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Abstract 
 

A simple new algorithm is suggested for frequent 
itemset mining, using item probabilities as the basis for 
generating candidates. The method first finds all the 
frequent items, and then generates an estimate of the 
frequent sets, assuming item independence. The candi-
dates are stored in a trie where each path from the root to 
a node represents one candidate itemset. The method 
expands the trie iteratively, until all frequent itemsets are 
found. Expansion is based on scanning through the data 
set in each iteration cycle, and extending the subtries 
based on observed node frequencies. Trie probing can be 
restricted to only those nodes which possibly need exten-
sion. The number of candidates is usually quite moderate; 
for dense datasets 2-4 times the number of final frequent 
itemsets, for non-dense sets somewhat more. In practical 
experiments the method has been observed to make 
clearly fewer passes than the well-known Apriori method. 
As for speed, our non-optimised implementation is in some 
cases faster, in some others slower than the comparison 
methods. 
 
 
1. Introduction 
 

We study the well-known problem of finding frequent 
itemsets from a transaction database, see [2]. A trans-
action in this case means a set of so-called items. For 
example, a supermarket basket is represented as a trans-
action, where the purchased products represent the items. 
The database may contain millions of such transactions. 
The frequent itemset mining is a task, where we should 
find those subsets of items that occur at least in a given 
minimum number of transactions. This is an important 
basic task, applicable in solving more advanced data 
mining problems, for example discovering association 
rules [2]. What makes the task difficult is that the number 
of potential frequent itemsets is exponential in the number 
of distinct items. 

In this paper, we follow the notations of Goethals [7]. 
The overall set of items is denoted by I. Any subset X ⊆ I 
is called an itemset. If X has k items, it is called a k-

itemset. A transaction is an itemset identified by a tid. A 
transaction with itemset Y is said to support itemset X, if  
X ⊆ Y. The cover of an itemset X in a database D is the set 
of transactions in D that support X. The support of itemset 
X is the size of its cover in D. The relative frequency 
(probability) of itemset X with respect to D is 

 D
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An itemset X is frequent if its support is greater than or 
equal to a given threshold σ. We can also express the 
condition using a relative threshold for the frequency: 
P(X, D) ≥ σrel , where 0 ≤ σrel ≤ 1. There are variants of 
the basic ‘all-frequent-itemsets’ problem, namely the 
maximal and closed itemset mining problems, see [1, 4, 5, 
8, 12]. However, here we restrict ourselves to the basic 
task. 

A large number of algorithms have been suggested for 
frequent itemset mining during the last decade; for 
surveys, see [7, 10, 15]. Most of the algorithms share the 
same general approach: generate a set of candidate 
itemsets, count their frequencies in D, and use the 
obtained information in generating more candidates, until 
the complete set is found. The methods differ mainly in 
the order and extent of candidate generation. The most 
famous is probably the Apriori algorithm, developed 
independently by Agrawal et al. [3] and Mannila et al. 
[11]. It is a representative of breadth-first candidate 
generation: it first finds all frequent 1-itemsets, then all 
frequent 2-itemsets, etc. The core of the method is clever 
pruning of candidate k-itemsets, for which there exists a 
non-frequent k-1-subset. This is an application of the 
obvious monotonicity property: All subsets of a frequent 
itemset must also be frequent. Apriori is essentially based 
on this property. 

The other main candidate generation approach is depth-
first order, of which the best-known representatives are 
Eclat [14] and FP-growth [9] (though the ‘candidate’ 
concept in the context of FP-growth is disputable). These 
two are generally considered to be among the fastest 
algorithms for frequent itemset mining. However, we shall 
mainly use Apriori as a reference method, because it is 
technically closer to ours. 



Most of the suggested methods are analytical in the 
sense that they are based on logical inductions to restrict 
the number of candidates to be checked. Our approach 
(called PIE) is probabilistic, based on relative item 
frequencies, using which we compute estimates for 
itemset frequencies in candidate generation. More 
precisely, we generate iteratively improving approxi-
mations (candidate itemsets) to the solution. Our general 
endeavour has been to develop a relatively simple method, 
with fast basic steps and few iteration cycles, at the cost of 
somewhat increased number of candidates. However, 
another goal is that the method should be robust, i.e. it 
should work reasonably fast for all kinds of datasets. 
 
