
A Formal Characterization of
Concept Learning in Description Logics

Francesca A. Lisi

Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”, Italy
lisi@di.uniba.it

Abstract. Among the inferences studied in Description Logics (DLs),
induction has been paid increasing attention over the last decade. Indeed,
useful non-standard reasoning tasks can be based on the inductive infer-
ence. Among them, Concept Learning is about the automated induction of
a description for a given concept starting from classified instances of the
concept. In this paper we present a formal characterization of Concept
Learning in DLs which relies on recent results in Knowledge Representa-
tion and Machine Learning.

1 Introduction

Building and maintaining large ontologies pose several challenges to Knowledge
Representation (KR) because of their size. In DL ontologies, although stan-
dard inferences help structuring the knowledge base (KB), e.g., by automati-
cally building a concept hierarchy, they are, for example, not sufficient when it
comes to (automatically) generating new concept descriptions from given ones.
They also fail if the concepts are specified using different vocabularies (i.e. sets
of concept names and role names) or if they are described on different levels of
abstraction. Altogether it has turned out that for building and maintaining large
DL KBs, besides the standard inferences, additional so-called non-standard in-
ferences are required [27,19]. Among them, the first ones to be studied have been
the Least Common Subsumer (LCS) of a set concepts [3] and the Most Specific
Concept (MSC) of an individual [32,10,20,1]. Very recently, a unified framework
for non-standard reasoning services in DLs has been proposed [8]. It is based on
the use of second-order sentences in DLs [7] as the unifying definition model for
all those constructive reasoning tasks which rely on specific optimality criteria
to build up the objective concept. E.g., LCS is one of the cases considered for
one such reformulation in terms of optimal solution problems.

Since [27], much work has been done in DL reasoning to support the con-
struction and maintenance of DL KBs. This work has been more or less explicitly
related to induction. E.g., the notion of LCS has subsequently been used for the
bottom-up induction of Classic concept descriptions from examples [5,6]. In-
duction has been widely studied in Machine Learning (ML). Therefore it does
not come as a surprise that the problem of finding an appropriate concept de-
scription for given concept instances, reformulated as a problem of inductive



learning from examples, has been faced in ML, initially attacked by heuristic
means [6,18,14] and more recently in a formal manner [2,12,13,22] by adopting
the methods and the techniques of that ML approach known as Concept Learning.

In this paper, we present a formal characterization of Concept Learning in DLs
which relies on recent results in KR and ML. Notably, the proposed formulation
can be justified by observing that the inductive inference deals with finding -
or constructing - a concept. Therefore, non-standard reasoning services based
on induction can be considered as constructive reasoning tasks. Starting from
this assumption, and inspired by Colucci et al ’s framework, Concept Learning is
modeled as a second-order concept expression in DLs and reformulated in terms
that allow for a construction possibly subject to some optimality criteria.

The paper is structured as follows. Section 2 is devoted to preliminaries on
Concept Learning according to the ML tradition. Section 3 defines the Concept
Learning problem statement in the KR context. Section 4 proposes a reformu-
lation of Concept Learning as a constructive reasoning task in DLs. Section 5
concludes the paper with final remarks and directions of future work.

2 Preliminaries

2.1 Machine Learning

The goal of ML is the design and development of algorithms that allow computers
to evolve behaviors based on empirical data [30]. The automation of the inductive
inference plays a key role in ML algorithms, though other inferences such as
abduction and analogy are also considered. The effect of applying inductive
ML algorithms depends on whether the scope of induction is discrimination or
characterization [28]. Discriminant induction aims at inducing hypotheses with
discriminant power as required in tasks such as classification. In classification,
observations to learn from are labeled as positive or negative instances of a given
class. Characteristic induction is more suitable for finding regularities in a data
set. This corresponds to learning from positive examples only.

Ideally, the ML task is to discover an operational description of a target func-
tion f : X → Y which maps elements in the instance space X to the values of a
set Y . The target function is unknown, meaning that only a set D (the training
data) of points of the form (x, f(x)) is provided. However, it may be very difficult
in general to learn such a description of f perfectly. In fact, ML algorithms are
often expected to acquire only some approximation f̂ to f by searching a very
large space H of possible hypotheses (the hypothesis space) which depend on the
representation chosen for f (the language of hypotheses). The output approxi-
mation is the one that best fits D according to a scoring function score(f,D). It
is assumed that any hypothesis h ∈ H that approximates f well w.r.t. a large set
of training cases will also approximate it well for new unobserved cases. These
notions have been mathematically formalized in computational learning theory
within the Probably Approximately Correct (PAC) learning framework [36].

