
Improved Algorithms for Module Extraction and
Atomic Decomposition

Dmitry Tsarkov

tsarkov@cs.man.ac.uk
School of Computer Science

The University of Manchester
Manchester, UK

Abstract. In recent years modules have frequently been used for on-
tology development and understanding. This happens because a module
captures all the knowledge an ontology contains in a given area, and of-
ten is much smaller than the whole ontology. One useful modularisation
technique for expressive ontology languages is locality-based modulari-
sation, which allows for fast (polynomial) extraction of modules.
In order to better understand the modular structure of an ontology, a
technique called Atomic Decomposition can be used. It efficiently builds
a structure representing all possible modules for an ontology, regardless
of the modularisation algorithm adopted and without the need to com-
pute an exponential number of modules, as in a naive approach. This
structure may be used e.g., for quick extraction of modules, or to inves-
tigate dependencies between modules, and so on.
However, existing algorithms for both locality-based module extraction
and atomic decomposition do not scale well. This happens mainly be-
cause of their global nature: each iteration always explores the whole
ontology, even when it is not necessary.
We propose algorithms for locality-based module extraction and atomic
decomposition that work only on the relevant part of the ontology. This
improves performance of algorithms by avoiding unnecessary checks. Em-
pirical evaluation confirms a significant speed up on real-life ontologies.

1 Introduction

Following the great success of the OWL 2 family of ontology languages, they
have become widespread as a knowledge representation formalism. This success,
in particular, is based on reasoning facilities available for these languages, that
are provided by a number of tools. However, the tools (usually) do not scale
well. The worst-case computational complexity of the most expressive decidable
fragment of OWL, OWL 2 DL, is N2EXPTIME. So there is a need to deal with
large ontologies in an efficient manner.

One way of dealing with this issue during ontology development is to use
modules. A module is a subset of an ontology that captures all the knowledge
the ontology contains about a given set of terms. When reusing an existing
ontology, instead of importing all of it to use a few terms and axioms, one could

extract a module based on a given set of terms, thus limiting the growth of the
ontology that will be fed to the reasoner.

To do so, a module extraction algorithm is necessary. The notion of conser-
vative extensions [3] allows one to define a module w.r.t. a signature Σ as a
minimal set that preserves all entailments over Σ. However, deciding whether
a subset of an ontology is a module in this sense is a non-trivial task. Even for
simple DL languages, it is double exponential in time, whereas for expressive
languages, like OWL 2 DL, this problem is undecidable.

Locality-based modules is an alternative solution for efficient module extrac-
tion in expressive logics. Intuitively, an axiom is local w.r.t. a signature if it does
not affect any entailment that uses only terms from that signature. So the ap-
proach is to keep in the module only those axioms that are non-local to a given
signature (while extending the signature as more axioms are added to the mod-
ule). The traditional modularisation algorithm follows this idea by traversing all
the axioms in the ontology, checking their locality and adding them to a module
if non-local, updating the signature accordingly and then repeating the traversal
until no new entities are added to a signature.

It is easy to see that this approach, while having polynomial (quadratic)
run-time, has some room for improvement. The addition of a single term to
a signature could lead to re-checking locality of every axiom in the ontology,
including those that have nothing to do with the change in the signature, i.e.,
are not touched by either the old or the new signature. In the approach proposed
in this paper only the axioms that might become non-local after a change of
signature are re-checked.

There might be cases where one wants to extract more than just a single
module from an ontology. In order to explore the modular structure of the on-
tology, the atomic decomposition approach has recently been investigated [1,
5]. Atomic decomposition can be viewed as a compact representation of all the
modules of an ontology. In this approach the notion of atom is introduced as a
subset of an ontology, whose axioms always co-occur in a module (i.e., for each
module, either all of the axioms are included in the module or none of them
occurs in it). A dependency between atoms, which mirrors the subset relation
between corresponding modules, is also described in the Atomic Decomposition
approach.

The algorithm for building the atomic decomposition of an ontology is also
rather straightforward. First, the module for a signature of every axiom is built.
Then axioms with equivalent modules are combined into a single atom. After
the set of atoms is known, their modules are explored to derive dependencies
between atoms.

As in the module extraction case, the atomic decomposition algorithm can be
improved. Taking account of the notion of a module in the atomic decomposition
structure, it is possible to significantly reduce the search space for modules, as
well as for dependency relation. Empirical evaluation on large real-life ontologies
shows an increase in performance of up to 50 times.