 
2. Method description 
 

Our method can be characterized as a generate-and-test 
algorithm, such as Apriori. However, our candidate 
generation is based on probabilistic estimates of the 
supports of itemsets. The testing phase is rather similar to 
Apriori, but involves special book-keeping to lay a basis 
for the next generation phase. 

We start with a general description of the main steps of 
the algorithm. The first thing to do is to determine the 
frequencies of all items in the dataset, and select the 
frequent ones for subsequent processing. If there are m 
frequent items, we internally identify them by numbers 
0, …, m-1. For each item i, we use its probability (relative 
frequency) P(i) in the generation of candidates for 
frequent itemsets. 

The candidates are represented as a trie structure, 
which is normal in this context, see [7]. Each node is 
labelled by one item, and a path of labels from the root to 
a node represents an itemset. The root itself represents the 
empty itemset. The paths are sorted, so that a subtrie 
rooted by item i can contain only items > i. Note also that 
several nodes in the trie can have the same item label, but 
not on a single path. A complete trie, storing all subsets of 
the whole itemset, would have 2m nodes and be 
structurally a binomial tree [13], where on level j there are 

)(m
j  nodes, see Fig. 1 for m = 4. 
The trie is used for book-keeping purposes. However, it 

is important to avoid building the complete trie, but only 
some upper part of it, so that the nodes (i.e. their root 
paths) represent reasonable candidates for frequent sets. In 
our algorithm, the first approximation for candidate 
itemsets is obtained by computing estimates for their 
probabilities, assuming independence of item occurrences. 
It means that, for example, for an itemset {x, y, z} the 
estimated probability is the product P(x)P(y)P(z). Nodes 
are created in the trie from root down along all paths as 
long as the path-related probability is not less that the 
threshold σrel. Note that the probability values are 
monotonically  non-increasing  on the way down. Fig. 2 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The complete trie for 4 items. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. An initial trie for the transaction set 
{(0, 3), (1, 2), (0, 1, 3), (1)}, with minimum support 
threshold σ = 1/6. The virtual nodes with pro-
babilities < 1/6 are shown using dashed lines. 

 
 
shows an example of the initial trie for a given set of 
transactions (with m = 4). Those nodes of the complete 
trie (Fig. 1) that do not exist in the actual trie are called 
virtual nodes, and marked with dashed circles in Fig. 2. 

The next step is to read the transactions and count the 
true number of occurrences for each node (i.e. the related 
path support) in the trie. Simultaneously, for each visited 
node, we maintain a counter called pending support (PS), 
being the number of transactions for which at least one 
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virtual child of the node would match. The pending 
support will be our criterion for the expansion of the node: 
If PS(x) ≥ σ, then it is possible that a virtual child of node 
x is frequent, and the node must be expanded. If there are 
no such nodes, the algorithm is ready, and the result can 
be read from the trie: All nodes with support ≥ σ represent 
frequent itemsets. 

Trie expansion starts the next cycle, and we iterate until 
the stopping condition holds. However, we must be very 
careful in the expansion: which virtual nodes should we 
materialize (and how deep, recursively), in order to avoid 
trie ‘explosion’, but yet approach the final solution? Here 
we apply item probabilities, again. In principle, we could 
take advantage of all information available in the current 
trie (frequencies of subsets, etc.), as is done in the Apriori 
algorithm and many others. However, we prefer simpler 
calculation, based on global probabilities of items. 

Suppose that we have a node x with pending support 
PS(x) ≥ σ. Assume that it has virtual child items v0, v1, …, 
vs-1 with global probabilities P(v0), P(v1), …, P(vs-1). Every 
transaction contributing to PS(x) has a match with at least 
one of v0, v1, …, vs-1. The local probability (LP) for a 
match with vi is computed as follows: 
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Using this formula, we get an estimated support ES(vi): 
 

 ))(()()( iVParentPSivLPivES =  (3) 

 
If ES(vi) ≥ σ, then we conclude that vi is expected to be 
frequent. However, in order to guarantee a finite number 
of iterations in the worst case, we have to relax this 
condition a bit. Since the true distribution may be very 
skewed, almost the whole pending support may belong to 
only one virtual child. To ensure convergence, we apply 
the following condition for child expansion in the kth 
iteration, 
 

