002)
13. McFerren, G., Hohls, D., Fleming, G.: Evaluating sensor observation service implemen-

tations. In: IEEE International Geoscience & Remote Sensing Symposium (IGARSS). pp.
363–366 (2009)

14. P. Fox, et al.: Ontology-supported scientific data frameworks: The virtual solar-terrestrial
observatory experience. Computers & Geosciences 35(4), 724–738 (2009)

15. Rector, A.L., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R., Wang,
H., Wroe, C.: Owl pizzas: Practical experience of teaching owl-dl: Common errors & com-
mon patterns. In: EKAW. pp. 63–81 (2004)

16. Wang, P., Fu, L., Patton, E.W., McGuinness, D.L., Dein, F.J., Bristol, R.S.: Towards
semantically-enabled exploration and analysis of environmental ecosystems. In: eScience.
pp. 1–8 (2012)

http://www.opengeospatial.org/standards/om
http://www.opengeospatial.org/standards/om
http://www.opengeospatial.org/standards/sos
http://www.opengeospatial.org/standards/sos
http://sweet.jpl.nasa.gov/sweet/
http://sweet.jpl.nasa.gov/sweet/

	Lightweight Ontology-Based Tools for Managing Observational Data
	Introduction
	Ontology Creation and Management
	Observational Data Sets and Semantic Annotations
	Data Discovery and Analysis
	Related Work and Future Directions

