Efficiently Using Prefix-trees in Mining Frequent Itemsets

Gosta Grahne and Jianfei Zhu
Concordia University
Montreal, Canada
{grahne, jzhu} @cs.concordia.ca

Abstract thans, but we do not know the exact value of the support.
To solve this problem, another type of a frequent itemset,
Efficient algorithms for mining frequent itemsets are the Closed Frequent ltems€CFl), has been proposed. In
crucial for mining association rules. Methods for min- most cases, though, the number of CFI's is greater than the
ing frequent itemsets and for iceberg data cube computa-number of MFI's, but still far less than the number of FI’s.
tion have been implemented using a prefix-tree structure,
known as an FP-tree, for storing compressed information =0
about frequent itemsets. Numerous experimental result gsmgthe FP-tree, the data structure that was first introduced

have demonstrated that these algorithms perform extremel;)n [6] The FP-tree has been_ §hown to be one of the most
well. In this paper we present a novel array-based tech- efficient data structures for mining frequent patterns and for

nique that greatly reduces the need to traverse FP-trees, C€Perg” data cube computations [6, 7, 9, 8].

thus obtaining significantly improved performance for FP- The most important contribution of our work is a novel
tree based algorithms. Our technique works especially well technique that uses an array to greatly improve the perfor-
for sparse datasets. _ mance of the algorithms operating on FP-trees. We first
Furthermore, we present new algorithms for a number gemonstrate that the use of our array-based technique dras-

of common data mining problems. Our algorithms use tjca|ly speeds up the FP-growth method, since it now needs
the FP-tree data structure in combination with our array g scan each FP-tree only once for each recursive call ema-
technique efficiently, and incorporates various optimization nating from it. We then use this technique and give a new
techniques. We also present experimental results whichyigorithm FPmax*, which extends our previous algorithm
show that our methods outperform not only the existing Fpmax, for mining maximal frequent itemsets. In FPmax*,
methods that use the FP-tree structure, but also all existing we yse a variant of the FP-tree structure for subset testing,
available algorithms in all the common data mining prob- ang give number of optimizations that further reduce the
lems. running time. We also present an algorithm, FPclose, for

mining closed frequent itemsets. FPclose uses yet another

variation of the FP-tree structure for checking the closed-
1. Introduction ness of frequent itemsets.

In this work we mine FI's, MFI's and CFI’s by efficiently

Finally, we present experimental results that demonstrate
the fact that all of our FP-algorithms outperform previously
'known algorithms practically always.

A fundamental problem for mining association rules is
to mine frequent itemsets (FI's). In a transaction database
if we know the support of all frequent itemsets, the asso-
ciation rules generation is straightforward. However, when The remaining of the paper is organized as follows. In
a transaction database contains large number of large freSection 2, we briefly review the FP-growth method, and
guent itemsets, miningll frequent itemsets might not be a present our novel array technique that results in the greatly
good idea. As an example, if there is a frequent itemset withimproved method FPgrowth*. Section 3 gives algorithm
size/, then all2 nonempty subsets of the itemset have to FPmax*, which is an extension of our previous algorithm
be generated. Thus, a lot of work is focused on discover- FPmax, for mining MFI's. Here we also introduce our ap-
ing only all themaximal frequent itemse{MFI’s). Unfor- proach of subset testing needed in mining MFI's and CFI’s.
tunately, mining only MFI's has the following deficiency. In Section 4 we give algorithm FPclose, for mining CFI’s.
From an MFI and its suppogt we know that all its subsets Experimental results are given in Section 5. Section 6 con-
are frequent and the support of any of its subset is not lesscludes, and outlines directions of future research.

2. Discovering FlI's Note that there may be more than one node corresponding
to an item in the FP-tree. The frequency of any one item
2.1. The FP-tree and FP-growth method i is the sum of the count associated with all nodes repre-

The FP-growth method by Haet al. [6] uses a data sentingi, and the frequency of an itemset equals the sum

structure called the FP-tree (Frequent Pattern tree). The ppOf the counts of the least frequent item in i, restricted to

tree is a compact representation of all relevant frequencthhiosf b;anbch\(,avs tha:] Comilr? tthti |tef|r~nset. nFor n;s;than(i:te,r;rorr
information in a database. Every branch of the FP-tree rep- gure 1 (b) we can see that the frequency of the itemse

resents a frequent itemset, and the nodes along the branchéré:’_?r’]g} 'tShS' tructed FP-t tai T .
are stored in decreasing order of frequency of the corre- us the constructe -iree contains all frequency in-

sponding items, with leaves representing the least frequenfco_rmatlon of the database. Mining the database becomes

items. Compression is achieved by building the tree in such][n:lmng the .prtze?ff ;he (Ij:;-grovtvth TethOdt retlrl]es on tthe

a way that overlapping itemsets share prefixes of the corre- oflowing principle: 1f A and ¥’ are wo llemsets, the coun

sponding branches. of |tems§tX U Y in the database is exactly thgt Bfin .
The EP-tree has a header table associated with it. Singléhe restriction of the database to those transactions contain-

items and their counts are stored in the header table in de!9 X. This restriction of the database is called tondi-

creasing order of their frequency. The entry for an item also tional pattern basef X, and the FP-tree constructed from

contains the head of a list that links all the corresponding Ehe Co?:.j'tr']onal gatte:n Ease |sv\(;alléﬁs co ndltt;]on;a:IPFr—
nodes of the FP-tree. ree, which we denote byl'xy. We can view the FP-tree