σα k
ivES ≥)(  (4) 

with some constant α between 0 and 1. In the worst case 
this will eventually (when k is high enough) result in 
expansion, to get rid of a PS-value ≥ σ. In our tests, we 
used the heuristic value α = average probability of fre-
quent items. The reasoning behind this choice is that it 

speeds up the local expansion growth by one level, on the 
average (k levels for αk). This acceleration restricts the 
number of iterations efficiently. The largest extensions are 
applied only to the ‘skewest’ subtries, so that the total size 
of the trie remains tolerable. Another approach to choose 
α would be to do a statistical analysis to determine confi-
dence bounds for ES. However, this is left for future work. 

Fig. 3 shows an example of trie expansion, assuming 
that the minimum support threshold σ = 80, α = 0.8, and k 
= 1. The item probabilities are assumed to be P(y) = 0.7, 
P(z) = 0.5, and P(v) = 0.8. Node t has a pending support of 
100, related to its two virtual children, y and z. This means 
that 100 transactions contained the path from root to t, 
plus either or both of items y and z, so we have to test for 
expansion. Our formula gives y a local probability LP(y) = 
0.7 / (1−(1−0.7)(1−0.5)) ≈ 0.82, so the estimated support 
is 82 > α⋅σ = 64, and we expand y. However, the local 
probability of z is only ≈ 0.59, so its estimated support is 
59, and it will not be expanded. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. An example of expansion for probabili-
ties P(y) = 0.7, P(z) = 0.5, and P(v) = 0.8. 
 
 

When a virtual node (y) has been materialized, we 
immediately test also its expansion, based on its ES-value, 
recursively. However, in the recursive steps we cannot 
apply formula (2), because we have no evidence of the 
children of y. Instead, we apply the unconditional 
probabilities of z and v in estimation: LP(z) = 82⋅0.5 = 41 
< α⋅σ = 64, and LP(v) = 82⋅0.8 = 65.6 > 64. Node v is 
materialized, but z is not. Expansion test continues down 
from v. Thus, both in initialization of the trie and in its 
expansion phases, we can create several new levels (i.e. 
longer candidates) at a time, contrary to e.g. the base 
version of Apriori. It is true that also Apriori can be 
modified to create several candidate levels at a time, but at 
the cost of increased number of candidates. 

After the expansion phase the iteration continues with 
the counting phase, and new values for node supports and 
pending supports are determined. The two phases alternate 
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until all pending supports are less than σ. We have given 
our method the name ‘PIE’, reflecting this Probabilistic 
Iterative Expansion property. 
 
 
3. Elaboration 
 

The above described basic version does a lot of extra 
work. One observation is that as soon as the pending 
support of some node x is smaller than σ, we can often 
‘freeze’ the whole subtrie, because it will not give us 
anything new; we call it ‘ready’. The readiness of nodes 
can be checked easily with a recursive process: A node x 
is ready if PS(x) < σ and all its real children are ready. 
The readiness can be utilized to reduce work both in 
counting and expansion phases. In counting, we process 
one transaction at a time and scan its item subsets down 
the trie, but only until the first ready node on each path. 
Also the expansion procedure is skipped for ready nodes. 
Finally, a simple stopping condition is when the root 
becomes ready. 

Another tailoring, not yet implemented, relates to the 
observation that most of the frequent itemsets are found in 
the first few iterations, and a lot of I/O effort is spent to 
find the last few frequent sets. For those, not all 
transactions are needed in solving the frequency. In the 
counting phase, we can distinguish between relevant and 
irrelevant transactions. A transaction is irrelevant, if it 
does not increase the pending support value of any non-
ready node. If the number of relevant transactions is small 
enough, we can store them separately (in main memory or 
temporary file) during the next scanning phase. 

Our implementation of the trie is quite simple; saving 
memory is considered, but not as the first preference. The 
child linkage is implemented as an array of pointers, and 
the frequent items are renumbered to 0, …, m-1 (if there 
are m frequent items) to be able to use them as indices to 
the array. A minor improvement is that for item i, we need 
only m-i-1 pointers, corresponding to the possible children 
i+1, …, m-1. 

