AIM: Another Itemset Miner

Amos Fiat, Sagi Shporer
School of Computer Science
Tel-Aviv University
Tel Aviv, Israel
{fiat, shporer}@tau.ac.il

Abstract

We present a new algorithm for mining frequent
itemsets. Past studies have proposed wvarious algo-
rithms and techniques for improving the efficiency of
the mining task. We integrate a combination of these
techniques into an algorithm which utilize those tech-
niques dynamically according to the input dataset. The
algorithm main features include depth first search with
vertical compressed database, diffset, parent equiva-
lence pruning, dynamic reordering and projection. Ez-
perimental testing suggests that our algorithm and
implementation significantly outperform existing algo-
rithms/implementations.

1. Introduction

Finding association rules is one of the driving appli-
cations in data mining, and much research has been
done in this field [10, 7, 4, 6]. Using the support-
confidence framework, proposed in the seminal paper
of [1], the problem is split into two parts — (a) finding
frequent itemsets, and (b) generating association rules.

Let I be a set of items. A subset X C I is called
an itemset. Let D be a transactional database, where
each transaction T' € Disasubset of I : T'C I. For an
itemset X, support(X) is defined to be the number of
transactions 7" for which X C T'. For a given parameter
minsupport, an itemset X is call a frequent itemset
if support(X) > minsupport. The set of all frequent
itemsets is denoted by F.

The remainder of this paper is organized as follows.
Section 2 contains a short of related work. In section 3
we describe the AIM-F algorithm. Section 4 contains
experimental results. In Section 5 we conclude this
short abstact with a discussion.

1.1. Contributions of this paper

We combine several pre-existing ideas in a fairly
straightforward way and get a new frequent itemset
mining algorithm. In particular, we combine the sparse
vertical bit vector technique along with the difference
sets technique of [14], thus reducing the computation
time when compared with [14]. The various techniques
were put in use dynamically according to the input
dataset, thus utilizing the advantages and avoiding the
drawbacks of each technique.

Experimental results suggest that for a given level of
support, our algorithm/implementation is faster than
the other algorithms with which we compare ourselves.
This set includes the dEclat algorithm of [14] which
seems to be the faster algorithm amongst all others.

2. Related Work

Since the introduction of the Apriori algorithm by
[1, 2] many variants have been proposed to reduce time,
I/0O and memory.

Apriori uses breath-first search, bottom-up ap-
proach to generate frequent itemsets. (Le., constructs
1+ 1 item frequent itemsets from ¢ item frequent item-
sets). The key observation behind Apriori is that all
subsets of a frequent itemset must be frequent. This
suggests a natural approach to generating frequent
itemsets. The breakthrough with Apriori was that
the number of itemsets explored was polynomial in the
number of frequent itemsets. In fact, on a worst case
basis, Apriori explores no more than n itemsets to out-
put a frequent itemset, where n is the total number of
items.

Subsequent to the publication of [1, 2], a great many
variations and extensions were considered [3, 7, 13].
In (3] the number of passes over the database was re-
duced . [7] tried to reduce the search space by combin-
ing bottom-up and top-down search — if a set is infre-

quent than so are supersets, and one can prune away
infrequent itemsets found during the top-down search.
[13] uses equivalence classes to skip levels in the search
space. A new mining technique, FP-Growth, proposed
in [12], is based upon representing the dataset itself as
a tree. [12] perform the mining from the tree represen-
tation.

We build upon several ideas appearing in previous
work, a partial list of which is the following;:

e Vertical Bit Vectors [10, 4] - The dataset is stored
in vertical bit vectors. Experimentally, this has
been shown to be very effective.

e Projection [4] - A technique to reduce the size of
vertical bit vectors by trimming the bit vector to
include only transaction relevant to the subtree
currently being searched.

e Difference sets [14] - Instead of holding the entire
tidset at any given time, Diffsets suggest that only
changes in the tidsets are needed to compute the
support.

e Dynamic Reordering [6] - A heuristic for reducing
the search space - dynamically changing the order
in which the search space is traversed. This at-
tempts to rearrange the search space so that one
can prune infrequent itemsets earlier rather than
later.

e Parent Equivalence Pruning [4, 13] - Skipping lev-
els in the search space, when a certain item added
to the itemset contributes no new information.