Compared with Apriori [1] and its variants which need constructed from the initial database&s the conditional

several database scans, the FP-growth method only needl%P-tree f_o_'@' Note that for any itemséf that i§ frequentin
two database scans when mining all frequent itemsets. The[t € cont(?tmtr;]al pa_ltt_e ml t()ja?ebﬁf, the selXUY is a frequent
first scan counts the number of occurrences of each item. egse or ?Of'g!”ah aha a:jse. ble of Ep

The second scan constructs the initial FP-tree which con- C'VEN an itemi in the header table of an FP-trd&,

tains all frequency information of the original dataset. Min- by following the linked list starting al_tm the' header table
ing the database then becomes mining the FP-tree of T'x, all branches that contain iteinare visited. These

branches form the conditional pattern baseXot) {i}, so

abcefo S the traversal obtains all frequent items in this conditional
acg Head of pattern base. The FP-growth method then constructs the
glcd eg e Cen) (e conditional FP-tredl'xy;y, by first initializing its header
aceg| e Cee) e Can) table based on the found frequent 'items, and then .visiting
ej . @ the branches df’x along the linked list of one more time
abcefp ; R L A and inserting the corresponding itemsetsia, ;. Note
acd @ that the order of items can be differentdfy andT'x ;-
acegm oG Ce The above procedure is applied recursively, and it stops
acegn when the resulting new FP-tree contains only one single
(b) path. The complete set of frequent itemsets is generated
@) from all single-path FP-trees.

1 . i = 0,
Figure 1. An Example FP-tree (minsup=20%) 2.2. An array technique
To construct the FP-tree, first find all frequent items by ~ The main work done in the FP-growth method is travers-
an initial scan of the database. Then insert these items in theng FP-trees and constructing new conditional FP-trees after
header table, in decreasing order of their count. In the nextthe first FP-tree is constructed from the original database.
(and last) scan, as each transaction is scanned, the set dfrom numerous experiments we found out that about 80%
frequent items in it are inserted into the FP-tree as a branchof the CPU time was used for traversing FP-trees. Thus,
If an itemset shares a prefix with an itemset already in the the question is, can we reduce the traversal time so that the

tree, the new itemset will share a prefix of the branch rep- method can be sped up?

resenting that itemset. In addition, a counter is associated The answer is yes, by using a simple additional data
with each node in the tree. The counter stores the number oftructure. Recall that for each itenin the header of a con-
transactions containing the itemset represented by the pathitional FP-treel’x, two traversals ofl'y are needed for
from the root to the node in question. This counter is up- constructing the new conditional FP-trég ,;,. The first
dated during the second scan, when a transaction causes theaversal finds all frequent items in the conditional pattern
insertion of a new branch. Figure 1 (a) shows an examplebase ofX U {i}, and initializes the FP-tréEx,;; by con-

of a database and Figure 1 (b) the FP-tree for that databasestructing its header table. The second traversal constructs

the new tre€l'x ;3. We can omit the first scan dfx by Axygiy is filled. For instance, in Figure 1, the cells of
constructing an arrayl x while buildingT’x. The follow- array Ay,y is shown in table (b) of Figure 2. This array
ing example will explain the idea. In Figure 1 (a), supposing is constructed as follows. From the array, we know
that the minimum support is 20%, after the first scan of the that the frequent items in the conditional pattern base of
original database, we sort the frequent items:8sc:8, a:8, {g} are, in ordera,c,e. By following the linked list of
¢:5,b:2, f:2,d:2. This order is also the order of items in the g, from the first node we g€, ¢, a} : 4, so itis inserted as
header table of;. During the second scan of the database (a : 4,c : 4,¢ : 4) into the new FP-tred’,,. Atthe same
we will constructT}, and an arrayly. This array will store time, A¢p e, c], Argy[e, a] and Agp e, a] are incremented
the counts of all 2-itemsets. All cells in the array are initial- by 4. From the second node in the linked ligt,a} : 1 is
ized as 0. extracted, and itis inserted &8: 1,c: 1) into Ty,4;. Atthe
same time A, [c, a] is incremented by 1. Since there are

c 6] no other nodes in the linked list, the constructiorgf, is
aje|s finished, and arrayl,, is ready to be used for construction
g ‘2‘ 2 2 5 of FP-trees in next level of recursion. The construction of
f 222102 cl5] arrays and FP-trees continues until the FP-growth method
d[1]2]2[1]0] 0] el4]4] terminates. - _ . o

e caghbf a ¢ Based on above discussion, we define a variation of the

(a) Ao (b) Ag) FP-tree structure in which besides all attributes given in [6],
an FP-tree also has an attribuéeray, which contains the
Figure 2. Two array examples corresponding array.

Now let us analyze the size of an array. Suppose the

number of frequent items in the first FP-treenis Then

the size of the associated arrayMg ;' i = n(n — 1)/2.

We can expect that FP-trees constructed from the first FP-
tree have fewer frequent items, so the sizes of the associated
arrays decrease. At any time, since an array is an attribute
of an FP-tree, when the space for the FP-tree is freed, the
space for the array is also freed.

