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Abstract. This paper establishes the decidability of SR"ZQ which has
composition-based role Inclusion axioms (RIAs) of the form Rio---o
RnETl U--- U T,. Also the consistency of an Abox A of SR“ZQ DL
w.r.t. Rbox R is established. Motivation for this kind of RIAs comes from
applications in the field of manufactured products as well as other con-
ceptual modeling applications such as family relationships. The solution
is based on a tableau algorithm.
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1 Introduction

Description logic (DL) [1] has focused on extending decidability results to DLs
with more complex RIAs [6,7,9]. However, the logic SROZQ DL which is logi-
cal basis for the standard Ontology Web Language OWL 2 [3], does not admit
assertions which have role unions on the right hand side of RIAs. Many applica-
tions involve RIAs with role unions on the right side. For example in modeling
an engine in a car that can power wheellnCar or oilPump or generator, or all
of these, at the same time [8,2]. This model can be described in the following
composition-based RIAs [11]:

engineInCar o powers C wheelInCar U generatorInCar U oil PunInCar (1)

One can conclude that for an individual car ¢; and an individual p;: if py is
powered by an individual engine e; in the car ¢; then p; is an individual wheel
or a generator or an oilpump in ¢;. The RIA of the form (1) ca be expressed
in an extension of ALC DL with composition-based RIAs [11], but SROZQ
DL does not support such composition-based RIAs. Modeling such RIAs in the



extensions of ACL DL considered only two roles on the left hand side of the
RIAs. This paper introduces the SR"ZQ DL that extends SRZQ DL [5] with
composition-based RIAs of the form (2). As noted in [11] the RIA of the form
(2) are not role value-maps [10]. The logic analyzed in this paper overcomes the
following shortcomings of the logics studied in [11]:

1. Finite automata handle composition-based RIAs of the form (2).

2. Does not require a Rbox to be admissible [11],

3. Does not require all roles to be disjoint [11],

4. Allows more than two roles on the left hand side of composition-based RIAs.

The rest of the paper is organized as follows. Next section gives definition of
SRYTIQ DL. Section 3 defines tableau for SRYZQ and proves decidability of
the logic. The section also gives and example of tableau for RIA of the form (2).
The last section concludes the paper.

2 Preliminaries

The alphabet of SRZQ and SR"ZQ DL consists of set of concept names N,
set of role names Ny, set of simple role names Ng C Nz and finally, a set of
individual names N7. The set of roles is Ng U{R™|R € Nr} and on this set the
function Inv(-) is defined as Inv(R) = R~ and Inv(R™) = R for R € Ng. A
role chain is a sequence of roles w = R1Ry ... R,,.

SRYZQ language is an extension of SRZQ [5], by allowing new kinds of
RIAs in role hierarchy. The syntax of the SRYZQ DL concepts, Rbox, Thox
and Abox are given in definitions 1, 2 and 3 following [5].

Definition 1. Set of SRYZQ concepts is a smallest set such that

— every concept name and T, L are concepts, and,
— if C and D are concept and R is a role, S is simple role, n is non-negative
integer, then -~C, CMD, CUD,VR.C, 3R.C, 35.Self, (< nS.C), (> nS.C)

are concepts.

A general concept inclusion aziom (GCI) is an expression of the form CCD for
two SRYIQ-concepts C and D. A Thox T is a finite set of GClIs.

An individual assertion has one of the following forms: a : C,(a,b) : R, (a,b) :
=S, or a#b, for a,b € Ny (the set of individual names), a (possibly inverse) role
R, a (possibly inverse) simple role S, and a SRYZQ-concept C. A SRZQ-Abox
A is a finite set of individual assertions.

A (composition-based) RIA is a statement of the form [11]:
Ry R,CTyU---UTy,. 2)

Without additional restrictions on RIAs, some DLs [11] with composition-
based RIAs are undecidable.