To the best of our knowledge no previous imple-
mentation makes use of this combination of ideas, and
some of these combinations are non-trivial to combine.
For example, projection has never been previously used
with difference sets and to do so requires some new ob-
servations as to how to combine these two elements.

We should add that there are a wide variety of other
techniques introduced over time to find frequent item-
sets, which we do not make use of. A very partial list
of these other ideas is

e Sampling - [11] suggest searching over a sample of
the dataset, and later validates the results using
the entire dataset. This technique was shown to
generate the vast majority of frequent itemsets.

e Adjusting support - [9] introduce SLPMiner, an
algorithm which lowers the support as the item-
sets grow larger during the search space. This at-
tempts to avoid the problem of generating small
itemsets which are unlikely to grow into large item-
sets.

{:123}

{1:23} {2:3} {3:}

/N

{12:3} {13:} {23:}

{123:}

Figure 1. Full lexicographic tree of 3 items

3. The AIM-F algorithm

In this section we describe the building blocks that
make up the AIM-F algorithm. High level pseudo code
for the AIM-F algorithm appears in Figure 7.

3.1. Lexicographic Trees

Let < be some lexicographic order of the items in
such that for every two items i and j, 1 # j : ¢ < j or
i > j. Every node n of the lexicographic tree has two
fields, n.head which is the itemset node n represent,
and n.tail which is a list of items, possible extensions
to n.head. A node of the lexicographic tree has a level.
Itemsets for nodes at level k nodes contain k items. We
will also say that such itemsets have length k. The root
(level 0) node n.head is empty, and n.tail = I. Figure
1 is an example of lexicographic tree for 3 items.

The use of lexicographic trees for itemset generation
was proposed by [8].

3.2. Depth First Search Traversal

In the course of the algorithm we traverse the lexico-
graphic tree in a depth-first order. At node n, for every
element « in the node’s tail, a new node n’ is generated
such that n’.head = n.head | J o and n'.tail = n.tail—a.
After the generation of n’, a is removed from n.tail, as
it will be no longer needed (see Figure 3).

Several pruning techniques, on which we elaborate
later, are used in order to speed up this process.

3.3 Vertical SparseBit-Vectors

Comparison between horizontal and vertical
database representations done in [10] shows that the
representation of the database has high impact on the
performance of the mining algorithm. In a vertical
database the data is represented as a list of items,

Project(p : vector, v : vector)

/* p - vector to be projected upon
v - vector being projected */

(1) t = Empty Vector

(2) i=0

(3) for each nonzero bit in p, at offset j, in

ascending order of offsets:
4) Set ’th bit of target vector ¢ to be the
4’th bit of v.
(G) i=i+1
(6) return ¢

Figure 2. Projection

DFS(n : node,)
(1) t = n.tail

(2) whilet#0

(3) Let « be the first item in ¢
(4) remove « from ¢

(5) n’.head = n.head | «

(6) n' tail = ¢

(1) DFS(n')

Figure 3. Simple DFS

where every item holds a list of transactions in which
it appears.

The list of transactions held by every item can be
represented in many ways. In [13] the list is a tid-list,
while [10, 4] use vertical bit vectors. Because the data
tends to be sparse, vertical bit vectors hold many “0”
entries for every “1”, thus wasting memory and CPU
for processing the information. In [10] the vertical bit
vector is compressed using an encoding called skinning
which shrinks the size of the vector.

We choose to use a sparse vertical bit vector. Ev-
ery such bit vector is built from two arrays - one for
values, and one for indexes. The index array gives the
position in the vertical bit vector, and the value array
is the value of the position, see Figure 8. The index
array is sorted to allow fast AND operations between
two sparse bit vectors in a similar manner to the AND
operation between the tid-lists. Empty values will be
thrown away during the AND operation, save space
and computation time.