In Ay, each cell is a counter of a 2-itemset, cell
Apld, e] is the counter for itemsefd, e}, cell Ayld,]
is the counter for itemsefd,c}, and so forth. Dur-
ing the second scan for constructifig, for each trans-
action, first all frequent items in the transaction are ex-
tracted. Suppose these items form itembketTo insert
I into Tp, the items inI are sorted according to the or-
der in header table of). When we insert/ into 7y, . .
at the same timedy[i, j] is incremented by 1 if{i,j} 2.3. Discussion
is contained in/. For example, for the first transaction, The array technique works very well especially when the
{a,b,c,e, f} is extracted (itemv is infrequent) and sorted dataset is sparse. The FP-tree for a sparse dataset and the re-
ase,c,a,b, f. This itemset is inserted int@y as usual, cursively constructed FP-trees will be big and bushy, due to
and at the same timelgy(f, e], Ag[f, c], Ap[f,a], Agf,b], the fact that they do not have many shared common pre-
Ag[b, al, Aglb, c], Ag[b, e], Apla, €], Agla,c], Ag[c,e] areall fixes. The arrays save traversal time for all items and the
incremented by 1. After the second scan, arfigkeepsthe next level FP-trees can be initialized directly. In this case,
counts of all pairs of frequent items, as shown in table (a) the time saved by omitting the first traversals is far greater

of Figure 2. than the time needed for accumulating counts in the associ-
Next, the FP-growth method is recursively called to mine ated array.
frequent itemsets for each item in header tabl&pfHow- However, when a dataset is dense, the FP-trees are more
ever, now for each item, instead of traversind}, along compact. For each item in a compact FP-tree, the traversal
the linked list starting at to get all frequent items iri's is fairly rapid, while accumulating counts in the associated
conditional pattern basely gives all frequent items fot. array may take more time. In this case, accumulating counts
For example, by checking the third line in the table fay, may not be a good idea.
frequent itemse, ¢, a for the conditional pattern base gf Even for the FP-trees of sparse datasets, the first levels of
can be obtained. Sorting them according to their counts, werecursively constructed FP-trees are always conditional FP-
geta,c,e. Therefore, for each itemin T, the arrayAy trees fothe most common prefixed/e can therefore expect
makes the first traversal @y unnecessary, aritl;; canbe the traversal times for the first items in a header table to be
initialized directly fromAy. fairly short, so the cells for these first items are unnecessary
For the same reason, from a conditional FP-tigg in the array. As an example, in Figure 2 table (a), since
when we construct a new conditional FP-tree 01U {i}, e, ¢, anda are the first 3 items in the header table, the first

for an itemi, a new arrayAy g, is calculated. Dur- two lines do not have to be calculated, thus saving counting
ing the construction of the new FP-tré&;;, the array time.

Note that the datasets (the conditional pattern bases)evels of the tree, in order to estimate whether we shall re-
change during the different depths of the recursion. In orderally calculate the array, or just S&t.array = NULL.
to estimate whether a dataset is sparse or dense, during the From our experimental results we found that an FP-tree
construction of each FP-tree we count the number of nodescould have millions of nodes, thus, allocating and deallo-
in each level of the tree. Based on experiments, we foundcating those nodes takes plenty of time. In our implementa-
that if the upper quarter of the tree contains less than 15% oftion, we used our own main memory management for allo-
the total number of nodes, we are most likely dealing with cating and deallocating nodes. Since all memory for nodes
a dense dataset. Otherwise the dataset is likely to be sparsén an FP-tree is deallocated after the current recursion ends,

If the dataset appears to be dense, we do not calculatea chunk of memory is allocated for each FP-tree when we
the array for the next level of the FP-tree. Otherwise, we create the tree. The chunk size is changeable. After gen-
calculate array for each FP-tree in the next level, but the erating all frequent itemsets from the FP-tree, the chunk is
cells for the first several (say 5) items in its header table arediscarded. Thus we successfully avoid freeing nodes in the
not set. FP-tree one by one, which is more time-consuming.

2.4. FPgrowth* : an improved FP-growth method

Figure 3 contains the pseudocode for our new method
FPgrowth*. The procedure has an FP-tileas parameter.
The tree has attributesbase headerand array. T.base
contains the itemseY, for which T is a conditional FP-tree,
the attributeheadercontains the head table, afidarray
contains the arrayl x.

3. FPmax*: Mining MFI’s

In [5] we developed FPmax, a variation of the FP-growth
method, for mining maximal frequent itemsets. Since the
array technigue speeds up the FP-growth method for sparse
datasets, we can expect that it will be useful in FPmax too.
This gives us an improved method, FPmax*. Compared to

Procedure FPgrowth* (T) FPmax, the improved method FPmax* also has a more ef-

Input: A conditional EP-tree T ficient subset test, as well as some other optimizations. It

Output: The complete set of FI's turns out that FPmax* outperforms GenMax[4] and MAFIA

corresponding to T. [3] for all cases we discussed in [5].

Method:

1. if T only contains a single path P 3.1. The MFI-Tree

2. thenfor each subpath Y of P

3. output pattern Y U T base with Since FPmax is a depth-first aIgonthm,_ a frequent item-
count = smallest count of nodes set can be a subset only of an already discovered MFI. In
in v FPmax we introduced a global data structure, Khexi-

mal Frequent Itemset tre@iFI-tree), to keep the track of
MFI's. A newly discovered frequent itemset is inserted into
the MFI-tree, unless it is a subset of an itemset already in
the tree. However, for large datasets, the MFI-tree will be
quite large, and sometimes one itemset needs thousands of

4, elseforeachi in T.header

5. output Y =T.baseU {i} with i.count
6 if T.array is not NULL

7 construct a new header table

for Y’s FP-tree from T.array . ; bset tesi Inspired by th bset
8. else construct a new header table comparisons Tor Subset t1esting. n:‘.plre Oy the wway Subse
from T checking is done in [4], in Fszp‘(, we still use the MFI-
9 construct v's conditional tree structure_, but for each cond|t|onal FP—@@, a small
. . MFI-tree M x is created. The tre&/ x will contain all max-
FP-tree Ty and its array Ay; .)) " .
10. if Ty £0 imal itemsets in the conditional pattern baseXafTo see if