Definition 2. Strict partial order < (irreflexive, transitive, and antisymmetric),
on the set of roles, provides acyclicity [5]. Allowed RIAs in SRZQ DL with
respect to <, are expressions of the form wC R, where [4, 5]:

1. R is a simple role name, w = S is a simple role, and S < R or S = R~ or
2. R € Ng\N5s is a role name and

w = RR, or

w=R", or

w=251---8, and S; < R, for1 <i<mn, or

w=RS1---S, and S; < R, for 1 <i<mn, or

w=251S,Rand S; < R, for 1 <i<n

A SRZQ role hierarchy is a finite set T\’,}L of RIAs. A SRZQ role hierarchy R}L is
regular if there exists strict partial order < such that each RIA in R}L is allowed
with respect to < [4, 5].

Definition 3. A SRYZQ role hierarchy is a finite set Ry, = R}, URZ, where
R,ll is SRZQ role hierarchy and R%L is set of RIA Ry -+ Rin, T Ty U---UTh,,,
and T;; are not simple roles, for i =1,...,k. A SRYZQ role hierarchy Ry, is
regular if R}, is reqular and T;; does not appear on the left hand side of RIAs in
Rp. A SRYIQ set of role assertions is a finite set R, of the assertions Ref(R),
Irr(S), Sym(R), Tra(V), and Dis(T, S), where R is a role, S, T are simple
roles and V is not simple role [5]. A SRYZQ Rbox R = Rp U R,, where Ry, is
SRYTQ role hierarchy and R, is a set of role assertions.

If R}L is regular w.r.t strict partial order < then we extend < such that R;; < T}
hold, i = 1,...,kand j = 1,...,n;, | = 1,...,m;. Further, we assume that
labels, such as k, n;, m;, T3, R;;, have the same meaning as defined in definition
3.

Definition 4. The semantics of the SRUZQ DL is defined by using interpre-
tation. An interpretation is a pair T = (A, 1), where AT is a non-empty set,
called the domain of the interpretation. A valuation - associates: every con-
cept name C with a subset C! C AT; every role name R with a binary relation
RT C AT x AT and, every individual name a with an element a* € AT [1].

Definition 5. An interpretation I extends to SRYIQ complex concepts and
roles according to the following semantic rules:

— If R is a role name, then (R™)% = {(z,y) : (y,z) € RT},

— If Ry, Ra,..., R, are roles then (R1Ry ... Ry,)T = (R1)To(Ry)%o---0(R,)*
and (RiU Ry U...UR,)T = (R)TU(Ra)T U---U(R,)E, where sign o is a
composition of binary relations,

— If C and D are concepts, R is a role, S is a simple role and n is a non-
negative integer, then *

T =A% 1T =0, (-C)t = AT\C*%,(C N D)t =CTn D,
(CuD)r=c*uD? (3R.O): ={z : Jy.(z,y) € RT Ay € CF},

4 4M denotes cardinality of set M.



(3S.Self)T = {z: (z,z) € ST}, (VR.C)L = {z : Vy. (z,y) € RT = y € O},
(>nS.C)t ={z:#{y: (x,y) € ST,y € CT} > n},
(<nS.0)t ={z:t{y: (z,y) € ST,y € CT} < n}.

Inference problems for SR2ZQ are defined in standard way [5].

Definition 6. An interpretation T satisfies a RIA Ry --- R,CTy U --- U T,,, if
Rfo.-..oRICTLU---UTEL. An interpretation T is model of a

— Thox T (written T =T ) if CT C D% for each GCI CCD in T.

— role hierarchy Ry, if it satisfies all RIAs in Ry, (written T = Rp,).

— role assertions R, (written as T |= Rq) if T = @ holds for each role assertion
aziom & € Ry, where is T |= Dis(S, R) if SN RT =,
T = Sym(R) if RT is symmetric relation , I |= Tra(R) if RT is transitive
relation ,
T = Ref(R) if RT is reflexive relation, T = Irr(S) if RT is irreflevive
relation.

— Rbox R = (Rp, Ra) (written asTER) if T ERy and T = R,.