The rest of this paper is organised as follows. In Section 2 some preliminary
notions are defined. Section 3 contains the definition of the original module ex-
traction algorithm, the analysis of its inefficiencies and the improved algorithm,
together with a proof of its correctness. Similarly, in Section 4 the original and
improved algorithms for the atomic decomposition are discussed. Results of the
evaluation of the algorithms involving several real-life ontologies are presented
in Section 5. Finally some conclusions are drawn in Section 6.

2 Preliminaries

We assume that the reader is familiar with the notion of OWL 2 axiom, ontology
and entailments. An entity is a named element of the signature of an ontology.
For an axiom α, we denote by α̃ the signature of that axiom, i.e. the set of all
entities in α. The same notation is also used for a set of axioms.

Definition 1 (Module). Let O be an ontology and Σ be a signature. A subset
M of the ontology is called a module of O w.r.t. Σ if M |= α ⇐⇒ O |= α, for
every axiom α with α̃ ⊆ Σ.

One of the ways to build modules is to use locality of axioms.

Definition 2 (Semantic Locality). An axiom α is called >(⊥)-local w.r.t a
signature Σ if replacing all named entities in α̃ \Σ with >(resp. ⊥) makes that
axiom a tautology. An axiom α is called a tautology if it is local w.r.t. α̃. An
axiom α is called global if it is non-local w.r.t. ∅.

Note that checking the tautology of an axiom α is done by checking the
entailment of α by the empty ontology, i.e., ∅ |= α. In order to avoid this check
(which involves reasoning and might be expensive) the notion of syntactic locality
was introduced in [2].

We are not giving a formal definition of syntactic locality here. This would be
an unnecessary complication, as the algorithms will use the locality checker as a
black box. The intuition behind the syntactic locality is that it tries to simulate
the entailment check by exploring the axiom structure and making decisions
about locality by propagating constant values through expressions.

Syntactic locality is sound in the sense that every syntactically local axiom
is also semantically local. The converse is not true, however: some syntactically
non-local axiom are semantically local. We assume that the locality checker
provides a method isNonLocal(α) that returns true iff the axiom α is non-
local.

Definition 3 (Atomic Decomposition). A set of axioms A is an atom of an
ontology O, if for every module M of O, either A ⊆M or A∩M = ∅. An atom
A is dependent on B (written B 4 A) if A ⊆ M implies B ⊆ M , for every
module M . An Atomic Decomposition of an ontology O is a graph G = 〈S,4〉,
where S is the set of all atoms of O.

Algorithm 1 Original Modularity Algorithm [2]

1: function getModule(Σ, O)
2: M ← ∅, Σ0 ← ∅
3: repeat
4: Σ0 ← Σ
5: for α ∈ O do
6: if α /∈M and isNonLocal(α,Σ) then
7: M ←M ∪ α
8: Σ ← Σ ∪ α̃
9: end if

10: end for
11: until Σ 6= Σ0

12: return M
13: end function

3 Module Extraction Algorithms

The locality-based module extraction is based on the following theorem.

Theorem 1 (Locality-based Module [2]). Let M ⊆ O be two ontologies

such that all axioms in O \M are local w.r.t. Σ ∪ M̃ . Then M is a module of O
w.r.t Σ

This claim holds for all types of modules, as well as the locality checking
approach. The original algorithm, based on this theorem, is described here as an
Algorithm 1, and is implemented in, e.g., OWL API.1

3.1 Original Module Extraction Algorithm

The algorithm starts from the empty module and then goes through all the
axioms to check their locality. If an axiom α is non-local w.r.t. the current
signature, it is added to the module. In addition, the signature is extended with
the signature of α. The whole process is repeated until the signature reaches a
fixpoint (line 11).

While having a simple structure and being easily understandable, the tradi-
tional algorithm has some inefficiencies. The most obvious one comes from the
fact that it is necessary to check all the remaining axioms in the ontology if a
single entity is added to the signature. This leads to the worst-case complexity of
O(n2), where n is the number of axioms in the ontology. Indeed, if every run of
the loop in lines 3–11 adds a single axiom to a module, increasing the signature
on each step, the loop will be run n times and about n2/2 locality checks will
be made.