Summing up, given a hypothesis space H and a training data set D, ML
algorithms are designed to find an approximation f̂ of a target function f s.t.:



1. f̂ ∈ H;
2. f̂(D) ≈ f(D); and/or

3. f̂ = argmaxf∈Hscore(f,D).

It has been recently stressed that the first two requirements impose constraints
on the possible hypotheses, thus defining a Constraint Satisfaction Problem
(CSP), whereas the third requirement involves the optimization step, thus turn-
ing the CSP into an Optimization Problem (OP) [9]. We shall refer to the ensem-
ble of constraints and optimization criterion as the model of the learning task.
Models are almost by definition declarative and it is useful to distinguish the
CSP, which is concerned with finding a solution that satisfies all the constraints
in the model, from the OP, where one also must guarantee that the found so-
lution be optimal w.r.t. the optimization function. Examples of typical CSPs in
the ML context include Concept Learning for reasons that will become clearer by
reading the following subsection.

2.2 Concept Learning

Concept Learning deals with inferring the general definition of a category based
on members (positive examples) and nonmembers (negative examples) of this
category. Here, the target is a boolean-valued function f : X → {0, 1}, i.e. a
concept. When examples of the target concept are available, the resulting ML
task is said supervised, otherwise it is called unsupervised. The positive examples
are those instances with f(x) = 1, and negative ones are those with f(x) = 0.

In Concept Learning, the key inferential mechanism for induction is general-
ization as search through a partially ordered space of inductive hypotheses [29].
Hypotheses may be ordered from the most general ones to the most specific
ones. We say that an instance x ∈ X satisfies a hypothesis h ∈ H if and only if
h(x) = 1. Given two hypotheses hi and hj , hi is more general than or equal to
hj (written hi �g hj , where �g denotes a generality relation) if and only if any
instance satisfying hj , also satisfies hi. Note that it may not be always possible
to compare two hypotheses with a generality relation: the instances satisfied by
the hypotheses may intersect, and not necessarily be subsumed by one another.
The relation �g defines a partial order (i.e., it is reflexive, antisymmetric, and
transitive) over the space of hypotheses.

A hypothesis h that correctly classifies all training examples is called consis-
tent with these examples. For a consistent hypothesis h it holds that h(x) = f(x)
for each instance x. The set of all hypotheses consistent with the training ex-
amples is called the version space with respect to H and D. Concept Learning
algorithms may use the hypothesis space structure to efficiently search for rel-
evant hypotheses. E.g., they may perform a specific-to-general search through
the hypothesis space along one branch of the partial ordering, to find the most
specific hypothesis consistent with the training examples. Another well known
approach, candidate elimination, consists of computing the version space by an
incremental computation of the sets of maximally specific and maximally gen-
eral hypotheses. An important issue in Concept Learning is associated with the



so-called inductive bias, i.e. the set of assumptions that the learning algorithm
uses for prediction of outputs given previously unseen inputs. These assumptions
represent the nature of the target function, so the learning approach implicitly
makes assumptions on the correct output for unseen examples.

Inductive Logic Programming (ILP) was born at the intersection between
Concept Learning and the field of Logic Programming [31]. From Concept Learn-
ing it has inherited the inferential mechanisms for induction [33]. However, a
distinguishing feature of ILP with respect to other forms of Concept Learning is
the use of prior knowledge of the domain of interest, called background knowledge
(BK), during the search for hypotheses. Due to the roots in Logic Programming,
ILP was originally concerned with Concept Learning problems where both hy-
potheses, observations and BK are expressed with first-order Horn rules (usu-
ally Datalog for computational reasons). E.g., Foil is a popular ILP algorithm
for learning sets of Datalog rules for classification purposes [34]. It performs
a greedy search in order to maximize an information gain function. Therefore,
Foil implements an OP version of Concept Learning.