— Aboz A (T |= A) if for all individual assertions ¢ € A we have T |= ¢, where
Ika:Cifat €eCt, Tk a#bifa® #bT,
T (a,b): Rif (af,0%) € RT, I (a,b): R if {aF,b*) ¢ R

For an interpretation T, an element x € AT is called an instance of a concept
C ifx € CT. An Abox A is consistent with respect to a Rboxr R and a Thox T if
there is a model T for R and T such that T |= A.

Definition 7. A concept C is called satisfiable if there is an interpretation T
with CT # (. A concept D subsumes a concept C' (written CCD) if CT C D*
holds for each interpretation. Two concepts are equivalent (written C = D) if
they are mutually subsuming.

All standard inference problems for SRYZQ-concepts and Abox can be re-
duced [5] to the problem of determining the consistency of a SRYZQ-Abox w.r.t.
a Rbox, where we can assume w.l.o.g. that all role assertions in the Rbox are of
the form Dis(S, R). We call such Rbox reduced.

3 The Extension of SRZQ Tableau

Let A be a SRYZQO-Abox and R a reduced SRYZO-Rbox and let R 4 be a set
of role names appearing in A and R, including their inverse, and Z 4 is the set of
individual names appearing in A. To check whether Abox A is consistent w.r.t.
Rbox R we transform SRYZQ-Rbox R to SRZQO-Rbox R’ as follows:

1. For each role name R € R 4 we define equivalence class [R] = {R} and set
[R™] = [R]™, comp([R]) = {R}, comp([R"]) ={R"},

2. For each RIA of the form R;; -+ Rip, TTin U+ U T, € R (1 <i<k)we
define equivalence class [T;1U- - -UTi, | = {Tj1- - -UT o, | {Ti1,- -, Tim, } =
{T1, .., Tjm; },1 < j <k} and set comp([TinU---UT,]) = {Ti1, - - o, Tim,



{VhGm.W,YhGm.G,YhG f.M ,YhG f.B} C L(Mary)

{VhPNLP.(Z, V Z,)} @

hP

\\ hGm
Z, = (hGm, {W,G},0) @
hP :

Zy = (hGf,{M, B}, 0) !

v
Zl\/Zz@

(W,GY C{ W, G, B,~M}
Fig. 1. A part of tableau for (3) and (4)

3. We consider equivalence classes [R], previously defined, as role names which
do not appear in R A Set of the role names is dpnoted with R’,. Let’s define
R ={[R{] - [R.JE[HU---UTy,] | Ry---R,CETy U---UT,, € R}.

If Rbox R is regular w.r.t order < then Rbox R’ is regular w.r.t <’ defined
as follows [R] <’ [S] iff R < S and [T};] <" [Ty U---UT,], j = 1,...,my,
1 = 1,..., k. Equivalence classes and order <’ previously defined are using for
automata construction. For the following example of RIAs R1Ry T Hy U Hy
and 5152 C H, U H; one should construct a nondeterministic finite automaton
(NFA) for role [H; LI H; ]. The automaton should accept words Ry Re and S155.
Namely, for every role [R] we have kept the construction of NFA Byz; based on
R’, as same as defined in [5]. For B an NFA and ¢ a state of B, B? denotes the
NFA obtained from B by making ¢ the (only) initial state of B [5]. The language
recognized by NFA B is denoted by L(B).
To illustrate main idea in this paper, we use the following simple example.