1 http://owlapi.sourceforge.org

Algorithm 2 Improved Modularity Algorithm

1: function getModule(Σ,O)
2: SA← ∅, Globals← ∅,M ← ∅
3: for all α ∈ O do . Initialize SA and Globals
4: if isNonLocal(α, ∅) then . global axiom
5: Globals← Globals ∪ {α}
6: else
7: for all σ ∈ α̃ do
8: SA(σ)← SA(σ) ∪ {α}
9: end for

10: end if
11: end for

12: S ← Σ . Initialise working set
13: for all γ ∈ Globals do . Global axioms are always in the module
14: addNonLocal(γ,Σ,M, S)
15: end for

16: for all σ ∈ S do
17: S = S \ {σ}
18: for all α ∈ SA(σ) do
19: addNonLocal(α,Σ,M, S)
20: end for
21: end for
22: return M
23: end function

24: procedure addNonLocal(α,Σ,M, S)
25: if α /∈M and isNonLocal(α,Σ) then
26: M ←M ∪ α
27: S ← S ∪ (α̃ \Σ)
28: Σ ← Σ ∪ α̃
29: end if
30: end procedure

3.2 Improved Modularity Algorithm

The approach we propose in this paper replaces the global search over all axioms
in the ontology with a search over a reduced set of possibly affected axioms.
When a new entity is added to the signature, the algorithm checks locality only
of the axioms that contain this entity in their signature. This is correct due to
the following fact:

Proposition 1. Let Σ be a signature, and α an axiom such that α is local w.r.t.
Σ. Then α is also local w.r.t. any signature Σ ∪Σ′ such that Σ′ ∩ α̃ = ∅.

Proof. Let α|cΣ denote the axiom α in which all entities not in Σ are replaced
with c, where c is either > or ⊥ depending on the locality type. Then the claim
of the proposition follows from two simple observations:

1. α|cΣ1∪Σ2
= (α|cΣ1

)|cΣ2

2. α|cΣ\α̃ = α

Since α is local w.r.t. Σ, α|cΣ is a tautology. The, by the first item above,
α|cΣ∪Σ′ = (α|cΣ)|cΣ′ = (α|cΣ)|cΣ′\α̃, which, by the second item, equals to α|cΣ .

So, α|cΣ∪Σ′ coincides with α|cΣ , i.e., is a tautology. Thus, α is local w.r.t. Σ ∪Σ′.
ut

Algorithm 2 implements the proposed approach. In lines 3–11, the auxiliary
structures for the algorithms are initialised. One of these structures is a map SA
that associates each entity with the set of axioms containing it in their signature.
Another is a set of global axioms Globals. Global axioms should be treated in a
special way as they are part of every module independently of their signature.

After these structures are created, the algorithm initialises the working set
S with the initial signature Σ. Then, all the global axioms from the set Globals
are added to the module using the addNonLocal procedure.

In the main cycle (lines 16–21) an entity σ is taken from the set S, then the
set of affected axioms is retrieved using the map SA. Each of these axioms is
checked for locality and, if non-local, is added to the module by addNonLocal.

The addNonLocal procedure is defined in the lines 24–30 of the Algo-
rithm 2. If an axiom is found non-local, it is added to the module M , and its
signature is added to Σ. Moreover, every new entity is added to the working set
S (line 27) to allow further search for the axioms that are non-local w.r.t. the
extended signature.

The correctness of the algorithm can be proved by induction on the size of
the signature Σ. The basis of induction, for the empty signature: all that goes
to the module is the set of global axioms, which is done in the lines 13–15 of
the algorithm. Assume that for a given Σ all the necessary locality checks have
been performed for axioms in the ontology O. Let us now check the case when
a new entity σ is added to Σ. In this case all the axioms from O that contain
Σ in their signature, are re-checked for locality w.r.t. new signature. All other
axioms, according to Proposition 1, will keep their locality status, so there is no
need to re-check them.

Note that the computational complexity of the improved algorithm is differ-
ent from th eone of the original one. Now every axiom α is checked an most |α̃|
times, so the overall complexity is O(N × s), where N is the size of the ontology
O and s = maxα∈O(|α̃|).

It is also worth noting that the initialisation of auxiliary structures (lines 3–
11) can be done only once for every ontology, and then reused for consequent
module extraction queries.