Over the last decade, ILP has widened its scope significantly, by consider-
ing, e.g., learning in DLs (see next section) as well as within those hybrid KR
frameworks integrating DLs and first-order clausal languages [35,17,25,26].

3 Learning Concepts in Description Logics

Early work on the application of ML to DLs essentially focused on demonstrating
the PAC-learnability for various terminological languages derived from Classic.
In particular, Cohen and Hirsh investigate the CoreClassic DL proving that it
is not PAC-learnable [4] as well as demonstrating the PAC-learnability of its sub-
languages, such as C-Classic [5], through the bottom-up LcsLearn algorithm.
It is also worth mentioning unsupervised learning methodologies for DL concept
descriptions, whose prototypical example is Kluster [18], a polynomial-time al-
gorithm for the induction of BACK terminologies. More recently, algorithms have
been proposed that follow the generalization as search approach by extending
the methodological apparatus of ILP to DL languages [2,11,12,21,22]. Supervised
(resp., unsupervised) learning systems, such as YinYang [16] and DL-Learner
[23], have been implemented. Based on a set of refinement operators borrowed
from YinYang and DL-Learner, a new version of the Foil algorithm, named
DL-Foil, has been proposed [13]. In DL-Foil, the information gain function
takes into account the Open World Assumption (OWA) holding in DLs. Indeed,
many instances may be available which cannot be ascribed to the target concept
nor to its negation. This requires a different setting to ensure a special treatment
of the unlabeled individuals.

3.1 The Problem Statement

In this section, the supervised Concept Learning problem in the DL setting is
formally defined. For the purpose, we denote:



– T and A are the TBox and the ABox, respectively, of a DL KB K
– Ind(A) is the set of all individuals occurring in A
– RetrK(C) is the set of all individuals occurring in A that are an instance of

a given concept C w.r.t. T
– Ind+C(A) = {a ∈ Ind(A) | C(a) ∈ A} ⊆ RetrK(C)
– Ind−C(A) = {b ∈ Ind(A) | ¬C(b) ∈ A} ⊆ RetrK(¬C)

These sets can be easily computed by resorting to retrieval inference services
usually available in DL systems.

Definition 1 (Concept Learning). Let K = (T ,A) be a DL KB. Given:

– a (new) target concept name C
– a set of positive and negative examples Ind+C(A) ∪ Ind−C(A) ⊆ Ind(A) for C
– a concept description language DLH

the Concept Learning problem is to find a concept definition C ≡ D such that
D ∈ DLH satisfies the following conditions

Completeness K |= D(a) ∀a ∈ Ind+C(A) and
Consistency K |= ¬D(b) ∀b ∈ Ind−C(A)

Note that the definition given above provides the CSP version of the su-
pervised Concept Learning problem. However, as already mentioned, Concept
Learning can be regarded also as an OP. Algorithms such as DL-Foil testify
the existence of optimality criteria to be fulfilled in Concept Learning besides the
conditions of completeness and consistency.

3.2 The Solution Strategy

In Def. 1, we have considered a language of hypotheses DLH that allows for
the generation of concept definitions in any DL. These definitions can be orga-
nized according to the concept subsumption relationship v. Since v induces a
quasi-order (i.e., a reflexive and transitive relation) on DLH [2,11], the prob-
lem stated in Def. 1 can be cast as the search for a correct (i.e., complete and
consistent) concept definition in (DLH,v) according to the generalization as
search approach in Mitchell’s vision. In such a setting, one can define suitable
techniques (called refinement operators) to traverse (DLH,v) either top-down
or bottom-up.

Definition 2 (Refinement operator in DLs). Given a quasi-ordered search
space (DLH,v)

– a downward refinement operator is a mapping ρ : DLH → 2DLH such that

∀C ∈ DLH ρ(C) ⊆ {D ∈ DLH | D v C}

– an upward refinement operator is a mapping δ : DLH → 2DLH such that

∀C ∈ DLH δ(C) ⊆ {D ∈ DLH | C v D}



Definition 3 (Refinement chain in DLs). Given a downward (resp., up-
ward) refinement operator ρ (resp., δ) for a quasi-ordered search space (DLH,v),
a refinement chain from C ∈ DLH to D ∈ DLH is a sequence

C = C0, C1, . . . , Cn = D

such that Ci ∈ ρ(Ci−1) (resp., Ci ∈ δ(Ci−1)) for every 1 ≤ i ≤ n.

