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Abstract. This paper describes our progress in developing algorithms for con-
current classification of OWL ontologies. We refactored the architecture of our re-
search prototype and its employed algorithms by integrating lock-free data struc-
tures and adopting various optimizations to reduce overhead. In comparison to
our earlier work we increased the size of classified ontologies by one order of
magnitude, i.e., the size of processed ontologies is now beyond a quarter mil-
lion of OWL classes. The main focus of this paper is an empirical evaluation
with huge ontologies that demonstrates an excellent speedup that almost directly
corresponds to the number of used processors or cores.

1 Introduction

Parallel algorithms for description logic (DL) reasoning were first explored in the FLEX
system [3] where various distributed message-passing schemes for rule execution were
evaluated. The reported results seemed to be promising but the research suffered from
severe limitations due to the hardware available for experiments at that time. The only
other work on parallelizing DL reasoning [9] reported promising results using multi-
core and multi-processor hardware, where the parallel treatment of disjunctions and
individual merging (due to number restrictions) is explored. In [11] an approach on
distributed reasoning for ALCHIQ is presented that is based on resolution techniques
but does not address optimizations for TBox classification.

Other work has studied concurrency in light-weight ontology languages. There is a
distributed Map Reduce approach algorithm for EL+, however no experiments had been
reported on the proposed algorithms [10]. Other work focuses on distributed reasoning,
and these approaches are different than ours as they manage large-scale data which is
beyond the memory of a single machine [11, 14, 6, 8, 12]. There also exists work on
parallel distributed RDF inferencing (e.g., [13]) and parallel reasoning in first-order
theorem proving but due to completely different proof techniques (resolution versus
tableaux) and reasoning architectures this is not considered as relevant here. Another
work presents an optimized consequence-based procedure for classification of ontolo-
gies but it only addresses the DL EL [7].

The work in this paper is an extension of our work on Parallel TBox classification
[1]. Compared to our previous work, this paper reports on an enhanced lock-free ver-
sion of algorithms utilizing concurrency in a multi-core environment, optimizations that
increase the performance, a performance evaluation with huge real-world ontologies in
the range of 300K OWL classes (DL concepts) such as SNOMED. Our prototype not
only addresses huge real-world ontologies but also does not compromise on DL com-
plexity. It can process much more complex DLs (e.g., at least SHIQ) than EL, and



provides an excellent speedup considering that no particular DL related optimization
technique is used. The implemented prototype system performs concurrent TBox clas-
sification based on various parameters such as number of threads, size of partitions
assigned to threads, and number of processors. Our evaluation demonstrates impressive
performance improvements where the number of available processors almost linearly
decreases the processing time due to a small overhead. It is important to note that the
focus of this research is on exploring algorithms for concurrent TBox classification and
not on developing a highly optimized DL reasoner. We are currently only interested in
the speedup factor obtained from comparing sequential and parallel runs of our proto-
type.

2 The Concurrent TBox Classifier

This section describes the architecture of the implemented system and its underlying
sound and complete algorithm for concurrent classification of DL ontologies. To com-
pute the hierarchy in parallel, we developed a Java application using a multi-threaded
architecture providing control parameters such as number of threads, number of con-
cepts (also called partition size) to be inserted per thread, and number of processors. As
thoroughly explained in [1], the program reads an input file containing a list of concept
names to be classified and information about them which is generated by the OWL rea-
soner Racer [4]. Racer is only used for generating the input files for our prototype. The
per-concept information available in the file includes the concept name, its parents (in
the complete taxonomy), so-called told subsumers and disjoints, and pseudo model [5]
information. This architecture was deliberately designed to facilitate our experiments
by using existing OWL reasoners to generate auxiliary information and to make the
Concurrent TBox Classifier independent of particular DLs.

The preprocessing algorithm uses a topological sorting similar to [1] and the order
for processing concepts is based on the topologically sorted list. To manage concur-
rency and multi-threading in our system, as described in [1], a single-shared global tree
approach is used. Also, to classify the TBox, two symmetric tasks are employed, i.e.,
the so-called enhanced tree traversal method [2] using top (bottom) search to compute
the parents (children) of a concept to be inserted into the taxonomy.