4 Atomic Decomposition Algorithms

Now let us introduce the algorithms for the atomic decomposition of an ontology.
For the ease of explanation we assume that the ontology for the atomic decom-
position does not contain tautologies (i.e. axioms that are local w.r.t. their own
signature). They have no sense in the atomic decomposition, as they does not

Algorithm 3 Original Atomic Decomposition [1]

1: procedure AtomicDecomp(O)
2: Gen← ∅,Module← ∅, Atom← ∅,4← ∅
3: for all α ∈ O do . build all atoms and modules
4: Module(α)← getModule(α̃, O)
5: if isNewModule(α,Gen) then
6: Atom(α)← {α}
7: Gen← Gen ∪ α
8: end if
9: end for

10: for all α ∈ Gen do . build all dependencies
11: for all β ∈ Gen do
12: if α ∈Module(β) then
13: 4←4 ∪〈Atom(α), Atom(β)〉
14: end if
15: end for
16: end for
17: end procedure

18: function isNewModule(α,Gen)
19: for all β ∈ Gen do
20: if Module(α) = Module(β) then
21: Atom(β)← Atom(β) ∪ {α}
22: return false
23: end if
24: return true
25: end for
26: end function

belong to any (locality-based) module of the ontology. In order to achieve this
one have to check all the axioms and remove the tautologies from the ontology.

4.1 The Original Atomic Decomposition Algorithm

The original atomic decomposition algorithm presented here was described by
Del Vescovo et al [1]. It contains two independent parts. The first part (lines 3–
9) builds all the atoms of the ontology. It is done by creating a module for a
signature of every axiom α (line 4), and by comparing this module to already
created modules. If such a module already exists in the ontology (which is checked
in the auxiliary procedure isNewModule, line 20), then the axiom is added to
the atom, represented by the already checked axiom β (line 21). If no module is
equivalent to the module for α, then α goes to a new atom (line 6).

The second part of the algorithm, lines 10–16, builds the dependency relation
4. It goes through all atoms and sets the dependency between atoms A and B
if an axiom from A is contained in the module built for axioms from the atom
B.

4.2 Improved Atomic Decomposition Algorithm

As in the case of the module extraction algorithm, the traditional atomic de-
composition algorithm suffers from some inefficiencies. The first is independence
of module creation: all the modules are created, using the whole ontology as a
starting point. However, in many cases a module is included into another module
with a bigger signature. This is a consequence of the following observation.

Algorithm 4 Improved Atomic Decomposition

Require: An ontology O
Ensure: Set to atoms Atom, set of modules Module, dependency function 4
1: procedure BuildAD(O)
2: for all α ∈ O do
3: if Atom(α) = ∅ then
4: buildAtomsInModule(α, null) . Set Module(null) to be O
5: end if
6: end for
7: TransitiveClose(4)
8: end procedure

9: function buildAtomsInModule(α, β)
10: if Atom(α) 6= ∅ then . The atom for α is already known
11: return α
12: end if

13: δ ← getAtomSeed(α, β)
14: Atom(δ)← Atom(δ) ∪ {α}
15: if δ = β then
16: return β
17: end if

18: for all γ ∈Module(α) \ {α} do
19: δ ← buildAtomsInModule(γ, α)
20: 4←4 ∪〈Atom(δ), Atom(α)〉
21: end for
22: return α
23: end function

24: function getAtomSeed(α, β)
25: Module(α)← getModule(α̃,Module(β))
26: if Module(α) = Module(β) then
27: return β
28: else
29: return α
30: end if
31: end function

Proposition 2. Let α, β be axioms in an ontology O. Let Module(γ,O) denote
the module of O w.r.t. γ̃. Then Module(β,O) ⊆ Module(α,O) whenever β ∈
Module(α,O).

In fact, this proposition follows from depleteness of the locality-based mod-
ules [1, Proposition 2.2, claim iii]. So in order to build a module for β it is enough
to explore only axioms in the module for α.

Another observation stems from the analysis of an dependency relation struc-
ture. Lines 12–13 of the Algorithm 3 imply that all atoms on which Atom(β)
depends are contained in Module(β). But in this case there is no need to look
outside that module for the dependencies. At the same time, the dependency
relation could be build during the atom creation process.

These two ideas lie at the foundation of the improved atomic decomposition
algorithm, presented as Algorithm 4. The main cycle (lines 2–6) ensures that
an atom is built for every axiom, using the whole ontology as a starting point.
After all atoms are created, the dependency relation is completed by using the
standard transitive closure algorithm (line 7).

The main ingredient of the algorithm is implemented as a recursive function
buildAtomsInModule. It takes two parameters: an axiom α, for which the
atom (and module) are going to be built; and an axiom β, which is a “parent”
of an α in the sense that Module(α) ⊆Module(β). For special case β = null, as
in line 4 of the code, we assume that Module(β) is the whole ontology O. The
function returns a representative of the Atom(α).