11 call FPgrowth* (Ty); a Iogal MF1Y generated from a condi_tional F_P-tr@g is_
maximal, we only need to compaté with the itemsets in
Mx . This achieves a significant speedup of FPmax.
Figure 3. Algorithm FPgrowth* Each MFI-tree is associated with a particular FP-tree.
Children of the root of the MFI-tree are item prefix sub-
In FPgrowth*, line 6 tests if the array of the current FP- trees. In an MFI-tree, each node in the subtree has three
tree is NULL. If the FP-tree corresponds to a sparse datasetfields: item-name, level and node-link. The level-field will
its array is not NULL, and line 7 will be used to construct be useful for subset testing. All nodes with same item-name
the header table of the new conditional FP-tree from the are linked together, as in an FP-tree. The MFI-tree also
array directly. One FP-tree traversal is saved for this item has a header table. However, unlike the header table in an
compared with the FP-growth method in [6]. In line 9, dur- FP-tree, which is constructed from traversing the previous
ing the construction, we also count the nodes in the different FP-tree or using the associated array, the header table of an

MFI-tree is constructed based on the item order in the ta-
ble of the FP-tree it is associated with. Each entry in the
header table consists of two fields, item-name and head of a
linked list. The head points to the first node with the same

Procedure FPmax*(T, M)

item-name in the MFI-tree.

Header table

Head of
node-links

Header table

Head of
node-links

Figure 4. Construction of MFI-Tree

The insertion of an MFI into an MFI-tree is similar to the
insertion of a frequent set into an FP-tree. Figure 4 shows
the insertions of three MFI's into an MFI-tree associated

with the FP-tree in Figure 1 (b). In Figure 4, a nade/
means that the node is for itemand its level i. Figure 4
(a) shows the tree aftée, a, d) and(e, ¢, a, b, f) have been
inserted. In Figure 4 (b), since new M, ¢, a, b, g) shares
prefix (e, ¢, a) with (e, ¢, a, b, f), only one new node fog
is inserted.

3.2. FPmax*

Figure 5 gives algorithm FPmax*. The first call will be
for the FP-tree constructed from the original database, and

it will have an empty MFI-tree. Before a recursive daR-

max*(T,M) we already know from line 10 that the set con-
taining T'.base and the items in the current FP-tree is not a
subset of any existing MFI. During the recursion, if there
is only one single path iff’, this single path together with
T.base is an MFI of the database. In line 2, the MFI is in-

Input: T, an FP-tree
M, the MFI-tree for T.base

Output: Updated M

Method:

1. if T only contains a single path P

2. insert P into M

3. elseforeachi in T.header

4. set Y =T.baseU/i};

5. if T.array is not NULL

6. Tail ={frequent items for iin
T.array}

7. else

8. Tall ={frequent items in i's
conditional pattern base }

9. sort Tail in decreasing order of

the items’ counts
10. ifnot subset _checking (Y UTail, M)
11. construct Y’s conditional

FP-tree 1Ty and its array Ay;
12. initialize Y’s conditional
MFI-tree My,
13. call FPmax*(Ty, My);
14. merge My with M

Figure 5. Algorithm FPmax*

FP-tre€ly, we find out thafl'y only has a single path, we
can conclude that U Tail is frequent. Sinc&” U T ail was
not a subset of any previously discovered MFI, it is a new
MFI and will be inserted intd//y-.

3.3. Implementation of subset testing

The functionsubsetcheckingworks as follows. Suppose
Tail = 41140, . .. 1%, in decreasing order of frequency accord-
ing to the header table @ff. By following the linked list of

serted intoM . If the FP-tree is not a single-path tree, then i, for each node: in the list, we test ifTail is a subset of the
for each item in the header table, we start preparing for the ancestors ofi. Here, the level of. can be used for saving

recursive callFPmaxX{Ty, My), for Y = T.base U {i}.

The items in the header tableBfare processed in increas-

comparison time. First we test if the level ofis smaller
thank. If it is, the comparison stops because there are not

ing order of frequency, so that maximal frequent itemsets enough ancestors of for matching the rest ofail. This
will be found before any of their frequent subsets. Lines pruning technique is also applied as we move up the branch
5 to 8 use the array technique, and line 10 calls function and towards the front ofail.

subsetcheckingto check if Y together with all frequent

Unlike an FP-tree, which is not changed during the ex-

items inY’s conditional pattern base is a subset of any ex- ecution of the algorithm, an MFI-tree is dynamic. At line
isting MFI in M (thus we do superset pruning here). If 12, for eachy’, a new MFI-treeMy- is initialized from the

subsetcheckingreturn false FPmax*will be called recur-
sively, with (Ty, My). The implementation of function
subsetcheckingwill be explained shortly.

Note that before and after callisgibseticheckingif Y U

predecessor MFI-tre@/. Then after the recursive call/

is updated on line 14 to contain all newly found frequent
itemsets. In the actual implementation, we however found
that it was more efficient to update all MFI-trees along the

Tail is not subset of any MFI, we still do not know whether recursive path, instead of merging only at the current level.

Y U Tail is frequent. If, by constructing™’s conditional

In other words, we omitted line 14, and instead on lin€2,

is inserted into the current/, and also into all predecessor global prefix-tree for keeping track of all closed itemsets.

MFI-trees that the implementation of the recursion needs toAs we pointed out before, one global tree will be quite big,

keep in main memory in any case. and thus slows down searches. In FPclose we will therefore
SinceFPmax* is a depth-first algorithm, it is straight- use multiple, conditional CFI-trees for checking closedness

forward to show that the above subset checking is correct.of itemsets. We can thus expect that FPclose outperforms

Based on the correctness of the FP-growth method, we carCLOSET+.

conclude thaFPmax*returns all and only the maximal fre-

quent itemsets in a given dataset. 4.1. The CFl-tree and algorithm FPclose

foL Similar to an MFI-tree, a CFI-tree is related to an FP-tree
3.4. Optimizations . L and an itemsek, and we will denote the CFI-tree &%x.

