
An Abstract Tableau Calculus for the
Description Logic SHOI Using Unrestricted

Blocking and Rewriting

Mohammad Khodadadi, Renate A. Schmidt, and Dmitry Tishkovsky?

School of Computer Science, The University of Manchester, UK

Abstract This paper presents an abstract tableau calculus for the de-
scription logic SHOI. SHOI is the extension of ALC with singleton
concepts, role inverse, transitive roles and role inclusion axioms. The
presented tableau calculus is inspired by a recently introduced tableau
synthesis framework. Termination is achieved by a variation of the un-
restricted blocking mechanism that immediately rewrites terms with re-
spect to the conjectured equalities. This approach leads to reduced search
space for decision procedures based on the calculus. We also discuss re-
strictions of the application of the blocking rule by means of additional
side conditions and/or additional premises.

1 Introduction

Since the late nineteen eighties various tableau algorithms have been developed
for description logics [2]. The way they are defined and blocking is performed
these tableau algorithms exploit in an essential way that the supported descrip-
tion logics have a kind of tree-model property. The basic idea is to perform the
derivations such that tree-like models are constructed by systematically creat-
ing maximally expanded label sets of concept expressions for individual terms
one-by-one in a stratified way. Blocking can then be used to ensure no two in-
dividuals (perhaps, in an ancestor relationship) have the same label sets, or are
a subset of other label sets. For description logics with role inverse, nominals
and number restrictions, this kind of stratified construction is more complex
requiring some back-and-forth traversal of a tree model together with forms of
dynamic blocking [9,10]. This more complex non-local construction is still aimed
at finding tree models and therefore not sufficient for description logics without
a kind of tree-model property.

In [14,13] we show description logics without the tree-model property, in
particular, the description logics ALBO and ALBOid, can be decided using
a labelled tableau approach enhanced with the so-called unrestricted blocking
mechanism. Labelled tableau approaches are common for modal logics, hybrid
logics and various other non-classical logics, cf. e.g., [5,3,4,1]. Labelled tableau
approaches are easy to understand, they are easy to define as abstract calculi,

? This research is supported by EPSRC research grant EP/H043748/1.

even for undecidable logics, and are not limited to logics with a form of tree
model property. There is also more flexibility in the way that derivations can
be performed and it is thus easy to devise sound and complete tableau calculi.
Building on [14,13] we have devised a framework for systematically developing
labelled tableau calculi for various logics, not only description logics [12]. Essen-
tially for any logic whose semantic definition can be specified in the specification
language of the framework, a sound and complete labelled tableau calculus can
be synthesised, if certain general conditions hold.

Being based on a sound tableau rule and equality reasoning, the unrestricted
blocking mechanism is generally sound and can be incorporated into sound and
complete labelled tableau calculi or related approaches. We have shown that if
the logic has the finite model property then adding the unrestricted blocking
mechanism guarantees also termination [11,12]. Unrestricted blocking provides
an intuitively simple method for obtaining termination and behaves very dif-
ferent to standard blocking techniques. It does not require specialised blocking
tests and complicated dynamic processing steps. All individuals are blockable
and once blocked remain blocked. It can be used to find small finite models.

The aim of this paper is to formalise reasoning for a well-studied, expres-
sive description logic in an abstract labelled tableau calculus incorporating un-
restricted blocking. We also we want to explore the possibilities of emulating
different kinds of existing blocking techniques. In particular, we present an ab-
stract labelled tableau calculus for the description logic SHOI. The tableau
calculus is in line with a refined tableau calculus obtained in the tableau syn-
thesis framework, but exploiting the tree model property of SHOI, transitive
roles are accommodated via a propagation rule rather than a structural rule.

Different to most labelled tableau approaches the expansion of ∃ expressions
introduces Skolem terms rather than constants. Another novelty is the use of
ordered rewriting to realise equality reasoning for singleton concepts (nominals)
and blocking. Though there are similarities with substitution and nominal dele-
tion approaches (e.g., [10,4,1]), using Skolem terms and ordered rewriting avoids
the need to perform again some inference steps on the same branch. Also signifi-
cantly fewer inferences are performed than when using standard tableau rules for
equality as in, e.g., [3,14,13]. As the unrestricted blocking rule is generally sound,
any restriction of the rule obtained by adding side-conditions or premises is also
sound. This makes it possible to restrict the application of blocking without
losing soundness and completeness. For example, it is possible to approximate
standard loop checking techniques such as subset ancestor blocking or anywhere
equality blocking and simulate approaches using the δ∗-rule.