3.3.1 Bit-vector projection

In [4], a technique called projection was introduced.
Projection is a sparse bit vector compression technique
specifically useful in the context of mining frequent

Apriori(n : node, minsupport : integer)
(1) t =n.tail

(2) whilet #0

(3) Let o be the first item in ¢
(4) remove « from ¢

(5) n’.head = n.head |
(6) n'.tail =t

(7) if (support(n’.head) > minsupport)
(8) Report n’.head as frequent itemset
(9) Apriori(n’)

Figure 4. Apriori

PEP(n : node, minsupport : integer)
(1) t = n.tail

(2) whilet #0

(3) Let « be the first item in ¢
4) remove « from ¢

(5) n’.head = n.head | «

(6) n'.tail = ¢

(7) if (support(n’.head) = support(n.head))
(8) add «a to the list of items removed by

PEP
(9) else if (support(n’.head) > minsupport)
(10) Report n’.head [J{All subsets of items
removed by PEP} as frequent itemsets
(11) PEP(n')

Figure 5. PEP

itemsets. The idea is to eliminate redundant zeros in
the bit-vector - for itemset P, all the transactions which
does not include P are removed, leaving a vertical bit
vector containing only 1s. For every itemset generated
from P (a superset of P), PX, all the transactions
removed from P are also removed. This way all the
extraneous zeros are eliminated.

The projection done directly from the vertical bit
representation. At initialization a two dimensional ma-
trix of 2% by 2% is created, where w is the word length
or some smaller value that we choose to work with.
Every entry (4,7) is calculated to be the projection of
j on i (thus covering all possible projections of single
word). For every row of the matrix, the number of bits
being projected is constant (a row represents the word
being projected upon).

Projection is done by traversing both the vector to
project upon, p, and the vector to be projected, v. For
every word index we compute the projection by table

DynamicReordering(n : node, minsupport : integer)
) t = n.tail

) for each vin ¢

) Compute s, = support(n.head | «)
) Sort items « in t by s, in ascending order.
) while ¢t #

) Let « be the first item in ¢

) remove « from ¢

) n’.head = n.head | J «

) n'tail =t

0) if (support(n’.head) > minsupport)

1) Report n’.head as frequent itemset
2

(1
(2
(3
(4
(5
(6
(7
(8
(9
(1
(1
(12) DynamicReordering(n’)

Figure 6. Dynamic Reordering

lookup, the resulting bits are then concatenated to-
gether. Thus, computing the projection takes no longer
than the AND operation between two compressed ver-
tical bit lists.

In [4] projection is used whenever a rebuilding
threshold was reached. Our tests show that because
we’re using sparse bit vectors anyway, the gain from
projection is smaller, and the highest gains are when
we use projection only when calculating the 2-itemsets
from 1-itemsets. This is also because of the penalty
of using projection with diffsets, as described later, for
large k-itemsets. Even so, projection is used only if the
sparse bit vector will shrunk significantly - as a thresh-
old we set 10% - if the sparse bit vector contains less
than 10% of '1’s it will be projected.

3.3.2 Counting and support

To count the number of ones within a sparse bit vector,
one can hold a translation table of 2 values, where w
is the word length. To count the number of ones in a
word requires only one memory access to the transla-
tion table. This idea first appeared in the context of
frequent itemsets in [4].

3.4 Diffsets

Difference sets (Diffsets), proposed in [14], are a
technique to reduce the size of the intermediate in-
formation needed in the traversal using a vertical
database. Using Diffsets, only the differences between
the candidate and its generating itemsets is calculated
and stored (if necessary). Using this method the inter-
mediate vertical bit-vectors in every step of the DFS
traversal are shorter, this results in faster intersections

AIM-F(n : node, minsupport : integer)

/* Uses DFS traversal of lexicographic itemset tree

Fast computation of small frequent itemsets

for sparse datasets

Uses difference sets to compute support

Uses projection and bit vector compression

Makes use of parent equivalence pruning

Uses dynamic reordering */

) t=n.tail

) for each o in ¢

) Compute s, = support(n.head | «)

) if (s, = support(n.head))

) add « to the list of items removed by PEP

) remove « from ¢

) else if (sq < minsupport)

) remove « from ¢

) Sort items in ¢ by s, in ascending order.

0) While ¢ # 0

1) Let a be the first item in ¢

2) remove « from ¢

3) n’.head = n.headJa

4) ntail=t

5) Report n'.head | J{All subsets of items
removed by PEP} as frequent itemsets

(16) AIM-F(n')

(1
(2
(3
(4
(5
(6
(7
(8
(9
(1
(1
(1
(1
(1
(1

Figure 7. AIM-F

between those vectors.

Let t(P) be the tidset of P. The Diffset d(PX) is
the tidset of tids that are in ¢(P) but not in ¢(PX),
formally : d(PX) = t(P) — t(PX) = t(P) — t(X). By
definition support(PXY') = support(PX)—|d(PXY)|,
so only d(PXY) should be calculated. —However
d(PXY) = d(PY) — d(PX) so the Diffset for every
candidate can be calculated from its generating item-
sets.