In the method FPmax*, one more optimization is used. the CF|-tree'y always stores all already found CFI's con-
Suppose, that at some level of the recursion, the header tab'?aining itemsetX, and their counts. A newly found frequent

of the current FP-t_ree i&,i2,...,im. Then starting from 1o msety that containsY only needs to be compared with
im, for each item in the header table, we may need to doihe cFr's inCx. Ifin Cx, there is no superset af with
the work from line 4 to line 14. If for any item, sajy,, same count a¥. Y is clos’ed.

wherek < m, its maximal frequent itemset contains ittms |, 5 CFl-tree, each node in the subtree has four fields:
11,0250 o5 Th—1s 1€, all the items t.hat have not yet ca_lled item-name, count, node-link and level. Here, the count field
FPmax* recursively, these recursive calls can be omitted. ;5 heeded because when comparirig with a setZ in the
This is because for those items, their tails must be subset§ oo e are trying to verify that it is not the case that
Of {i1, 42, ..., ir—1}, SOsubset_checking(Y UTail)would 7 304y andZ have the same count. The order of the items

always return true. __in a CFlI-tree’s header table is same as the order of items in
FPmax* also uses the memory management described i o5 der table of its corresponding FP-tree.

Section 2.4, for allocating and deallocating space for FP-
trees and MFI-trees.

Header table

Head of
node-links

Header table

Head of
node-links

3.5. Discussion item

One may wonder if the space required for all the MFI-
trees of a recursive branch is too large. Actually, before
the first call ofFPmax?* the first FP-tree has to fit in main
memory. This is also required by the FP-growth method.
The corresponding MFI-tree is initialized as empty. Dur-
ing recursive calls ofF Pmax* new conditional FP-trees are
constructed from the first FP-tree or from an ancestors FP-
tree. From the experience of [6], we know the recursively Figure 6. Construction of CFl-Tree
constructed FP-trees are relatively small. We can expect
that the total size of these FP-trees is not greater than the The insertion of a CFl into a CFl-tree is similar to the

final size of the MFI-tree fof). Similarly, the MFI-trees jnsertion of a transaction into an FP-tree, except now the
constructed from ancestors are also small. All MFI-trees -qunt of a node is not incremented, it is always replaced by
grow gradually. Thus we can conclude that the total main tne maximal count up-to-date. Figure 6 shows some snap-
memory requirement for runningPmax* on a dataset is gnots of the construction of a CFl-tree with respect to the
proportional to the sum of the size of the FP-tree and the pp_tree in Figure 1 (b). The item order in two trees are

a-+-ocam»o o

MFI-tree for{. same because they are both for bashlote that insertions
o of CFI's into the top level CFI-tree will occur only after re-
4. FPclose: Mining CFI's cursive calls have been made. In the following example, the

insertions would in actuality be performed during various

For mining frequent closed itemsets, FPclose works sim- stages of the execution, not in bulk as the example might
ilarly to FPmax*. They both mine frequent patterns from suggest. In Figure 6, a node: ¢ : ¢ means that the node is
FP-trees. Whereas FPmax* needs to check that a newlyfor itemz, its level is¢ and its countig. In Figure 6 (a), af-
found frequent itemset is maximal, FPclose needs to verify ter inserting(c, a, d) and(e, ¢, a, b, f) with count 2, then we
that the new frequent itemset is closed. For this we use ainsert(c, a, g) with count 5. Sincdc, a, g) shares the pre-
CFl-tree, which is another variation of an FP-tree. fix (¢, a) with (¢, a, d), only nodeg is appended, and at the

One of the first attempts to use FP-trees in CFl mining same time, the counts for nodesanda are both changed
was the algorithm CLOSET+ [9]. This algorithm uses one to be 5. In part (b) of Figure 6, the CFlig, c,a,g) : 4,

(c,a) : 8, (c,a,e) : 6 and(e) : 8 are inserted. At this stage
the tree contains all CFI's for the dataset in Figure 1 (a).

Procedure FPclose (T,C)

Input: T, an FP-tree
C, the CFl-tree for T.base

Output: Updated C

Method:

1. if T only contains a single path P

2. generate all CFI's from P

3. foreach CFI X generated

4, if not closed _checking (X,C)

5. insert X into C

6. elseforeachi in T.header

7. set Y =T.baseU{i};

8. if not closed _checking (Y,C)

9. if T.array is not NULL

10. Tail = {frequent items for

i in T.array}
11. else
12. Tail ={frequent items in i's
conditional pattern base }

13. sort Tail in decreasing order
of items’ counts

14. construct the FP-tree Ty and
its array Ay;

15. initialize Y’s conditional
CFl-tree Cy;

16. call FPclose (Ty,Cy);

17. merge Cy with C

Figure 7. Algorithm FPclose

Figure 7 gives algorithnirPclose Before callingFP-
closewith some(T', C'), we already know from line 8 that
there is no existing CFKX such thatT.base C X, and
T.base and X have the same count. If there is only one sin-
gle path inT, the nodes and their counts in this single path
can be easily used to list thiebase-local closed frequent

closedcheckingis almost the same as the implementa-
tion of functionsubsetchecking except now we also con-
sider the count of an itemset. Given an item3et=
{i1,12,...,1 } with countc, suppose the order of the items
in header table of the current CFI-tre€isio, . .., ix. Fol-
lowing the linked list ofiy, for each node in the list, first we
check if its count is equal to or greater thanlf it is, we
then test ifY is a subset of the ancestors of that node. The
functionclosedcheckingreturns true only when there is no
existing CF1Z in the CFl-tree such that is a superset of
Y and the count ot” is equal to or greater than the count
of Z.