The paper is structured as follows. The syntax and semantics of SHOI are
defined in Section 2. In Section 3 we define the tableau calculus for SHOI and
in Section 4 we prove that it is sound, complete and terminating. Furthermore,
we present examples of restricting the blocking rule by imposing constraints via
additional premises and/or side conditions in Section 4. Due to space restrictions
we do not discuss the emulation of all known existing blocking techniques but
the examples given illustrate the general idea.

2 The Description Logic SHOI

SHOI extends the description logic ALC with singleton concepts, role inverse,
transitive roles and role inclusion axioms. The language of SHOI is defined
over disjoint countable sets of concept names (atomic concepts), individuals, and
role names (atomic roles). The symbol A is used to denote an atomic concept,
the symbols a and b denote individuals, and the symbol r denotes an atomic
role. Concept and role expressions are built from atomic concepts, individuals,
and atomic roles using connectives {·} (singleton operator), ¬, t, and ∃ · .·
(existential restriction operator), − (role inverse operator). Formally, concept
and role expressions are defined respectively by the following grammar rules,
where C and D denote concept expressions and R denotes a role expression.

C,D
def= A | {a} | ¬C | C tD | ∃R.C

R
def= r | R−

The operators >, ⊥, u, and ∀ · .· are defined as usual. In order to simplify the
syntax and avoid repetitive occurrences of the role inverse operator we assume
that (r−)− def=r. Further, in SHOI, any atomic role is allowed to be declared as
transitive and the predicate Trans is used to denote this. Thus, for every atomic
role r, Trans(r) is true iff r is transitive.

A description logic knowledge base consists of an ABox A, a TBox T and
an RBox R. The ABox consists of a finite number of concept assertions of the
form a : C and role assertions of the form (a, b) : R. The TBox is used to express
a hierarchy between concepts through a finite set of inclusion statements of the
form C v D. A normalised TBox is a set of inclusion statements of the form
> v C. The RBox is a finite set of inclusion statements of the form R v S and
Trans(r), to specify a hierarchy between roles and define transitivity of some
roles. We define the closure R+ of the RBox R as the smallest RBox that
contains R and satisfies the following properties.

– if Q v R ∈ R+ then Q− v R− ∈ R+;
– if Q v R,R v S ∈ R+ then Q v S ∈ R+.

Given an RBox R, let R∗ denote the RBox R+ ∪ {R v R | R is a role}.
The semantics of SHOI is defined by an interpretation I = (∆I , ·I) given

by a pair of a non-empty set ∆I , referred to as the domain of interpretation, and
an interpretation function ·I . The function ·I maps individuals to elements of
the domain, concept names to subsets of ∆I and role names to binary relations
over ∆I . Regarding roles declared as being transitive, ·I must satisfy that rI

is a transitive relation whenever Trans(r) is true. The function ·I extends to all
concept and role expressions by induction on lengths of expressions as follows:

aI
def= {aI}, (¬C)I def= ∆I \ CI , (C tD)I def= CI ∪DI ,

(∃R.C)I def= {x | ∃y ∈ CI (x, y) ∈ RI}, (R−)I def= {(x, y) | (y, x) ∈ RI}.

According to the semantics, the inverse of a role is transitive iff the role is
transitive. Following this, we extend the predicate Trans to all role expressions
so that Trans(r−) is true iff Trans(r) is true.

Let E denote any concept expression, any concept inclusion, any role inclu-
sion, any concept assertion or any role assertion. We indicate by I |= E that E
is valid in the model I. We define:

I |= C
def⇐⇒ CI = ∆I I |= a : C def⇐⇒ aI ∈ CI

I |= R v S def⇐⇒ RI ⊆ SI I |= (a, b) : R def⇐⇒ (aI , bI) ∈ RI
I |= C v D def⇐⇒ CI ⊆ DI

Because SHOI supports singleton concepts, every ABox statement a : C can
be encoded by the TBox statement {a} v C. Also, every role assertion (a, b) : R
can be encoded as the TBox statement {a} v ∃R.{b}. Thus, without loss of
generality, we assume that a knowledge base is a pair (T ,R) which consists
of a normalised TBox T and an RBox R. It worth noting that the TBox can
be internalised as well [15] but for performance reasons we present a tableau
calculus that handles TBox statements directly.