Diffsets have one major drawback - in datasets,
where the support drops rapidly between k-itemset to
k+1-itemset then the size of d(PX) can be larger than
the size of ¢(PX) (For example see figure 9). In such
cases the usage of diffsets should be delayed (in the
depth of the DFS traversal) to such k-itemset where
the support stops the rapid drop. Theoretically the
break even point is 50%: % = 0.5, where the size
of d(PX) equals to t(PX), however experiments shows
small differences for any value between 10% to 50%.
For this algorithm we used 50%.

Diffsets and Projection : As d(PXY) in not
a subset of d(PX), Diffsets cannot be used directly
for projection. Instead, we notice that d(PXY) C

Full bit-vector representation :
1 2 3 4 5

Value ‘ 0001 | 0000 l 0000 | 0101 l 0000 ‘

Sparse bit-vector representation:

Figure 8. Sparse Bit-Vector data structure

Figure 9. Diffset threshold

t(PX) and t(PX) = t(P) — d(PX). However d(PX)
is known, and t(P) can be calculated in the same
way. For example t(ABCD) = t(ABC) — d(ABCD),
t(ABC) = t(AB) — d(ABCQC), t(AB) = t(A) — d(AB)
thus t(ABCD) = t(A)—d(AB)—d(ABC)—d(ABCD).
Using this formula the ¢(PX) can be calculated using
the intermediate data along the DFS trail. As the DFS
goes deeper, the penalty of calculating the projection
is higher.

3.5 Pruning Techniques

3.5.1 Apriori

Proposed by [2] the Apriori pruning technique is
based on the monotonicity property of support:
support(P) > support(PX) as PX is contained in less
transactions than P. Therefore if for an itemset P,
support(P) < minsupport, the support of any exten-
sion of P will also be lower than minsupport, and the
subtree rooted at P can be pruned from the lexico-
graphic tree. See Figure 4 for pseudo code.

3.5.2 Parent Equivalence Pruning (PEP)

This is a pruning method based on the following prop-
erty : If support(n.head) = support(n.head | Ja) then
all the transactions that contain n.head also contain

n.head | Ja. Thus, X can be moved from the tail to
the head, thus saving traversal of P and skipping to
PX. This method was described by [4, 13]. Later when
the frequent items are generated the items which were
moved from head to tail should be taken into account
when listing all frequent itemsets. For example, if k
items were pruned using PEP during the DFS traver-
sal of frequent itemset X then the all 2¥ subsets of
those k items can be added to X without reducing the
support. This gives creating 2¥ new frequent itemsets.
See Figure 5 for pseudo code.

3.6 Dynamic Reordering

To increase the chance of early pruning, nodes are
traversed, not in lexicographic order, but in order de-
termined by support. This technique was introduced
by [6].

Instead of lexicographic order we reorder the chil-
dren of a node as follows. At node n, for all « in the
tail, we compute s, = support(t.head|Ja), and the
items are sorted in by s, in increasing order. Items «
in n.tail for which support(t.head|Ja) < minsupport
are trimmed away. This way, the rest of the sub-tree
will benefit from a shortened tail. Items with smaller
support, which are heuristically “likely” to be pruned
earlier, will be traversed first. See Figure 6 for pseudo
code.

3.7 Optimized Initialization

In sparse datasets computing frequent 2-itemsets
can be done more efficiently than than by perform-
ing (}) itemset intersections. We use a method similar
to the one described in [13]: as a preprocessing step,
for every transaction in the database, all 2-itemsets are
counted and stored in an upper-matrix of dimensions
n X n. This step may take up to O(n2) operations per
transaction. However, as this is done only for sparse
datasets, experimentally one sees that the number of
operations is small. After this initialization step, we
are left with frequent 2 item itemsets from which we
can start the DF'S proceedure.

4. Experimental Results

The experiments were conducted on an Athlon
1.2Ghz with 256 MB DDR RAM running Microsoft
Windows XP Professional. All algorithms where com-
piled on VC 7. In the experiments described herein, we
only count frequent itemsets, we don’t create output.

We used five datasets to evaluate the algorithms per-
formance. Those datasets where studied extensively in
[13].