The main restriction of the current implementation is 
the assumption that the trie fits in the main memory. 
Compression of nodes would help to some extent: Now 
we reserve a pointer for every possible child node, but 
most of them are null. Storing only non-null pointers 
saves memory, but makes the trie scanning slower. Also, 
we could release the ready nodes as soon as they are 
detected, in order to make room for expansions. Of 
course, before releasing, the related frequent itemsets 
should be reported. However, a fully general solution 
should work for any main memory and trie size. Some 
kind of external representation should be developed, but 
this is left for future work. 

A high-level pseudocode of the current implementation 
is given in the following. The recursive parts are not 
coded explicitly, but should be rather obvious. 

 
Algorithm PIE − Probabilistic iterative expansion of 
candidates in frequent itemset mining 
 
Input: A transaction database D, the minimum 
support threshold σ. 
Output: The complete set of frequent itemsets. 
 

1.  // Initial steps. 
2.  scan D and collect the set F of frequent items; 
3.  α := average probability of items in F; 
4.  iter := 0; 

 
5.  // The first generation of candidates, based on  

 // item probabilities. 
6.  create a PIE-trie P so that it contains all such  

    ordered subsets S ⊆ F  for which 
       Π(Prob(s∈S)) ⋅ |D|  ≥ σ ;     // Frequency test 

7.  set the status of all nodes of P to not-ready; 
 

8.  // The main loop: alternating count, test and 
 // expand. 

9.  loop 
10.     // Scan the database and check readiness. 
11.     scan D and count the support and pending  

       support values for non-ready nodes in P; 
12.     iter := iter + 1; 
13.     for each node p∈P do 
14.        if pending_support(p) < σ  then 
15.           if p is a leaf then set p ready 
16.           else if the children of p are ready then  
17.                   set p ready; 
18.     if root(P) is ready then exit loop; 

 
19.     // Expansion phase: Creation of subtries on  

    // the basis of observed pending supports. 
20.     for each non-ready node p in P do 
21.        if pending_support(p) ≥ σ then 
22.           for each virtual child v of p do 
23.              compute local_prob(v) by formula (2); 
24.              estim_support(v) := 

                 local_prob(v) ⋅ pending_support(p); 
25.              if estim_support(v) ≥ αiterσ then 
26.                 create node v as the child of p; 
27.                 add such ordered subsets S ⊆ F\{1..v}   

                   as descendant paths of v, for which 
                   Π(Prob(s∈S)) ⋅ estim_support(v)                  
                       ≥ αiterσ ; 
 

28.  // Gather up results from the trie 
29.  return the paths for nodes p in P such that 

    support(p) ≥ σ; 
30.  end 
 



4. Experimental results 
 

For verifying the usability of our PIE algorithm, we 
used four of the test datasets made available to the 
Workshop on Frequent Itemset Mining Implementations 
(FIMI’03) [6]. The test datasets and some of their 
properties are described in Table 1. They represent rather 
different kinds of domains, and we wanted to include both 
dense and non-dense datasets, as well as various numbers 
of items. 
 
 

Table 1. Test dataset description 
 

Dataset #Transactions #Items 
Chess 3 196 75 
Mushroom 8 124 119 
T40I10D100K 100 000 942 
Kosarak 900 002 41 270 

 
 
For the PIE method, the interesting statistics to be 
collected are the number of candidates, depth of the trie, 
and the number of iterations. These results are given in 
Table 2 for selected values of σ, for the ‘Chess’ dataset. 
We chose values of σ that keep the number of frequent 
itemsets reasonable (extremely high numbers are probably 
useless for any application). The table shows also the 
number of frequent items and frequent sets, to enable 
comparison with the number of candidates. For this dense 
dataset, the number of candidates varies between 2-4 
times the number of frequent itemsets. For non-dense 
datasets the ratio is usually larger. Table 2 shows also the 
values of the ‘security parameter’ α, being the average 
probability of frequent items. Considering I/O perfor-
mance, we can see that the number of iteration cycles (= 
number of file scans) is quite small, compared to the base 
version of the Apriori method, for which the largest 

frequent itemset dictates the number of iterations. This is 
roughly the same as the trie depth, as shown in Table 2. 