Note that, given (DL,v), there is an infinite number of generalizations and
specializations. Usually one tries to define refinement operators that can tra-
verse efficiently throughout the hypothesis space in pursuit of one of the correct
definitions (w.r.t. the examples that have been provided).

Definition 4 (Properties of refinement operators in DLs). A downward
refinement operator ρ for a quasi-ordered search space (DLH,v) is

– (locally) finite iff ρ(C) is finite for all concepts C ∈ DLH.
– redundant iff there exists a refinement chain from a concept C ∈ DLH to a

concept D ∈ DLH, which does not go through some concept E ∈ DLH and a
refinement chain from C to a concept equal to D, which does go through E.

– proper iff for all concepts C,D ∈ DLH, D ∈ ρ(C) implies C 6≡ D.
– complete iff, for all concepts C,D ∈ DLH with C @ D, a concept E ∈ DLH

with E ≡ C can be reached from D by ρ.
– weakly complete iff, for all concepts C ∈ DLH with C @ >, a concept
E ∈ DLH with E ≡ C can be reached from > by ρ.

The corresponding notions for upward refinement operators are defined dually.

Designing a refinement operator needs to make decisions on which properties
are most useful in practice regarding the underlying learning algorithm. Consid-
ering the properties reported in Def. 4, it has been shown that the most feasible
property combination for Concept Learning in expressive DLs such as ALC is
{weakly complete, complete, proper} [21]. Only for less expressive DLs like EL,
ideal, i.e. complete, proper and finite, operators exist [24].

4 Concept Learning as Constructive Reasoning in DLs

In this section, we formally characterize Concept Learning in DLs by emphasizing
the constructive nature of the inductive inference.

4.1 Second-order Concept Expressions

We assume to start from the syntax of any Description Logic DL where Nc, Nr,
and No are the alphabet of concept names, role names and individual names,
respectively. In order to write second-order formulas, we introduce a set Nx =
X0, X1, X2, ... of concept variables, which we can quantify over. We denote by
DLX the language of concept terms obtained from DL by adding Nx.



Definition 5 (Concept term). A concept term in DLX is a concept formed
according to the specific syntax rules of DL augmented with the additional rule
C −→ X for X ∈ Nx.

Since we are not interested in second-order DLs as themselves, we restrict our
language to particular existential second-order formulas of interest to this paper.
In particular, we allow formulas involving an ABox. By doing so, we can easily
model the computation of, e.g., the MSC, which was left out as future work
in Colucci et al.’s framework. This paves the way to the modeling of Concept
Learning as shown in the next subsection.

Definition 6 (Concept expression). Let a1, . . . , am ∈ DL be individuals,
C1, . . . , Cm, D1, . . . , Dm ∈ DLX be concept terms containing concept variables
X0, X1, . . . , Xn. A concept expression Γ in DLX is a conjunction

(C1 v D1) ∧ . . . ∧ (Cl v Dl) ∧ (Cl+1 6v Dl+1) ∧ . . . ∧ (Cm 6v Dm)∧
(a1 : D1) ∧ . . . ∧ (al : Dl) ∧ (al+1 : ¬Dl+1) ∧ . . . ∧ (am : ¬Dm)

(1)

of (negated or not) concept subsumptions and concept assertions with 1 ≤ l ≤ m.

We use General Semantics, also called Henkin semantics, for interpreting
concept variables [15]. In such a semantics, variables denoting unary predicates
can be interpreted only by some subsets among all the ones in the powerset of

the domain 2∆
I

- instead, in Standard Semantics a concept variable could be
interpreted as any subset of ∆I . Adapting General Semantics to our problem,
the structure we consider is exactly the sets interpreting concepts in DL. That
is, the interpretation XI of a concept variable X ∈ DLX must coincide with the
interpretation EI of some concept E ∈ DL. The interpretations we refer to in
the following definition are of this kind.