A concept C is satisfiable in a model I iff CI 6= ∅. A concept is satisfiable in I
with respect to a knowledge base if it is satisfiable in I whenever every statement
of the knowledge base is valid in I. That is, C is satisfiable with respect to
(T ,R) in I iff CI 6= ∅ provided that I |= E for every E ∈ T ∪R.

3 An Abstract Tableau Calculus for SHOI

In this section we present a labelled semantic ground tableau calculus for SHOI.
The language of the tableau calculus is an extension of the language of SHOI

with equality formulae and individual terms used as labels. We add a function
symbol f which takes a triple (s,R,C) consisting of an individual term s, a role
expression R and a concept expression C as its arguments and define the set of
(individual) terms s inductively by the following grammar rule, where a denotes
any individual, C any concept and R any role.

s
def= a | f(s,R,C)

Terms which are not ABox individuals can be viewed as being Skolem terms.
Formulae in the tableau language are defined by the following grammar rule,

where s and t are individual terms, C is a concept and R is a role.

E
def= s : C | (s, t) : R | s ≈ t

We extend the interpretation of SHOI expressions to the formulae of the
tableau language. For every SHOI interpretation I, let the interpretation fI

in I of the function f be an arbitrary function mapping triples (x, ρ, χ) with
x ∈ ∆I , ρ ⊆ (∆I)2, χ ⊆ ∆I to elements of ∆I . We let

(f(a,R,C))I def= fI(aI , RI , CI), I |= (s : C)I def⇐⇒ sI ∈ CI ,
I |= s ≈ t def⇐⇒ sI = tI , I |= (s, t) : R def⇐⇒ (sI , tI) ∈ RI .

The interpretations of the formulae s ≈ t, s : {t} and t : {s} coincide. In
accordance with their interpretation we refer to these formulae as equalities. We
also refer to the formulae of the form s : ¬{t} as inequalities.

Let Tab denote a tableau calculus comprising of a set of inference rules. A
derivation or tableau for Tab is a finitely branching, ordered tree whose nodes
are annotated by sets of tableau formulae. Assuming that C is the input concept
expression to be tested for satisfiability with respect a knowledge base (T ,R) the
root node of the tableau is the set {a : C}, where a denotes a fresh individual.
Successor nodes are constructed in accordance with a set of inference rules in
the calculus. The inference rules have the general form

X0

X1 | . . . | Xn
(side-condition),

where X0 is the set of premises and the Xi are the sets of conclusions. If n = 0,
the rule is called closure rule and written X0/⊥.

If σ is a substitution that acts on tableau formulae and X = {E1, . . . , Ek}
is a set of tableau formulae then Xσ denotes the set {E1σ, . . . , Ekσ}. A rule is
applicable to a tableau if there is a leaf node annotated with a set N and there
is a substitution σ such that X0σ ⊆ N , where X0 is the set of premises of the
rule, and the side-condition of the rule is true for N . σ is called the matching
substitution of the rule application. We assume in a rule individual symbols,
concept symbols and role symbols represent variables that are matched with
individual terms, concept expressions and role expressions respectively. We also
say the rule is applicable to the formulae X0σ in (the leaf node of) the branch.

If a rule of the calculus is applicable to a leaf node of the tableau with
a matching substitution σ, then the tableau is extended by attaching to the
leaf node n child nodes annotated with N ∪ Xiσ for i = 1, . . . n, respectively.
In order to avoid redundancies we stipulate that a rule application to a leaf
node annotated with N is redundant if there is a conclusion set Xi for some
i = 1, . . . n of the rule such that Xiσ ⊆ N , where σ is the matching substitution.
This ensures rules are not applied more than once to the same sets of formulae.

A branch in the tableau is a maximal path from the root of the tableau to
a leaf node. If a closure rule has been applied in a branch then the branch is
said to be closed. If a branch is not closed, it is called open. A tableau is closed
if all its branches are closed. A branch is fully expanded if no more rules are
applicable to its leaf node modulo redundancy. We call a tableau fully expanded
iff all its branches are fully expanded. We denote by Tab(T ,R, C) a fully ex-
panded tableau constructed in the calculus Tab for the input concept C and the
knowledge base (T ,R).