The PIE method can also be characterized by describ-
ing the development of the trie during the iterations. The 
most interesting figures are the number of nodes and the 
number of ready nodes, given in Table 3. Especially the 
number of ready nodes implies that even though we have 
rather many candidates (= nodes in the trie), large parts of 
them are not touched in the later iterations. 
 
 

Table 3. Development of the trie for dataset 
‘Chess’, with three different values of σ. 

 

σ Iteration #Frequent  
sets found #Nodes #Ready 

nodes 
1 4 720 4 766 2 021 
2 6 036 9 583 9 255 
3 6 134 10 296 10 173 

2600 

4 6 135 10 516 10 516 
1 15 601 15 760 5 219 
2 20 344 34 995 25 631 
3 20 580 47 203 46 952 2400 

4 20 582 47 515 47 515 
1 44 022 44 800 1 210 
2 58 319 112 370 64 174 
3 59 176 206 292 196 782 
4 59 181 216 931 216 922 

2200 

5 59 181 216 943 216 943 
 
 
For speed comparison, we chose the Apriori and FP-

growth implementations, provided by Bart Goethals [6]. 
The results for the four test datasets and for different 
minimum support thresholds are shown in Table 4. The 
processor used in the experiments was a 1.5 GHz Pentium 
4, with 512 MB main memory. We used a g++ compiler, 
using optimizing switch –O6. The PIE algorithm was 
coded in C. 

 
 

Table 2. Statistics from the PIE algorithm for dataset ‘Chess’. 
 

σ #Frequent 
items 

#Frequent 
sets Alpha #Candidates Trie 

depth #Iterations #Apriori’s 
iterations 

3 000 12 155 0.970 400 6 3 6 
2 900 13 473 0.967 1 042 8 4 7 
2 800 16 1 350 0.953 2 495 8 4 8 
2 700 17 3 134 0.947 5 218 9 4 8 
2 600 19 6 135 0.934 10 516 10 4 9 
2 500 22 11 493 0.914 18 709 11 4 10 
2 400 23 20 582 0.907 47 515 12 4 11 
2 300 24 35 266 0.900 131 108 13 4 12 
2 200 27 59 181 0.877 216 943 14 5 13 

 



 
Table 4. Comparison of execution times (in 
seconds) of three frequent itemset mining 

programs for four test datasets. 
 
(a) Chess 

σ #Freq. 
sets Apriori FP-

growth PIE 

3 000 155 0.312 0.250 0.125 
2 900 473 0.469 0.266 0.265 
2 800 1 350 0.797 0.297 1.813 
2 700 3 134 1.438 0.344 6.938 
2 600 6 135 3.016 0.438 14.876 
2 500 11 493 10.204 0.610 26.360 
2 400 20 582 21.907 0.829 78.325 
2 300 35 266 42.048 1.156 203.828 
2 200 59 181 73.297 1.766 315.562 

 
(b) Mushroom 

σ #Freq. 
sets Apriori FP-

growth PIE 

5 000 41 0.375 0.391 0.062 
4 500 97 0.437 0.406 0.094 
4 000 167 0.578 0.438 0.141 
3 500 369 0.797 0.500 0.297 
3 000 931 1.062 0.546 1.157 
2 500 2 365 1.781 0.610 6.046 
2 000 6 613 3.719 0.750 27.047 
1 500 56 693 55.110 1.124 153.187 

 
(c) T40I10D100K 

σ #Freq. 
sets Apriori FP-

growth PIE 

20 000 5 2.797 6.328 0.797 
18 000 9 2.828 6.578 1.110 
16 000 17 3.001 7.250 1.156 
14 000 24 3.141 8.484 1.187 
12 000 48 3.578 14.750 1.906 
10 000 82 4.296 23.874 4.344 

8 000 137 7.859 41.203 11.796 
6 000 239 20.531 72.985 29.671 
4 000 440 35.282 114.953 68.672 