Definition 7 (Satisfiability). A concept expression Γ of the form (1) is sat-
isfiable in DL iff there exist n + 1 concepts E0, . . . , En ∈ DL such that, ex-
tending the semantics of DL for each interpretation I, with: (Xi)

I = (Ei)
I for

i = 0, . . . , n, it holds that

1. for each j = 1, . . . , l, and every interpretation I, (Cj)
I ⊆ (Dj)

I and (aj)
I ∈

(Dj)
I , and

2. for each j = l+ 1, . . . ,m, there exists an interpretation I s.t. (Cj)
I 6⊆ (Dj)

I

and (aj)
I 6∈ (Dj)

I

Otherwise, Γ is said to be unsatisfiable in DL.

Definition 8 (Solution). If a concept expression Γ of the form (1) is satisfiable
in DL, then 〈E0, . . . , En〉 is a solution for Γ . Moreover, we say that the formula

∃X0 · · · ∃Xn.Γ (2)

is true in DL if there exist at least a solution for Γ , otherwise it is false.



4.2 Modeling Concept Learning with Second-Order DLs

It has been pointed out that the constructive reasoning tasks can be divided
into two main categories: tasks for which we just need to compute a concept
(or a set of concepts) and those for which we need to find a concept (or a set
of concepts) according to some minimality/maximality criteria [8]. In the first
case, we have a set of solutions while in the second one we also have a set of sub-
optimal solutions to the main problem. E.g., the set of sub-optimal solutions in
LCS is represented by the common subsumers. Both MSC and Concept Learning
belong to this second category of constructive reasoning tasks. We remind the
reader that MSC can be easily reduced to LCS for DLs that admit the one-of
concept constructor. However, this reduction is not trivial for the general case.
Hereafter, first, we show how to model MSC in terms of formula (2). This step
is to be considered as functional to the modeling of Concept Learning.

Most Specific Concept Intuitively, the MSC of individuals described in an
ABox is a concept description that represents all the properties of the individuals
including the concept assetions they occur in and their relationship to other in-
dividuals. Similar to the LCS, the MSC is uniquely determined up to equivalence.
More precisely, the set of most specific concepts of individuals a1, . . . , ak ∈ DL
forms an equivalence class, and if S is defined to be the set of all concept descrip-
tions that have a1, . . . , ak as their instance, then this class is the least element
in [S] w.r.t. a partial ordering � on equivalence classes induced by the quasi
ordering v. Analogously to the LCS, we refer to one of its representatives by
MSC(a1, . . . , ak). The MSC need not exist. Three different phenomena may cause
the non existence of a least element in [S], and thus, a MSC:

1. [S] might be empty, or
2. [S] might contain different minimal elements, or
3. [S] might contain an infinite decreasing chain [D1] � [D2] · · · .

A concept E is not the MSC of a1, . . . , ak iff the following formula is true in DL:

∃X.(a1 : X) ∧ . . . ∧ (ak : X) ∧ (X v E) ∧ (E 6v X) (3)

that is, E is not the MSC if there exists a concept X which is a most specific
concept, and is strictly more specific than E.

Concept Learning Following Def. 1, we assume that Ind+C(A) = {a1, . . . , am}
and Ind−C(A) = {b1, . . . , bn}. A concept D ∈ DLH is a correct concept definition
for the target concept name C w.r.t. Ind+C(A) and Ind−C(A) iff it is a solution for
the following second-order concept expression:

(C v X)∧ (X v C)∧ (a1 : X)∧ . . .∧ (am : X)∧ (b1 : ¬X)∧ . . .∧ (bn : ¬X) (4)

The CSP version of the task is therefore modeled with the following formula.

∃X.(C v X)∧(X v C)∧(a1 : X)∧. . .∧(am : X)∧(b1 : ¬X)∧. . .∧(bn : ¬X) (5)



A simple OP version of the task could be modeled with the formula:

∃X.(C v X) ∧ (X v C) ∧ (X v E) ∧ (E 6v X)∧
(a1 : X) ∧ . . . ∧ (am : X) ∧ (b1 : ¬X) ∧ . . . ∧ (bn : ¬X)

(6)

which asks for solutions that are compliant with a minimality criterion involving
concept subsumption checks. Therefore, a concept E ∈ DLH is not a correct
concept definition for C w.r.t. Ind+C(A) and Ind−C(A) if there exists a concept X
which is a most specific concept, and is strictly more specific than E.