First, it checks whether an atom for α has been already created (lines 10–12).
In this case there is nothing to do and α is returned as a representative.

Then, using the module of a parent axiom as a starting point, the module
for α is created (line 25). Then, like in the function isNewModule from Al-
gorithm 3, the algorithm checks whether such module already exists. However,
unlike in function isNewModule, only one check is required here (line 26),
namely, to compare it with the parent module. Then axiom α is added to an
atom, obtained by function getAtomSeed (line 14) and, if the atom already
exists (i.e., is represented by the parent axiom β) then the parent is returned.

If the atom is new, i.e. Module(α) 6= Module(β), the algorithm recursively
builds all atoms inside Module(α) (lines 18–21): buildAtomsInModule is
called for all axioms in Module(α) with α as a parent. The dependency re-
lation is updated accordingly (line 20), as Atom(α) depends on every atom in
the Module(α). In the end, α as a representative of a new module, is returned.

5 Empirical Evaluation

The improved algorithms described in Sections 3.2 and 4.2 were implemented in
the FaCT++ Description Logic reasoner [4]. We have done some experiments,
which show considerable performance improvement over the original versions of
the algorithms.

The first set of experiments shows the difference between original and im-
proved module extraction algorithms. As a test we perform an atomic decom-
position (improved algorithm) over several well-known ontologies, because it
intensively uses the module extraction procedure. The results are presented in
Table 1. Here the ontology size is given in the number of axioms, size of the
atomic decomposition (AD size) is given in number of atoms.

Table 1. Time and number of locality checks for some ontologies

Ontology Ont. size, AD size, Old algorithm New Algorithm Ratio
#axioms #atoms time, sec nLoc time, sec nLoc

NCI 85,685 54,332 2,282.0 17.3·109 521.2 330·106 52.4
GO 25,117 25,114 414.0 2.3·109 39.6 88·106 26.1
Galen (Full) 4,979 2,699 4.6 56.7·106 2.9 5.7·106 9.9
Wine 869 5 0.0 125·103 0.0 56·103 2.2

This table shows some general patterns of the performance improvement.
The first two ontologies represent the case of a large number of small atoms,
where the improved algorithm behaves in the best way. The full version of the
Galen ontology is very hard for reasoning. It contains one large atom (about 950
axioms), while all other atoms are rather small. Still, the improved algorithm
requires only 10% of the locality checks in the original one. The Wine ontology
represents the other end of the spectrum: a few very large atoms. This leads to
the smallest improvement of the new algorithm against the original one; however,
even in this case it uses 50% operations of the standard algorithm.

Fig. 1. Ratio between the improved and original atomic decomposition algorithms on
BioPortal ontologies

The second set of experiments compares two atomic decomposition algo-
rithms on a set of ontologies. We use the OWL API implementation as a refer-

ence, and the FaCT++ implementation as an improved algorithm. The set of
test ontologies is a subset of BioPortal ontologies, described in [5].

The results of the tests are shown at Fig. 1. The graph shows the ratio
between the time needed to decompose ontologies by the original algorithm and
the improved algorithm. While the average ratio is about 7, in the extreme cases
the improved algorithm demonstrates 48 times better performance.

6 Conclusions

We propose new improved algorithms of the locality-based module extraction
and atomic decomposition of the ontologies. We prove their correctness and
compare them with the original algorithms. Provided empirical evaluation results
confirm that the proposed algorithms outperformed original ones on a set of real-
life ontologies.

We are planning to implement a semantic locality checker and compare re-
sults on real-life ontologies. We also are planning to implement labelled atomic
decomposition [5], which could be useful for the fast module extraction.

References

1. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an
ontology: atomic decomposition. In: Proc. of IJCAI. pp. 2232–2237 (2011)

2. Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory
and practice. Journal of Artificial Intelligence Research 31(1), 273–318 (2008)

3. Konev, B., Lutz, C., Walther, D., Wolter, F.: Formal properties of modularisation.
Modular Ontologies pp. 25–66 (2009)

4. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
Automated Reasoning pp. 292–297 (2006)

5. Vescovo, C.D., Gessler, D., Klinov, P., Parsia, B., Sattler, U., Schneider, T., Winget,
A.: Decomposition and modular structure of bioportal ontologies. In: International
Semantic Web Conference (1). pp. 130–145 (2011)