In [1], we first introduced our algorithms for parallel classification and reported
considerable performance improvements but we could only process relatively small
ontologies. In this paper, we introduce the enhanced concurrent version of these algo-
rithms, i.e., Algorithms 2, 6 and 7. In order to make the paper self-contained we repeat
Algorithms 1, 3, 4 and 5 from [1].

The procedure parallel tbox classification is sketched in Algorithm 1. It is called
with a list of named concepts and sorts them in topological order with respect to the
initial taxonomy created from already known told ancestors and descendants of each
concept (using the told subsumer information). The classifier assigns in a round-robin
manner partitions with a fixed size from the concept list to idle threads and activates
these threads with their assigned partition using the procedure insert partition outlined
in Algorithm 2. All threads work in parallel with the goal to construct a global subsump-
tion tree (taxonomy). They also share a global array located concepts indexed by thread



Algorithm 1 parallel tbox classification(concept list)
topological order list← topological order(concept list)
repeat

wait until an idle thread ti becomes available
select a partition pi from topological order list
run thread ti with insert partition(pi, ti)

until all concepts in topological order list are inserted

identifications. Using the Concurrency package in Java, synchronization on the nodes
of the global tree as well as the entries in the global array have now been eliminated.

The procedure insert partition inserts all concepts of a given partition into the global
taxonomy. We use Concurrent collections from the java.util.concurrent package. This
package supplies Collection implementations which are thread-safe and designed for
use in multi-threaded contexts. Therefore, for updating a concept or its parents or chil-
dren, no locking mechanism for the affected nodes of the global tree is needed anymore.
Algorithm 2 first performs for each concept new the top-search phase (starting from the
top concept (>)) and possibly repeats the top-search phase for new if other threads up-
dated the list of children of its parents. Then, it sets the parents of new. Afterwards the
bottom-search phase (starting from the bottom concept (⊥)) is performed. Analogously
to the top-search phase, the bottom search is possibly repeated and sets the children of
new. After finishing the top and bottom search for new, the node new is added to the
entries in located concepts of all other busy threads; it is also checked whether other
threads updated the entry in located concepts for this thread. If this was the case, the
top and/or bottom search need to be repeated correspondingly.

To reduce overhead in re-running of top or bottom search, we only re-run twice. If
the concept new is still not ready to be inserted; e.g., there is any interaction between
new and a concept in located concepts; it will be added to the partition list of concepts
(to be located later), and also eliminated from the other busy threads’ located concepts
list, otherwise, new can be inserted into the taxonomy using Algorithm 7. In order to
avoid unnecessary tree traversals and tableau subsumption tests when computing the
subsumption hierarchy, the parallel classifier adapted the enhanced traversal method
[2], which is an algorithm that was designed for sequential execution. Algorithms 3 and
41 outline the traversal procedures for the top-search phase.

The possible incompleteness caused by parallel classification [1] can be character-
ized by the following two scenarios: Scenario I: In top search, as the new concept is
pushed downward, right after the children of the current concept have been processed,
at least one new child is added by another thread. In this scenario, the top search for
the concept new is not aware of the recent change and this might cause missing sub-
sumptions if there is any interaction between the concept new and the added children.
The same might happen in bottom search if the bottom search for the concept new is
not informed of the recent change to the list of parents of the current node. Scenario II:
Between the time that top search has been started to find the location of the concept
new in the taxonomy and the time that its location has been decided, another thread has