5 Conclusions

In this paper, we have provided a formal characterization of Concept Learning
in DLs according to a declarative modeling language which abstracts from the
specific algorithms used to solve the task. To this purpose, we have defined a
fragment of second-order logic under the general semantics which allows to ex-
press formulas involving concept assertions from an ABox. One such fragment
enables us to cover the general case of MSC as well. Also, as a minor contribu-
tion, we have suggested that the generalization as search approach to Concept
Learning in Mitchell’s vision is just that unifying framework necessary for accom-
panying the declarative modeling language proposed in this paper with a way of
computing solutions to the problems declaratively modeled with this language.
More precisely, the computational method we refer to in this paper is based on
the iterative application of suitable refinement operators. Since many refinement
operators for DLs are already available in the literature, the method can be de-
signed such that it can be instantiated with a refinement operator specifically
defined for the DL in hand.

The preliminary results reported in this paper open a promising direction
of research at the intersection of KR and ML. For this research we have taken
inspiration from recent results in both areas. On one hand, Colucci et al.’s work
provides a procedure which combines Tableaux calculi for DLs with rules for
the substitution of concept variables in second-order concept expressions [8]. On
the other hand, De Raedt et al.’s work shows that off-the-shelf constraint pro-
gramming techniques can be applied to various ML problems, once reformulated
as CSPs and OPs [9]. Interestingly, both works pursue a unified view on the
inferential problems of interest to the respective fields of research. This match
of research efforts in the two fields has motivated the work presented in this
paper which, therefore, moves a step towards bridging the gap between KR and
ML in areas such as the maintenance of KBs where the two fields have already
produced interesting results though mostly indipendently from each other. New
questions and challenges are raised by the cross-fertilization of these results. In
the future, we intend to investigate how to express optimality criteria such as
the information gain function within the second-order concept expressions and
how the generalization as search approach can be effectively integrated with
second-order calculus.



References

1. Baader, F.: Least common subsumers and most specific concepts in a description
logic with existential restrictions and terminological cycles. In: Gottlob, G., Walsh,
T. (eds.) IJCAI’03: Proceedings of the 18th International Joint Conference on
Artificial intelligence. pp. 319–324. Morgan Kaufmann Publishers (2003)

2. Badea, L., Nienhuys-Cheng, S.: A refinement operator for description logics. In:
Cussens, J., Frisch, A. (eds.) Inductive Logic Programming, Lecture Notes in Ar-
tificial Intelligence, vol. 1866, pp. 40–59. Springer-Verlag (2000)

3. Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in
description logics. In: Proc. of the 10th National Conf. on Artificial Intelligence.
pp. 754–760. The AAAI Press / The MIT Press (1992)

4. Cohen, W.W., Hirsh, H.: Learnability of description logics. In: Haussler, D. (ed.)
Proc. of the 5th Annual ACM Conf. on Computational Learning Theory. pp. 116–
127. ACM (1992)

5. Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and
experimental results. In: Proc. of the 4th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’94). pp. 121–133. Morgan Kaufmann (1994)

6. Cohen, W.W., Hirsh, H.: The learnability of description logics with equality con-
straints. Machine Learning 17(2-3), 169–199 (1994)

7. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Ragone, A.: Second-order
description logics: Semantics, motivation, and a calculus. In: Haarslev, V., Toman,
D., Weddell, G.E. (eds.) Proc. of the 23rd Int. Workshop on Description Logics
(DL 2010). CEUR Workshop Proceedings, vol. 573. CEUR-WS.org (2010)

8. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Ragone, A.: A unified
framework for non-standard reasoning services in description logics. In: Coelho,
H., Studer, R., Wooldridge, M. (eds.) ECAI 2010 - 19th European Conference on
Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 215,
pp. 479–484. IOS Press (2010)

9. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for data mining and
machine learning. In: Fox, M., Poole, D. (eds.) Proc. of the 24th AAAI Conference
on Artificial Intelligence. AAAI Press (2010)

10. Donini, F.M., Lenzerini, M., Nardi, D.: An efficient method for hybrid deduction.
In: ECAI. pp. 246–252 (1990)

11. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-
intensive induction of terminologies from metadata. In: McIlraith, S.A., Plex-
ousakis, D., van Harmelen, F. (eds.) The Semantic Web - ISWC 2004: Third Inter-
national Semantic Web Conference. Lecture Notes in Computer Science, vol. 3298,
pp. 441–455. Springer (2004)

12. Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept formation in expres-
sive description logics. In: Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi,
D. (eds.) Machine Learning: ECML 2004. Lecture Notes in Computer Science, vol.
3201, pp. 99–110. Springer (2004)

13. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description
logics. In: Zelezný, F., Lavrač, N. (eds.) Inductive Logic Programming. Lecture
Notes in Computer Science, vol. 5194, pp. 107–121. Springer (2008)

14. Frazier, M., Pitt, L.: CLASSIC learning. Machine Learning 25(2-3), 151–193 (1996)

15. Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic 15(2),
81–91 (1950)



16. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for
concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)

17. Kietz, J.: Learnability of description logic programs. In: Matwin, S., Sammut, C.
(eds.) Inductive Logic Programming. Lecture Notes in Artificial Intelligence, vol.
2583, pp. 117–132. Springer (2003)

18. Kietz, J.U., Morik, K.: A polynomial approach to the constructive induction of
structural knowledge. Machine Learning 14(1), 193–217 (1994)

19. Küsters, R.: Non-Standard Inferences in Description Logics, Lecture Notes in Com-
puter Science, vol. 2100. Springer (2001)

20. Küsters, R., Molitor, R.: Approximating most specific concepts in description logics
with existential restrictions. AI Communications 15(1), 47–59 (2002)

21. Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics.
In: Blockeel, H., Ramon, J., Shavlik, J.W., Tadepalli, P. (eds.) Inductive Logic Pro-
gramming. Lecture Notes in Artificial Intelligence, vol. 4894, pp. 161–174. Springer
(2008)

22. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement
operators. Machine Learning 78(1-2), 203–250 (2010)

23. Lehmann, J.: DL-Learner: Learning concepts in description logics. Journal of Ma-
chine Learning Research 10, 2639–2642 (2009)

24. Lehmann, J., Haase, C.: Ideal downward refinement in the EL description logic.
In: De Raedt, L. (ed.) Inductive Logic Programming. Lecture Notes in Computer
Science, vol. 5989, pp. 73–87 (2010)

25. Lisi, F.A.: Building rules on top of ontologies for the semantic web with inductive
logic programming. Theory and Practice of Logic Programming 8(03), 271–300
(2008)

26. Lisi, F.A.: Inductive logic programming in databases: From Datalog to DL+log.
Theory and Practice of Logic Programming 10(3), 331–359 (2010)

27. McGuinness, D., Patel-Schneider, P.: Usability issues in knowledge representation
systems. In: Mostow, J., Rich, C. (eds.) Proc. of the 15th National Conf. on Arti-
ficial Intelligence and 10th Innovative Applications of Artificial Intelligence Con-
ference. pp. 608–614. AAAI Press / The MIT Press (1998)

28. Michalski, R.S.: A theory and methodology of inductive learning. In: Michalski,
R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: an artificial intelli-
gence approach, vol. I. Morgan Kaufmann (1983)

29. Mitchell, T.: Generalization as search. Artificial Intelligence 18, 203–226 (1982)
30. Mitchell, T.: Machine Learning. McGraw Hill (1997)
31. Muggleton, S.: Inductive logic programming. In: Arikawa, S., Goto, S., Ohsuga,

S., Yokomori, T. (eds.) Proc. of the 1st Conf. on Algorithmic Learning Theory.
Springer/Ohmsha (1990)

32. Nebel, B.: Reasoning and revision in hybrid representation systems, Lecture Notes
in Computer Science, vol. 422. Springer (1990)

33. Nienhuys-Cheng, S., de Wolf, R.: Foundations of inductive logic programming,
Lecture Notes in Artificial Intelligence, vol. 1228. Springer (1997)

34. Quinlan, J.: Learning logical definitions from relations. Machine Learning 5, 239–
266 (1990)

35. Rouveirol, C., Ventos, V.: Towards learning in CARIN-ALN . In: Cussens, J.,
Frisch, A. (eds.) Inductive Logic Programming. Lecture Notes in Artificial Intelli-
gence, vol. 1866, pp. 191–208. Springer (2000)

36. Valiant, L.: A theory of the learnable. Communications of the ACM 27(11), 1134–
1142 (1984)