We need equality reasoning for individual terms to achieve termination for
the calculus. Equality reasoning can be provided in various ways. One is to
supply special tableau rules for reasoning modulo equalities within the branch
in a similar way as is done in [3,14,13]. Another is to use ordered term rewriting.
Ordered rewriting is more efficient for handling equal individuals because it
allows to reduce the number of tableau formulae in the current branch. Since

(⊥):
s : ¬C, s : C

⊥ (¬¬):
s : ¬¬C

s : C

(t):
s : C tD

s : C | s : D
(¬t):

s : ¬(C tD)

s : ¬C, s : ¬D

(∃):
s : ∃R.C

f(s, R, C) : C, (s, f(s, R, C)) : R
(−):

(s, t) : R−

(t, s) : R

(¬∃):
s : ¬∃S.C, (s, t) : R

t : ¬C
(R v S ∈ R∗) (id):

s : C

s : {s}

(¬∃−):
s : ¬∃S−.C, (t, s) : R

t : ¬C
(R v S ∈ R∗) (id2):

s : ¬{t}
t : {t}

(+):
s : ¬∃S.C, (s, t) : R

t : ¬∃R.C
(R v S ∈ R∗, Trans(R) ∈ R) (cng):

(s, t) : R

s : {s}, t : {t}

(−+):
s : ¬∃S−.C, (t, s) : R

t : ¬∃R−.C
(R v S ∈ R∗, Trans(R) ∈ R) (TBox):

s : {s}
s : C

(C ∈ T)

(RBox):
(s, t) : R

(s, t) : S
(R v S ∈ R+) (≈):

s : {t}
s ≈ t

(s 6= t)

Figure 1. The tableau calculus TabSHOI

all individual terms in any tableau derivation are ground we are dealing with a
special case of rewriting, namely, ground rewriting.

In this paper, a rewrite system R is a binary relation on the set of all indi-
vidual terms and consists of rewrite rules which are pairs of individual terms.
In order to handle equalities, we orient each equality formula appearing in the
current branch of a tableau derivation according to a special ordering � which is
a strict partial order on individual terms. We denote by s→ t a rewrite rule (s, t)
in which s � t. Thus, if an equality formula s ≈ t appears in a node of a branch
then either s→ t or t→ s is added as a rewrite rule to the rewrite system of the
branch. A term which cannot be rewritten (with respect to a rewrite system) is
said to be in normal form. A normal form of a term s is denoted by nf(s). A
rewrite system is terminating if there is a normal form for each term.

Our tableau calculus TabSHOI for the description logic SHOI is given in
Figure 1. The (⊥) rule is the closure rule. The (¬¬) rule removes occurrences
of double negation on concepts. The (t) and (¬t) rules are standard rules for
handling concept disjunctions. Given a tableau formula s : ∃R.C, the (∃) rule
introduces an individual term f(s,R,C) as an R-successor of s (instead of intro-
ducing a fresh individual as might be done in other presentations). The (¬∃) rule
is equivalent to the standard rule for universally restricted concept expressions.
The (¬∃−) rule allows the backward propagation of concept expressions along
inverted links. The (−) rule inverts a given link.

The (+) rule propagates negated existential concept restriction along a tran-
sitive link while the (−+) rule does the same for inverse occurrences of transitive
roles. Equalities of the form s : {s} are tautologies, used in our calculus as do-
main predicates for keeping track of the terms that have been introduced to a
branch. This is achieved with the three rules (id), (id2) and (cng). The (TBox)
rule concatenates every concept of the normalised TBox with every label occur-

ring on the branch. The (RBox) propagates a link of a role into its superrole
according to the closure R+ of the given RBox R.

The (≈) rule is a special rule adding, what we call, a rewrite trigger s ≈ t
to the branch. Let � be any reduction ordering on the set of individuals in the
branch. The addition of any tableau formula s ≈ t to a set N of formulae which
annotates a leaf tableau node immediately triggers the following rewrite process.
Suppose that s � t (the case t � s is symmetrical). Then, s → t is added to
a rewrite system R associated with the current tableau branch. The tableau is
extended by attaching one child node to the current leaf node. The child node
is annotated by the set N ′ obtained by rewriting all the tableau formulae in N
with respect to the rewrite system R. In particular, this means that, in N ′ every
term s is replaced by a term u such that s ∗→u with respect to R.