1. connect — A database of game states in the game
connect 4.

2. chess — A database of game states in chess.

3. mushroom — A database with information about
various mushroom species.

4. pumsb* — This dataset was derived from the
pumsb dataset and describes census data.

5. T1014D100K - Synthetic dataset.

The first 3 datasets were taken from
the UN Irvine ML Database Repository
(http://www.ics.uci.edu/ mlearn/MLRepository).
The synthetic dataset created by the IBM Almaden
synthetic data generator

(http://www.almaden.ibm.com/cs/quest/demos.html).

4.1 Comparing Data Representation

We compare the memory requirements of sparse ver-
tical bit vector (with the projection described earlier)
versus the standard tid-list. For every itemset length
the total memory requirements of all tid-sets is given
in figures 10, 11 and 12. We do not consider itemsets
removed by PEP.

Chess

)

& Sparse Bit Vector|
S TID List

Total memory (KB)

Base candidate length (without PEPed
items)

Figure 10. Chess - support 2000 (65%)

As follows from the figures, our sparse vertical bit
vector representation requires less memory than tid-
list for the dense datasets (chess, connect). However
for the sparse dataset (T10I4D100K) the sparse ver-
tical bit vector representation requires up to twice

Connect

| | = Sparse Bit Vector|
S TID List

Total memory (KB)

Base candidate length (without PEPed
items)

Figure 11. Connect - support 50000 (75%)

T1014D100K

| | = Sparse Bit Vector|
S TID List

Total memory (KB)

Base candidate length (without PEPed
items)

Figure 12. T1014D100K - support 100 (0.1%)

as much memory as tid-list. Tests to dynamically
move from sparse vertical bit vector representation to
tid-lists showed no significant improvement in perfor-
mance, however, this should be carefully verified in fur-
ther experiments.

4.2 Comparing The Various Optimizations

We analyze the influence of the various optimiza-
tion techniques on the performance of the algorithm.
First run is the final algorithm on a given dataset, then
returning on the task, with a single change in the al-
gorithm. Thus trying to isolate the influence of every
optimization technique, as shown in figures 13 and 14.

As follows from the graphs, there is much difference
in the behavior between the datasets. In the dense
dataset, Connect, the various techniques had tremen-
dous effect on the performance. PEP, dynamic reorder-

Time (Sec)

Connect

/

Support (%)

“+AlIM-F

-+ tid-list

- wio PEP

—wilo Dynamic Reordering
==wjo Diffset

-+wijo Projection

Figure 13. Inauence of the various optimiza-
tion on the Connect dataset mining

Time (Sec)

T1014D100K

Suppart (%)

“+AIM-F

= tig-list

=+wlo PEP

==wjfo Dynamic Reordering
—wlo Diffset

-+ wio Projection

—w/o Optimized Init

Figure 14. Inauence of the various optimiza-
tion on the T1014D100K dataset mining

ing and diffsets behaved in a similar manner, and the
performance improvement factor gained by of them in-
creased as the support dropped. From the other hand
the sparse bit vector gives a constant improvement fac-
tor over the tid-list for all the tested support values,
and projection gives only a minor improvement.

In the second figure, for the sparse dataset
T10I4D100K, the behavior is different. PEP gives no
improvement, as can expected in sparse dataset, as ev-
ery single item has a low support, and does not contain
existing itemsets. There is drop in the support from
k-itemset to k+1-itemset due to the low support there-
fore diffset also gives no impact, and the same goes for
projection. A large gain in performance is made by op-
timized initialization, however the performance gain is
constant, and not by a factor. Last is the dynamic re-
ordering which contributes to early pruning much like
in the dense dataset.

4.3 Comparing Mining Algorithms

For comparison, we used implementations of

1. Apriori [2] - horizontal database, BFS traversal of
the candidates tree.

2. FPgrowth [5] - tree projected database, searching
for frequent itemsets directly without candidate
generation, and

3. dEclat [13] - vertical database, DFS traversal using
diffsets.

All of the above algorithm implemen-
tations were provided by Bart Goethals
(http://www.cs.helsinki/u/goethals/) and used
for comparison with the AIM-F implementation.