1 Algorithm found in ancestors(current,new) checks if current is an ancestor of new.



Algorithm 2 insert partition(partition,id)
for all new ∈ partition do

rerun← 0
finish rerun← false
parents← top search(new,>)
while ¬ consistent in top search(parents,new) do

parents← top search(new,>)
predecessors(new)← parents
children← bottom search(new,⊥)
while ¬ consistent in bottom search(children,new) do

children← bottom search(new,⊥)
successors(new)← children
for all busy threads ti 6= id do

located concepts(ti)← located concepts(ti) ∪ {new}
check ← check if concept has interaction(new , located concepts(id))
while (check 6= 0) and ¬finish rerun do

if rerun < 3 then
if check = 1 then

new predecessors← top search(new,>)
rerun← rerun + 1
predecessors(new)← new predecessors

if check = 2 then
new successors← bottom search(new,⊥)
rerun← rerun + 1
successors(new)← new successors

check ← check if concept has interaction(new , located concepts(id))
else

finish rerun← true
for all busy threads ti 6= id do

located concepts(ti)← located concepts(ti) \ {new}
if ¬finish rerun then

insert concept in tbox(new, predecessors(new), successors(new))

placed at least one concept into the hierarchy which the concept new has an interaction
with. Again, this might cause missing subsumptions and is analogously also applicable
to bottom search.

Both scenarios are properly addressed in Algorithm 2 to ensure completeness. Every
time a thread locates a concept in the taxonomy, it notifies the other threads by adding
this concept name to their “located concepts” list. Therefore, as soon as a thread finds
the parents and children of the concept new by running top search and bottom search;
it checks if there is any interaction between concept new and the concepts located in the
“located concepts” list. Based on the interaction, top search or bottom search needs
to be repeated accordingly. If no possible situations for incompleteness are discovered
anymore, Algorithm 7 is called. To resolve the possible incompleteness we utilize Algo-



Algorithm 3 top search(new,current)
mark(current,‘visited’)
pos-succ← ∅
captured successors(new)(current)← successors(current)
for all y ∈ successors(current) do

if enhanced top subs(y,new) then
pos-succ← pos-succ ∪ {y}

if pos-succ = ∅ then
return {current}

else
result← ∅
for all y ∈ pos-succ do

if y not marked as ‘visited’ then
result← result ∪ top search(new,y)

return result

Algorithm 4 enhanced top subs(current,new)
if current marked as ‘positive’ then

return true
else if current marked as ‘negative’ then

return false
else if for all z ∈ predecessors(current)

enhanced top subs(z,new)
and found in ancestors(current,new) then

mark(current,‘positive’)
return true

else
mark(current,‘negative’)
return false

rithms 5 and 6.2 The procedure consistent in bottom search is not shown here because
it mirrors consistent in top search.

3 Evaluation

In the previous section, we explained the algorithms used in our Concurrent TBox Clas-
sifier. In this section, we study the scalability and performance of our prototype. Here,
we would like to explain the behavior of our system when we run it in a (i) sequential or
(ii) parallel multi-processor environment. We also describe how the prototype performs
when we have huge real-world ontologies with different DL complexities. Therefore,
in the remaining of this section, we report on the conducted experiments.

We first provide a description of the used platform and the implemented prototype,
then we describe the test cases used to evaluate Concurrent TBox Classifier and provide

2 Algorithm interaction possible(new,concept) uses pseudo model merging [5] to decide
whether a subsumption is possible between new and concept.



Algorithm 5 consistent in top search(parents,new)
for all pred ∈ parents do

if successors(pred) 6= captured successors(new)(pred) then
diff← successors(pred) \ captured successors(new)(pred)
for all child ∈ diff do

if found in ancestors(child,new) then
return false

return true

Algorithm 6 check if concept has interaction(new,located concepts)
The return value indicates whether and what type of re-run needs to be done:
0 : No re-run in needed
1 : Re-run TopSearch because a possible parent could have been overlooked
2 : Re-run BottomSearch because a possible child could have been overlooked
if located concepts = ∅ then

return 0
else

for all concept ∈ located concepts do
if interaction possible(new,concept) then

if found in ancestors(new,concept) then
return 2

else
return 1

else if interaction possible(concept,new) then
if found in ancestors(new,concept) then

return 2
else

return 1
return 0

an overview of the parameters used in the experiments. Finally, we show the results
and discuss the performance of the classifier. In addition, the measured runtimes in the
figures are shown in seconds using a logarithmic scale.