4 Soundness, Completeness and Termination

It is not difficult to see that each rule of TabSHOI is sound, i.e., preserves
satisfiability of concept assertions. Consequently:

Theorem 1 (Soundness). The tableau calculus TabSHOI is sound for the de-
scription logic SHOI. That is, if a concept C is satisfiable with respect to the
knowledge base (T ,R) then any fully expanded TabSHOI-tableau for (T ,R, C)
has an open branch.

A tableau calculus Tab is complete iff for every knowledge base (T ,R) and
every concept C if C is unsatisfiable with respect to (T ,R) then there is a closed
tableau Tab(T ,R, C). In order to prove completeness of TabSHOI , we prove its
constructive completeness which implies completeness. A tableau calculus Tab
is constructively complete if for every open branch in any fully expanded tableau
Tab(T ,R, C) there is a model which validates the knowledge base (T ,R) and
satisfies C.

Theorem 2 (Completeness). TabSHOI is a (constructively) complete tableau
calculus for the description logic SHOI.

Next, we establish termination. A tableau calculus Tab is (weakly) termi-
nating if any tableau Tab(T ,R, C) has a finite open branch provided that C is
satisfiable concept with respect to the knowledge base (T ,R).

Although TabSHOI is a sound and complete tableau calculus for the descrip-
tion logic SHOI, it is not terminating. In order to achieve termination, a form of
blocking or loop-checking is necessary. One possibility is to add the unrestricted
blocking mechanism described in [14]. As is shown in [12], this will ensure ter-
mination of an arbitrary tableau calculus under certain conditions, one of which
being condition (c2) discussed below.

In this paper, we take a slightly different route and introduce a modified
version of the unrestricted blocking mechanism. It is given by the (ub-rw) rule
and ordered rewriting.

(ub-rw):
s : {s}, t : {t}
s ≈ t | s : ¬{t}

(s 6= t)

Here, s ≈ t is a rewrite trigger as introduced in Section 3. Premises of this
rule are instantiated with any two distinct terms s and t used as labels in a set
of tableau formulae N annotating the current leaf node. As a result of a rule
application two successor nodes are created. If s � t (respectively t � s) then in
the left node a rewrite rule s → t (respectively t → s) is added to the rewrite
system R. The left node is annotated with a copy of N , which is rewritten with
respect to the newly obtained rewrite system R. The right node is annotated
with a copy of N extended with the additional formula s : ¬{t}. This formula
indicates the case that s and t are not equal.

The calculus consisting of all the rules of TabSHOI and the rule (ub-rw) is
denoted by TabSHOI(ub-rw). Clearly, the (ub-rw) rule is sound. Therefore:

Theorem 3. The calculus TabSHOI(ub-rw) is a sound and (constructively)
complete for the description logic SHOI.

In order to ensure termination for a procedure based on TabSHOI(ub-rw)
the rule application strategy must satisfy the following condition.

(c2) In every open branch there is some node from which point onward before
any application of the (∃) rule all possible applications of the (ub-rw) rule
have been performed.

(The unrestricted blocking mechanism in [14] also needs to satisfy a second
condition, which is already satisfied in our modified setting.)

Provided that condition (c2) holds, a sufficient and necessary condition for
termination of the tableau procedures based on TabSHOI(ub-rw) is that SHOI
has the finite model property with respect to its standard semantics. This can
be shown in a similar way as in [13]. A description logic has the finite model
property if for an arbitrary concept C and arbitrary knowledge base it holds
that if C is satisfiable with respect to the knowledge base in a model for the
logic then C is satisfiable with respect to the knowledge base in a finite model
of the logic.

The finite model property for SHOI can be shown by a filtration argument.

Theorem 4 (Finite model property of SHOI). The description logic
SHOI has the finite model property.

Therefore, using the results of [13] we obtain the following theorem.

Theorem 5 (Termination). Any implementation, fair in the sense of [13], of
the tableau calculus TabSHOI(ub-rw) and satisfies condition (c2) is a decision
procedure for SHOI and its sublogics.