Memory management allocating and deallocating space
for FP-trees and CFl-trees is similar to the memory man-
agement oF-Pgrowth* andFPmax*

By a similar reasoning as in Section 3.5, we conclude
that the total main memory requirement for runniRB-
closeon a dataset is approximately sum of the size of the
first FP-tree and its CFI-tree.

5. Experimental Evaluation

We now present a performance comparison of our FP-
algorithms with algorithms dEclat, GenMax, CHARM and
MAFIA. Algorithm dEclat is a depth-first search algorithm
proposed by Zaki and Gouda in [10]. dEclat uses a linked
list to organize frequent patterns, however, each itemset
now corresponds to an array of transaction IDs (the “TID-
array”). Each element in the array corresponds to a trans-
action that contains the itemset. Frequent itemset mining
and candidate frequent itemset generation are done by TID-
array intersections. A technique callddfset is used for
reducing the memory requirement of TID-arrays. The diff-
set technique only keeps track of differences in the TID’s of
a candidate itemsets when it is generating frequent itemsets.
GenMayx, also proposed by Gouda and Zaki [4], takes an
approach callegrogressive focusintp do maximality test-
ing. CHARM is proposed by Zaki and Hsiao [11] for CFlI
mining. In all three algorithms, the main operation is the in-

itemsets. These itemsets will be compared with the CFI's tersection of TID-arrays. Each of them has been shown as

in C. If an itemset is closed, it is inserted in€®. If the

one of the best algorithms for mining FI's, MFI's or CFI’s.

FP-treel’ is not a single-path tree, we execute line 6. Lines MAFIA is introduced in [3] by Burdicket al. for mining
9 to 12 use the array technique. Lines 4 and 8 call function maximal frequent itemsets. It also has options for mining

closed_checking(Y, C) to check if a frequent itemséf is
closed. If it is, the function returns true, otherwise, false is
returned. Lines 14 and 15 constri€s conditional FP-tree
and CFl-tree. Then FPclose is called recursivelyifprand
Cy.

Note that line 17 is not implemented as such. As in algo-

rithm FPmax*, we found it more efficient to do the insertion

of lines 3-5 into all CFI-trees currently in main memory.
CFl-trees are initialized similarly to MFI-trees, de-

scribed in Section 3.3. The implementation of function

FI's and CFI's. We give the results of three different sets
of experiments, one set for FI's, one for MFI's and one for
CFI's.

The source codes for dEclat, CHARM, GenMax and
MAFIA were provided by their authors. We ran all algo-
rithms on many synthetic and real datasets. Due to the lack
of space, only the results for two synthetic datasets and two
real datasets are shown here. These datasets should be rep-
resentative, as recent research papers [2, 3, 4, 11, 10, 8, 9],
use these or similar datasets.

The two synthetic datasets, T40110D100K and in both experiments. Singgumsb*andconnect-4dare both
T100120D100K were generated from the application very dense datasets, FPgrowth* and FPgrowth have almost
on the website of IBML. They both use 100,000 transac- same running time, as the array technique does not achieve
tions and 1000 items. The two real datasetsmsb*and a significant speedup for dense datasets.
connect-4 were also downloaded from the IBM website In Figure 8 (c), the CPU time increases drastically when
Datasetonnect-4s compiled from game state information. the minimum support goes down below 25%. However, this
Datasepumsb*is produced from census data of Public Use is not a problem for FPgrowth and FPgrowth*, which still
Microdata Sample (PUMS). These two real datasets areare able to produce results. The main reason for the never-
both quite dense, so a large number of frequent itemsets catheless steeply increased CPU time is that a long time has
be mined even for very high values of minimum support. to be spent listing frequent itemsets. Recall, that if there is

All experiments were performed on a 1Ghz Pentium Il a frequent “long” itemset of siz& then we have to generate
with 512 MB of memory running RedHat Linux 7.3. All 2¢ frequent sets from it.

times in the figures refer to CPU time. We also ran the four algorithms on many other datasets,
and we found that FPgrowth* was always the fastest.
5.1. FI Mining To see why FPgrowth* is the fastest, let us consider the

In [6], the original FPgrowth method has been shown main operations in the algorithms. As discussed before, FP-
to be an efficient and scalable algorithm for mining fre- growth* spends most of its time on constructing and travers-

guent itemsets. FPgrowth is about an order of magnitudeing FP-tre_es. The main operatio_n in dEc_Iat s to generate
faster than the Apriori. Subsequently, it was shown in [10], new car_1d|date Fl's bY TID-ar'ray mtgrsectlons. In M.AFIA’
that the algorithm dEclat outperforms FPgrowth on most ger;]eratlng newkcanQ|date FI's byhenvecmrkc]i-operatlons
datasets. Thus, in the first set of experiments, FP-grovvth*IS the main work. Since FPgrowth™ uses the compact FP-

is compared with the original FP-growth method and with tree, further boo;ted by the array techniqug, the time it
dEclat. The original FP-growth method is implemented on spends constructing and traversing the trees, is less than the

the basis of the paper [6]. In this set of experiments we alsotime n_eeded for TID-array inte_rsections and bitvecind
included with MAFIA [3], which has an option for mining ope_ratlons. Morepver, the main memory space ngeded for
all FI's. The results of the first set of experiments are shown storing FP-trees is far less than that for storing diffsets or
in Figure 8 bitvectors. Thus FPgrowth* runs faster than the other two
Figure 8 (a) shows the CPU time of the four algorithms algorithms, and it scales to very low levels of minimum sup-