Platform and implementation All the experiments were conducted on a high perfor-
mance parallel computing cluster. The nodes in the cluster run an HP-version of RedHat
Enterprise Linux for 64 bit processors, with HP’s own XC cluster software stack. To
evaluate our approach, Concurrent TBox Classifier has been implemented in Java using
lock-free data structures from the java.util.concurrent package with minimal synchro-
nization.

Test cases Table 1 shows a collection of 9 mostly publicly available real-world on-
tologies. Note that the chosen test cases exhibit different sizes, structure, and DL com-
plexities. The benchmark ontologies are characterized by their name, size in number of
named concepts or classes, and used DL.

Parameters used in experiments The parameters used in our empirical evaluation and
their meaning are described below (the default parameter value in shown in bold).



Algorithm 7 insert concept in tbox(new,predecessors,successors)
for all pred ∈ predecessors do

successors(pred)← successors(pred) ∪ {new}
for all succ ∈ successors do

predecessors(succ)← predecessors(succ) ∪ {new}

Table 1. Characteristics of the used test ontologies (e.g., LH denotes the DL allowing only
conjunction and role hierarchies, and unfoldable TBoxes)

Ontology DL language No. of named concepts
Embassi-2 ALCHN 657

Galen1 ALCH 2,730
LargeTestOntology ELHR+ 5,584

Tambis-2a ELH 10,116
Cyc LHF 25,566

EClass-51En-1 LH 76,977
Snomed-2 ELH 182,869
Snomed-1 ELH 223,260
Snomed ELH 379,691

– Number of Threads: To measure the scalability of our system, we have performed
our experiments using different numbers of threads (1, 2, 4).

– Partition Size: The number of concepts (5, 25) that are assigned to every thread and
are expected to be inserted by the corresponding thread. Similar to the number of
threads, this parameter is also used to measure the scalability of our approach.

– Number of Processors: For the presented benchmarks we always had 8 processors
or cores3 available.

Performance In order to test the effect of these parameters in our system, the bench-
marks are run with different parameter values. The performance improvement is mea-
sured using the speedup factor which is defined as Speedupp = T1

Tp
, where Speedupp is

the speedup factor, and

– p is the number of threads. In the cluster environment we always had 8 cores avail-
able and never used more than 8 threads in our experiments, so, each thread can be
considered as mapped to one core exclusively;

– T1 is the CPU time for the sequential run using only one thread and one single
partition containing all concept names to be inserted;

– Tp is the CPU time for the parallel run with p threads.

Effect of changing only the number of threads To measure the performance of the
classifier in this case we selected EClass-51En-1 as our test case and ran the tests with
a fixed partition size (5 or 25) but a different number of threads (2 and 4), as shown
in Fig. 1. In the following we use Pthreads,partition size to indicate a parallel multi-core
setting where the subscripts give the number of cores available, the number of threads

3 For ease of presentation we use the terms core and processor as synonyms here.
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Fig. 2. Speedup for eclass-51en-1 from Fig. 1

created, and the partitions size used (from left to right). In the test cases P2,5 and P4,5,
we get an ideal speedup proportional to the number of threads, as shown in Fig. 2. As we
can see, doubling the number of threads from S to P2,5 and to P4,5, each time doubles
the speedup, in other words, decreases the CPU time by the number of threads. This is
the ideal speedup that we were expecting to happen.

Comparing the test cases S, P2,25, and P4,25, we get an even better speedup, also
shown in Fig. 1 and 2. In this case, the CPU time decreases almost to 1

10 compared to
the sequential case (S). This speedup is due to a combination of the partition size as well
as the cache effect and results from the different memory hierarchies of a cluster with
modern computers. When we increase the number of threads to 4, the speedup is again
proportional to the number of threads and this is what we expected. Here, by doubling
the number of threads, the speedup doubles.