5 Sound Restricted Blocking

The (ub-rw) rule creates potentially many branching points in a derivation,
especially if the number individuals and ∃-expressions in the knowledge base is
high. A way to reduce the number of applications of the (ub-rw) rule and thus

reduce the search space is to apply the blocking rule less often. This can be
achieved by adding side-conditions and/or premises to the rule. Ideal would be
side-conditions and additional premises that maximise the chance of constructing
a finite model without the need for backtracking.

In the remaining section, we give some examples of restricted versions of
the (ub-rw) rule. They all preserve soundness and completeness. We have:

Theorem 6 (Soundness and completeness). The (ub-rw) rule constrained
by additional premises or side-conditions is sound. Thus, TabSHOI extended
with such a modified rule is sound and complete for SHOI.

Most existing description logic tableau algorithms aim to construct models
given by relational tree structures where the nodes are individuals (or individual
terms, if Skolem terms would have been used) and are annotated with label sets
of concept expressions. A label set of a term s is the set L(s)def={C | s : C ∈ N}.
These label sets are then used in the tests of standard blocking mechanism such
as subset ancestor blocking and dynamic anywhere equality blocking.

An emulation of subset ancestor blocking can be realised through the selective
application of the (ub-rw) rule, realised by adding a side-condition:

(ub⊆-rw):
s : {s}, t : {t}
s ≈ t | s : ¬{t}

(s 6= t, s is an ancestor of t and L(t) ⊆ L(s))

In this rule the application of the (ub-rw) rule is restricted to a term s and its
successor term t, where the label set of s is a superset of the label set of t. In
our setting, as the calculus creates Skolem terms in the (∃) rule, a term s is an
ancestor of a term t, if s is a subterm of t.

Standard ancestor subset blocking is used in tableau algorithms for descrip-
tion logics ALC, S and SH [7]. In ancestor subset blocking, a term t is blocked
by its ancestor s if L(t) ⊆ L(s). No rule is applicable to the blocked individ-
uals. As standard ancestor blocking is not a branching rule it is important to
perform the expansions in a stratified way and perform the subset test at an
appropriate moment in order to preserve soundness. But even if the expansions
are performed in the required way standard ancestor blocking is not generally
sound unlike blocking based on the (ub⊆-rw) rule.

Application of the (ub-rw) rule can be limited by ignoring the pairs of terms
where the application of the rule is not critical for termination. E.g., it is possi-
ble to ignore pairs where both terms appear before some fixed node of a tableau
derivation. We believe, as there are a finite number of individuals before a fixed
tableau node, excluding them does not endanger termination. In particular, the
pairs where both terms are ABox individuals can be ignored as in [8]. If the
unique name assumption is assumed for the given ABox individuals, identify-
ing these individuals by blocking would be incorrect. Using the following rule
instead of using the (ub-rw) rule can have a significant impact on the perfor-
mance, especially when reasoning over knowledge bases with a large number of
individuals.

(ubNo ABox-rw):
s : {s}, t : {t}
s ≈ t | s : ¬{t}

(s 6= t, not both s and t are ABox individuals)

We can define a variation of the (ub-rw) rule restricted to the terms that are
known to be the ones that may cause infinite derivations. For TabSHOI , infinite
derivations can be caused only by infinite applications of the (∃) rule. This
means we may focus blocking on the terms to which the (∃) rule may eventually
be applicable, i.e., the terms which have an ∃-expression in their label sets. We
may formulate the (ub-rw) rule as follows to reflect this restriction:

(ub∃-rw):
s : ∃R.C, t : ∃S.D
s ≈ t | s : ¬{t}

(s 6= t)

Here, ∃R.C, ∃S.D are two ∃-expression that can be matched with any ∃-expres-
sion. This rule is applicable to any pair of terms s and t which both have a
∃-expression in their label sets.

The three variations of the (ub-rw) rule just presented are all sound, thus
preserving soundness (and completeness) of the calculus is not an issue. An
issue is to show under which conditions and for which logics termination can be
ensured. Because of the side-conditions or additional premises these variations
of the (ub-rw) rule are no longer applied to every possible pair of terms. Thus,
condition (c2) does not hold. We believe however it can be proved that search
strategies can be adopted where blocking applies to sufficiently many pairs so
that the procedure terminates.