running on datasef40110D100K We see that FPgrowth*
is the best algorithm for this dataset. It outperforms dEclat
and MAFIA at least by a factor of two. Main memory is
used up by dEclat when the minimum support goes down to
0.25%, while FPgrowth* can still run for even smaller levels
of minimum support. MAFIA is the slowest algorithm for
this dataset and its CPU time increases rapidly. o
Due to the use of the array technique, and the fact that2-2- MFI Mining
T40110D100Kis a sparse dataset, FPgrowth* turns out to |n our paper [5], we analyzed and verified the perfor-
be faster than FPgrowth. However, when the minimum sup-mance of algorithm FPmax. We learned that FPmax out-
portis very low, we can expect the FP-tree to achieve a goodperformed GenMax and MAFIA in some, but not all cases.
compactification, starting at the initial recursion level. Thus To see the impact of the new array technique and the new
the array technique does not offer a big gain. Consequentlysubsetcheckingfunction that we are using in FPmax*, in
as verified in Figure 8 (a), for very low levels minimum sup- the second set of experiments, we compared FPmax* with
port, FPgrowth* and FPgrowth have almost the same run-Fpmax, GenMax, and MAFIA.
ning time. Figure 9 (a) gives the result for running these algorithms
Figure 8 (b) shows the CPU time for running the four al- on the sparse datas&40110D100K We can see that FP-
gorithms on datasdt100120D100K The result is similar to max is slower than GenMax for all levels of minimum sup-
the resultin Figure 8 (a). FPgrowth* is again the best. Since port, while FPmax* outperforms GenMax by a factor of at
the dataseT100120D100Kis sparser thaT40110D100K |east two. Figure 9 (b) shows the results for the very sparse
the speedup from FPgrowth to FPgrowth* is increased. datasetT100120D100K FPmax is the slowest algorithm,
From Figure 8 (c) and (d), we can see that the FP- while FPmax* is the fastest algorithm. Figure 9 (c) shows
methods are faster than dEclat by an order of magnitudethat FPmax* is the fastest algorithm for the dense dataset
Lhttp://www.almaden.ibm.com/cs/quest/syndata.html pumsb? even though FPmax is the slowest algorithm on
2http://www.almaden.ibm.com/cs/people/bayardo/resources.html this dataset for very low levels of minimum support. In

Figure 11 (a) shows the main memory consumption of
three algorithms by running them on datasatnect-4 We
can see that FP-growth* always use the least main memory.
And even for very low minimum support, it still uses a small
amount of main memory.

CPU Time(s)

CPU Time(s)

CPU Time(s)

T40110D100K

10000 10000
—=—FP-growth* a
- -0 --dEclat Ve
— & MAFIA .

1000 || =+ FP-growth i 1000
100 100
10 10
1 1

225 2 175 15 125 1 075 05 025 O
Minimum Support (%)
T40110D100K
10000 10000
1000 1000
100 100
10 10
1 1
225 2 175 15 125 1 075 05 025 O
Minimum Support (%)
T40110D100K
10000 10000
—=—FPclose »
-4~ - MAFIA -

1000 [_**©--Cham 4 1000
100 100
10 10
1 1

225 2 175 15 125 1 075 05 025 O
Minimum Support (%)
Connect-4
1000 1000
—a—Frgowt o
= -& - MAFIA-FI 3
_ ©--dEcht
s
2 10 100
z A
E g
S !
< /
£l ofoond o
e e

1 1
100 9 8 70 6 S0 4 30 20 10

Minimum Support (%)

@

CPU Time(s)

T100120D100K

Pumsb_star

10000 10000 10000 10000
—=&— FP-growth*
- -0 --dEclat
— & - MAFIA
1000 1000
1000 || == FP-growth /f 1000 £l
H
g 100 100
£
100 100 a
o 10 10
10 10
1 1
1 1 01 01
12 10 8 6 4 2 0 40 35 30 25 20 15
Minimum Support (%) Minimum Support (%)
Figure 8. Mining FI's
T100120D100K Pumsb_star
10000 10000 1000 1000
1000 1000 100 100
£
E
100 100 5 10 10
2
8
10 10 1 1
1 1 0.1 01
12 10 8 6 4 2 o 40 35 30 25 20 15 10 5)
Minimum Support (%) Minimum Support (%)
Figure 9. Mining MFI's
T100120D100K Pumsb_star
10000 10000 1000 1000
—=—FPclose —=—FPclose P
— &~ - MAFIA 100
1000 --©--Charm o 1000
g 10
£
100 100 g
o 1
10 10
0.1
1 1 0.01
12 10 8 6 4 2 0 40 35 30 25 20 15 10 5 0
Minimum Support (%) Minimum Support (%)
Figure 10. Mining CFlI's
Connect-4 Connect-4
w
s R
s s
g S
Y 10 E g Pa
: £ vl
i FRRY 7 CETTTTTEERERSY PP oy Jan
= 4 Aol
et
2 AAA’AA

(b)

(©

Figure 11. Main Memory used by the algorithms

Connect-4
10000 10000
—a—Fp-growth
-0 --dEdlat
1000 — & - MAFIA 1000
IS —+— FP.gowh |
g 100 100
&
E
£
Ew 10
2
&
1 1
01 01
001 001
100 % 8 70 60 5 40 30 20 10
Minimum Support (%)
Connect-4
1000
100
10
1
01
001
0
Minimum Support (%)
Connect-4
1000 1000
—=—Fpolose N
100
10
1
01
001

100 9 80 70 60 50 40 30 20 10
Minimum Support (%)
Connect-4
10000
~0 -~Crarm
— 4 MAFIACFI
_ 1000 || —®—FPclose o
B .
i
£ 10
s
2
10

1
100 9 8 70 60 50 40 30 2 10 0

Minimum Support (%)

(d)

10000

1000

Figure 9 (d), FPmax outperforms GenMax and MAFIA for by three algorithms when running them on datzesinect-
high levels of minimum support, but it is slow for very low 4. From the figure, we can see that FPmax* uses less main
levels. FPmax*, on the other hand is about one to two or- memory than the other algorithms. Figure 11 (c) shows the
ders of magnitude faster than GenMax and MAFIA for all main memory used by FP-trees, MFI-trees and the whole
algorithm when running FPmax* on datasenhnect-4 The
minimum support was set as 10%. In the figure, the last
point of the line for FP-tree is for the main memory of the

levels of minimum support.