Figures 15 to 19 gives experimental results on the
various algorithms and datasets. Not surprising, Apri-
ori [2] generally has the lowest performance amongst
the algorithms compared, and in some cases the run-
ning time could not be computed as it did not fin-
ish even at the highest level of support checked. For
these datasets and compared with the specific algo-
rithms and implementations described above, our al-
gorithm/implementation, AIM-F, seemingly outper-
forms all others.

In general, for the dense datasets (Chess, Connect,
Pumsb* and Mushroom, figures 15,16,17 and 18 re-
spectively), the sparse bit vector gives AIM-F an order
of magnitude improvement over dEclat. The diffsets
gives dEclat and AIM-F another order of magnitude
improvement over the rest of the algorithms.

For the sparse dataset T10I4D100K (Figure 19), the
optimized initialization gives AIM-F head start, which

Chess

1000
100 / / P
3 10 /// —+-aprior
: ////-/ -=fp-growth
£ 3 4+ (Eclat
01 =
001 - ;
70 60 50 40 30 20
Support (%)
Figure 15. Chess dataset
Connect
1000
~ 100 2 /
g —+-fp-growth
5 - dEclat
E +AIM-F
'/
i

a0 80 70 60 50 40 30 20 10
Support (%)

Figure 16. Connect dataset

is combined in the lower supports with the advantage
of the sparse vertical bit vector (See details in figure

14)

5. Afterword

This paper presents a new frequent itemset mining
algorithm, AIM-F. This algorithm is based upon a
mixture of previously used techniques combined dy-
namically. It seems to behave quite well experimen-

tally.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Min-
ing association rules between sets of items in large
databases. In SIGMOD, pages 207-216, 1993.

1000

Time (Sec)

1000

Time (Sec)

Time (Sec)

100

Pumsb*

/)

—+~fp-growth
- (Eclat
= AIM-F
==
L
1
35 30 25 20 15 10 5

Support (%)

Figure 17. Pumsb* dataset

Mushroom

100

/ ~fp-growth
2 = gEclat

-
,,_—»——l""'-'/)‘—.// +AIM-F
P

Mr,/

01

1000

100

4 35 3 25 2 15 1 05 0

Support (%)

Figure 18. Mushroom dataset

T1014D100K

~+~apriori
_,-zxsr‘ﬁ’/ -+ fp-growth

- -+ dEclat
N
P

016 014 012 0.1 008 006 004 002 001
Support (%)

Figure 19. T10l4D100K dataset

2]

[10]

[11]

[12]

[13]

[14]

R. Agrawal and R. Srikant. Fast algorithms for min-
ing association rules. In J. B. Bocca, M. Jarke, and
C. Zaniolo, editors, Proc. 20th Int. Conf. Very Large
Data Bases, VLDB, pages 487-499. Morgan Kauf-
mann, 12-15 1994.

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dy-
namic itemset counting and implication rules for mar-
ket basket data. In SIGMOD, pages 255-264, 1997.
D. Burdick, M. Calimlim, and J. Gehrke. Mafia: a
maximal frequent itemset algorithm for transactional
databases. In ICDE, 2001.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In SIGMOD, pages 1-
12, 2000.

R. J. B. Jr. Efficiently mining long patterns from
databases. In SIGMOD, pages 85-93, 1998.

D.-I. Lin and Z. M. Kedem. Pincer search: A new al-
gorithm for discovering the maximum frequent set. In
EDBT’98, volume 1377 of Lecture Notes in Computer
Science, pages 105-119, 1998.

R. Rymon. Search through systematic set enumera-
tion. In KR-92, pages 539-550, 1992.

M. Seno and G. Karypis. Slpminer: An algorithm
for finding frequent sequential patterns using length
decreasing support constraint. In ICDE, 2002.

P. Shenoy, J. R. Haritsa, S. Sundarshan, G. Bhalo-
tia, M. Bawa, and D. Shah. Turbo-charging vertical
mining of large databases. In SIGMOD, 2000.

H. Toivonen. Sampling large databases for association
rules. In VLDB, pages 134-145, 1996.

S. Yen and A. Chen. An efficient approach to discov-
ering knowledge from large databases. In 4th Interna-
tional Conference on Parallel and Distributed Infor-
mation Systems.

M. J. Zaki. Scalable algorithms for association min-
ing. Knowledge and Data Engineering, 12(2):372-390,
2000.

M. J. Zaki and K. Gouda. Fast vertical mining using
diffsets. Technical Report 01-1, RPI, 2001.