Next we illustrate how the (δ∗) rule [6] can be simulated using a restriction
of the (ub-rw) rule. The (δ∗) rule systematically reuses terms in order to find
finite models. For description logics the (δ∗) rule is defined as follows:

(δ∗):
s : ∃R.C

(s, t1) : R, t1 : C | · · · | (s, tn) : R, tn : C | (s, f(s,R,C)) : R, f(s,R,C) : C

Here, t1, . . . , tn are all existing terms, covering all given ABox individuals and
all introduced Skolem terms on the current branch. The (δ∗) rule is actually
a modified version of the (∃) rule. Instead of creating a new term to satisfy
an ∃-expression, this rule tries to satisfy the ∃-expression by reusing existing
terms. If all the attempts to satisfy the ∃-expression with existing terms end in
contradictions, then a new term f(s,R,C) is introduced.

In our abstract calculus we can simulate the (δ∗) rule with the (∃) rule and
modifying the (ub-rw) rule to:

(ubδ∗ -rw):
s : {s}, t : {t}
s ≈ t | s : ¬{t}

(s 6= t, t is a Skolem term)

We should use a rule application strategy where after each application of the
(∃) rule, the (ubδ∗ -rw) rule is applied to the newly added Skolem term and every
existing term. In contrast to the previous blocking variations, the (ubδ∗ -rw) rule
satisfies condition (c2), since all possible term comparisons are performed before
any application of the (∃) rule. Hence termination is ensured.

Theorem 7 (Termination). Any implementation, fair in the sense of [13], of
the tableau calculus TabSHOI extended with the (ubδ∗ -rw) rule and using the
described strategy is a decision procedure for SHOI and its sublogics.

6 Concluding Remarks

The contribution of this paper is an abstract labelled tableau calculus for the
description logic SHOI using ordered rewriting and generic forms of blocking
defined as variations of the unrestricted blocking mechanism. The tableau cal-
culus is designed to be as general as possible in order to gain greater insight into
minimal requirements for soundness, completeness and termination and con-
duct the proofs without any considerations for search strategies, heuristics and
other implementation issues. The discussion in [13] of how to obtain determin-
istic tableau procedures for implementation based on the notion of fairness as
defined in that paper carries over to the calculi presented here. We hope this
ongoing work will lead to even greater insight of the theory and techniques of
different tableau approaches for description logics and their implementation.

References

1. Alenda, R., Olivetti, N., Schwind, C., Tishkovsky, D.: Tableau calculi for CSL over
min-spaces. In: Proc. CSL’10. LNCS, vol. 6247, pp. 52–66. Springer (2010)

2. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics.
Studia Logica 69(1), 5–40 (2001)

3. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Logic Comput.
17(3), 517–554 (2007)

4. Cialdea Mayer, M., Cerrito, S.: Nominal substitution at work with the global and
converse modalities. In: Proc. AiML-8. pp. 57–74. College Publ. (2010)

5. Fitting, M.: Proof methods for modal and intuitionistic logics. Kluwer (1983)
6. Hintikka, J.: Model minimization: An alternative to circumscription. J. Automat.

Reason. 4(1), 1–13 (1988)
7. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc. KR-

98. pp. 636–647. Morgan Kaufmann (1998)
8. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.

KR 2006. pp. 57–67. AAAI Press (2006)
9. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and

role hierarchies. J. Logic Comput. 9(3), 385–410 (1999)
10. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. Automat.

Reason. 39(3), 249–276 (2007)
11. Schmidt, R.A., Tishkovsky, D.: A general tableau method for deciding description

logics, modal logics and related first-order fragments. In: Proc. IJCAR’08. LNCS,
vol. 5195, pp. 194–209. Springer (2008)

12. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Logical
Methods in Comput. Sci. 7(2), 1–32 (2011)

13. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with full
role negation and identity (2011), manuscript, http://www.mettel-prover.org/
papers/ALBOid.pdf

14. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide expressive description logics
with role negation. In: Proc. ISWC+ASWC’07. pp. 438–451. Springer (2007)

15. Tobies, S.: The complexity of reasoning with cardinality restrictions and nominals
in expressive description logics. J. Artificial Intelligence Res. 12, 199–217 (2000)