All experiments in this second set show that the array

technique and the nesubsetcheckingfunction are indeed

very effective. Figure 11 (b) shows the main memory used

first FP-tree Tj), since at this point the space for all condi-

tional FP-trees has been freed. The last point of the line forof MFI's that are kept in an MFI-tree, thus making subset-

MFI-tree is for the main memory of the MFI-tree that con- testing much more efficient.

tains whole set of MFI's, i.e.Mj. The figure confirms our For mining closed frequent itemsets we give the FPclose

analysis of main memory used by FPmax* in Section 3.5. algorithm. In the algorithm, a CFI-tree —another variation
We also run these four algorithms on many other of a FP-tree— is used for testing the closedness of frequent

datasets, and we found that FPmax* always was the fastesitemsets.

algorithm. For all of our algorithms we have presented several opti-
mizations that further reduce their running time.
5.3. CFI Mining Our experimental results showed that FPgrowth* and

) _ FPmax* always outperforms existing algorithms. FPclose
In the third set of experiments, the performances of FP- 5155 demonstrates extremely good performance. All of the
close, CHARM and MAFIA, with the option of mining gig0rithms need less main memory because of the compact
closed frequent itemset, were compared. FP-trees. MFI-trees. and CFl-trees.

Figure 10 shows the results of running FPclose, CHARM Though the experimental results given in this paper show
and MAFIA on datasety40110D100K T100120D100K the success of our algorithms, in the future we will test them
pumsb*andconnect-4 FPclose shows good performance on more applications to further study their performance. We
on all datasets, due to the fact that it uses the compact FPyre also planning to explore ways to improve the FPclose al-

tree and the array technique. However, for very low lev- gorithm by reducing the number of closedness-tests needed.
els of minimum support FPclose has performance similar to

CHARM and MAFIA. By analyzing the three algorithms,
we found that FPclose generates more non-closed frequen
itemsets than the other algorithms. For each of the gener-
ated frequent itemsets, the funct|0h-)sedche.ck|n.gmust ciation rules. InProceedings of VLDB'94pages 487-499,
be called. Although thelosedcheckingfunction is very 1994

efficient, the increased number of calls to it means higher [2] R. J. Bayardo, Jr. Efficiently mining long patterns from
total running time. For high levels of minimum support, databases. IRroceedings of ACM SIGMOD'9®ages 85—
the time saved by using the compact FP-tree and the ar- 93, 1998.

ray technique compensates for the time FPclose spends on[3] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A max-
closedchecking In all cases, FPclose uses less main mem- imal freque_nt itemset algorithm for transactional databases.
ory for mining CFI's than CHARM and MAFIA. Figure 11 " L“ Fggﬁszd;r‘%shﬁf Bcggk?lpé‘fggse ﬁt‘;rj:ndfu?uzn gf%;i%?;l- o
(q) shows the memory used by three algorithms by run- quent itemsets. IProceedings of ICDM’01San Jose, CA,
ning them on datasebnnnect-4 We can see that for very Nov. 2001

low levels of minimum support, CHARM and MAFIAwere 5] G. Grahne and J. Zhu. High performance mining of maxi-
aborted because they ran out of memory, while FPclose was mal frequent itemsets. I8IAM’03 Workshop on High Per-

f{eferences

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-

still able to run and produce output. formance Data Mining: Pervasive and Data Stream Mining
May 2003.
. [6] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
6. Conclusions candidate generation. Proceedings of ACM SIGMOD’Q0

pages 1-12, May 2000.

We have introduced a novel array-based technique that [7] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k fre-
allows using FP-trees more efficiently when mining fre- ggzgitnd:z?(ﬁcﬁﬁ’eorgsawgzOzultlmzlrllg]u[)rgcsuz%%ozrt' Piro-
quent |temser. Our technique greatly redupes the time [8] J. Pei,?. Han, and R.FI)\/Igo. CLOSET:’An efficient algorithm
spent traversing FP-trees, and works especially weII_for for mining frequent closed itemsets. ACM SIGMOD'00
sparse datasets. Furthermore, we presented new algorithms Workshop on Research Issues in Data Mining and Knowl-
for mining maximal and closed frequent itemsets. edge Discoverypages 21-30, 2000.

The FPgrowth* algorithm, which extends original FP- [9] J. Wang, J. Han, and J. Pei. Closet+: Searching for the best
growth method, also uses the novel array technique to mine strategies for mining frequent closed itemsetsPtaceed-
all frequent itemsets. ings of ACM SIGKDD’O3Washing_ton, DC, 2003. _

For mining maximal frequent itemsets, we extended our [10] M. Zaki an_d K. Gouda. Fast ver,tlcal mining using diffsets.
earlier algorithm FPmax to FPmax*. FPmax* not only uses Iznog;oceedmgs of ACM SIGKDD'Q3ashington, DC, Aug.
the array technique_, but also anew subset-testing algorithm.[ll] M. Zaki and C. Hsiao. Charm: An efficient algorithm for
For the subset testing, a variation of the FP-tree, an MFI- closed itemset mining. IRroceedings of SIAM'Q2Arling-
tree, is used for storing all already discovered MFI’s. In FP- ton, Apr. 2002.

max*, a newly found Fl is always compared with a small set