Effect of changing only partition sizes The performance of the classifier in this case
for EClass-51En-1 is also shown in Fig. 1 with a fixed number of threads (2 or 4) but
different partition sizes (5 or 25). When using 2 threads, compared to case S, we get
the ideal speedup for P2,5, as shown in Fig. 2. As we can see, doubling the number of
threads, doubles the speedup, in other words, decreases the CPU time by half. This is
the ideal case which is what we were expecting to happen. Again, compared to case S
if the partition size is increased to 25, it shows the same speedup as shown in Fig. 2. In
this case, the CPU time decreases almost to 1

5 compared to the previous case.
In the scenario with 4 threads, we get a corresponding speedup, as shown in Fig. 2.

In this case, the CPU time decreases to almost 1
10 compared to the sequential case. This

speedup again is due to a combination of the number of threads as well as the cache
effect. When we increase the partition size to 25, the speedup is what we expected.
Here, by multiplying the partition size by 5, the speedup is multiplied by five too.

Increasing the partition size, means that more concepts are assigned to one thread;
therefore, all the related concepts are inserted into the taxonomy by one thread. Hence,
increasing the partition size, reduces the number of corrections.
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Effect of increasing both the number of threads and the partition size In this sce-
nario, we measured the CPU time when increasing both the number of threads and the
partition size. In Fig. 3 and 4, our test suite includes the ontologies Embassi-2, Galen1,
LargeTestOntology, Tambis-2a, Cyc, and EClass-51En-1. The CPU time for each test
case is shown in Fig. 3 and the speedup factor for each experiment is depicted in Fig. 4.
As the results show, in the scenario with 2 threads and partition size 5, the speedup dou-
bles compared to the sequential case and is around 2 and this is what we were expecting.
When we increase the number of threads as well as the partition size, for the scenario
with 4 threads and partition size 25, the CPU time decreases dramatically and therefore
the speedup factor is above 20 for most test cases. This is more than a linear speedup,
and it is the result of increasing the thread number as well as partition size together with
the cache effect. The highest speedup factor is reported with test case Galen1.
Experiment on very large ontologies We selected 3 Snomed variants as very large on-
tologies with more than 150,000 concepts. Snomed-2 with 182,869 concepts, Snomed-1
with 223,260 concepts, and Snomed with 379,691 concepts were included in our tests.
Fig. 7 shows an excellent improvement of CPU time for the parallel over the sequential
case. In Fig. 8, the speedup factor is almost 2, which the expected behavior. The best
speedup factor is observed for test case Snomed.
Observation on the increase of size of ontologies We chose Cyc, EClass-51en-1,
Snomed-1, Snomed-2, and Snomed as test cases. Here, as shown in Fig. 5 and 7, in
a parallel setting with 2 threads, the CPU time is divided by 2 compared to the se-
quential case. The speedup, shown in Fig. 6 and 8, is linear and is consistent for our
benchmark ontologies even when the size of the ontologies increases.

Overall, the overhead is mostly determined by the quality of the told subsumers and
disjoints information, the imposed order of traversal within a partitioning, the division
of the ordered concept list into partitions, and the number of corrections which have
been taken place (varied between 0.5% and 3% of the ontology size; depends on the
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structure of ontology as well as the number of threads and partition size). In general,
one should try to insert nodes as close as possible to their final order in the tree using a
top to bottom strategy.

In Concurrent TBox Classifier no optimization techniques for classification have
been implemented. For instance, there are well-known optimizations which can avoid
subsumption tests or eliminate the bottom search for some DL languages or decrease
the number of bottom searches in general. Of course, our system is not competitive at
all compared to highly optimized DL reasoners or special-purpose reasoners designed
to take advantage of the characteristics of the EL fragment (e.g., see [7]). In our case,
we can easily classify ontologies that are outside of the EL fragment.



4 Conclusion

In this paper, we have shown an excellent scalable technique for concurrent OWL on-
tology classification. The explained architecture, which proposes lock-free algorithms
with limited synchronization, utilizes concurrency in a multi-core environment. The
experimental results show the effectiveness of our algorithms. We can say that this
work appears to be the first which documents significant performance improvements
in a multi-core environment using real-world benchmarks for ontologies of various DL
complexities.
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