 
(c) Kosarak 

σ #Freq. 
sets Apriori FP-

growth PIE 

20 000 121 27.970 30.141 5.203 
18 000 141 28.438 31.296 6.110 
16 000 167 29.016 32.765 7.969 
14 000 202 29.061 33.516 9.688 
12 000 267 29.766 34.875 12.032 
10 000 376 34.906 37.657 18.016 

8 000 575 35.891 41.657 30.453 
6 000 1 110 39.656 51.922 70.376 

 
We can see that in some situations the PIE algorithm is 

the fastest, in some others the slowest. This is probably a 
general observation: the performance of most frequent 
itemset mining algorithms is highly dependent on the data 
set and threshold. It seems that PIE is at its best for sparse 
datasets (such as T40I10D100K and Kosarak), but not so 
good for very dense datasets (such as ‘Chess’ and 
‘Mushroom’). Its speed for large thresholds probably 
results from the simplicity of the algorithm. For smaller 
thresholds, the trie gets large and the counting starts to 
consume more time, especially with a small main memory 
size. 

One might guess that our method is at its best for 
random data sets, because those would correspond to our 
assumption about independent item occurrences. We 
tested this with a dataset of 100 000 transactions, each of 
which contained 20 random items out of 30 possible. The 
results were rather interesting: For all tested thresholds for 
minimum support, we found all the frequent itemsets in 
the first iteration. However, verification of the complete-
ness required one or two additional iterations, with a 
clearly higher number of candidates, consuming a 
majority of the total time. Table 5 shows the time and 
number of candidates both after the first and after the final 
iteration. The stepwise growth of the values reveals the 
levelwise growth of the trie. Apriori worked well also for 
this dataset, being in most cases faster than PIE. Results 
for FP-growth (not shown) are naturally much slower, 
because randomness prevents a compact representation of 
the transactions. 

We wish to point out that our implementation was an 
initial version, with no special tricks for speed-up. We are 
convinced that the code details can be improved to make 
the method still more competitive. For example, buffering 
of transactions (or temporary files) were not used to 
enhance the I/O performance. 
 
 
5. Conclusions and future work 
 

A probability-based approach was suggested for 
frequent itemset mining, as an alternative to the ‘analytic’ 
methods common today. It has been observed to be rather 
robust, working reasonably well for various kinds of 
datasets. The number of candidate itemsets does not 
‘explode’, so that the data structure (trie) can be kept in 
the main memory in most practical cases. 

The number of iterations is smallest for random 
datasets, because candidate generation is based on just that 
assumption. For skewed datasets, the number of iterations 
may somewhat grow. This is partly due to our simplifying 
premise that the items are independent. This point could 
be tackled by making use of the conditional probabilities 
obtainable from the trie. Initial tests did not show any 
significant  advantage  over the basic approach, but a more 



Table 5. Statistics from the PIE algorithm for a random dataset. 
 

PIE 
After iteration 1. After the last iteration (final) Apriori 

σ #Freq. 
sets #Freq. 

sets 
Time 
(sec.) #Cand. #Cand. #Iter-

ations 
Time 
(sec.) 

#Iter-
ations 

Time 
(sec.) 

50 000 30 30 0.500 30 464 2 2.234 2 3.953 
44 000 42 42 2.016 465 509 3 2.704 3 5.173 
43 800 124 124 1.875 465 1 247 3 10.579 3 6.015 
43 700 214 214 1.876 465 1 792 3 20.250 3 7.235 
43 600 331 331 1.891 465 2 775 3 37.375 3 9.657 
43 500 413 413 1.860 465 3 530 3 48.953 3 11.876 
40 000 465 465 1.844 465 4 443 2 62.000 3 13.875 
28 400 522 522 60.265 4 525 4 900 3 64.235 4 15.016 
28 300 724 724 61.422 4 525 5 989 3 82.140 4 15.531 
28 200 1 270 1 270 61.469 4 525 8 697 3 115.250 4 19.265 
28 100 2 223 2 223 61.734 4 525 13 608 3 167.047 4 31.266 
28 000 3 357 3 357 60.969 4 525 19 909 3 219.578 4 69.797 

 
 
 

sophisticated probabilistic analysis might imply some 
ways to restrict the number of candidates. The exploration 
of these elaborations, as well as tuning the buffering, data 
structure, and parameters, is left for future work. 
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