Ezample 1. In this example we use the following abbreviations: hP = hasPare-
nt,hGm = hasGrandMother, hGf = hasGrandFather,W = Woman, M =
Man, G = Gentle, B = Blabber. We defined the following RIA:

hP o hP C hGm U hGf (3)

and the individual assertion:

Mary : VAGm.W OVAGf.M NMVAGm.G NOVhG f.B (4)

We should decide whether x (see Fig. 1) is instance of GrandMother or
GrandFather. If x € GrandMother? then x € WZ, 2z € GZ. In the case of
(Mary,z) € hGm?, it does not break syntax rules. Similar to this one, if z €
GrandFather? then x € MT, x € BT and (Mary,z) € hGff hold. Meta-
labels Z; and Zs are using to remember the (relevant) parts of the labels in the



node Mary which should be transferred from the node to node = (see Fig. 1).
First component in Z; is role. The second component is the set of the concepts
{C|Mary is instance of concept YhGm.C'}. The third component is the set of
concepts, for which Mary is instance and should be superset of the set {C|x
is instance of concept VhGm™.C}. Because of inverse role we need first and
third component. To choose given meta-label, we note as Z; V Zs. To recognize
path hP o hP from node Mary to xz we use NFA Bj,gmunay) noted as follows
VBinamunay)-(Z1V Za). O

We assume that all concepts are in negation normal form (NNF). For given
concept Cy, clos(Cp) is the smallest set that contains Cp and that is closed under
sub-concepts and -. We use —C for NNF of ~C [5]. We use two sets of the label
of nodes. First set is [5]: clos(A) := Ug.ccaclos(C). The second set is:
NFAclos(A,R) := {VB?R].Z| [R] € R!; and q is state in NFA Bjp) and

Z =N recompr) T Zr, Zr), Zr C clos(A)|r, Zr C clos(A)|p-}, where
clos(A)|lg ={C | VQ.C € clos(A)}.

In the proofs of decidability we use set PL(Big)) = {(w’,q)|q is a state in
Big), (V" € L(BfR]))(w'w” € L(Bir)))}. Set PL(Bjg)) contains pairs of the
form (w’, ¢). First component w’ is prefix of a word w € L(Bg)), but the second
component g is a state of automaton Bz which can be reached if input word
for the automaton has prefix w’.

Definition 8. T = (S,£,L,&,J) is a tableau for A with respect to R iff a) S
is non-empty set, b) L : S — 2°105(A) ¢) L. § — oNFAclos(AR) ) 7.7, — 8,
e)E:Rs— 25x8
Furthermore, for all C;C1,Cs € clos(A); s,t €S; R, S € R4, and a,b € Ly, the
tableau T satisfies:

— (Pla) If C € L(s), then = C ¢ L(s) (C is atomic, or IR.Self),

— (P1b) T € L(s), and L & L(s), for all s,

— (Pic) If AR.Self € L(s), then (s,s) € E(R),

— (P2) if (C11Cy) € L(s), then Cy € L(s) and Cy € L(s),

— (P3) if (C1UCy) € L(s), then Cy € L(s) or Cy € L(s),

— (P5) if 3S.C € L(s), then there is some t with (s,t) € E(S) and C € L(t),
— (P7) {ery) € E(R) iff (y, ) € EIno(R)),
— (P8) if (< nS.C) € L(s), then #S7(s,C)
— (P9) if (> nS.C) € L(s), then 45T (s,C)
— (P10) if (< nS.C) € L(s) and (s,t) € E(S), then Cc L(t) or ~C € L(t),
— (P11) ifa: C € A, then C € L(J(a))

— (P12) if (a,b) : R € A, then (J(a),J (b)) € E(R),

— (P13) if (a,b) : "R € A, then (J(a),J (b)) & E(R),
— (P14) if a#b € A, then J(a) # J(b),

— (P15) if Dis(R,S) € R, then E(R)NE(S) =
— (P16) if (s,t) € E(R) and RES, then (s,t)

<n,
2

0,
€&(9),°

® [ is the transitive closure of C [5]



— (P6°)VBig).Z € L(s), wAhere6 Z = \/QECOWLP([R])(Q7ZQ,ZQ), Zgo=L(s)|g =
{CVQ.C € L(s)} and Zg = L(s) Nclos(A)|g-, for all s € S and [R] € R/y,

— (P4a’) if VBP.Z € L(s), (s,t) € E(S), and p > q € BP, then VBI.Z € L(t),

— (P4b’) if VBP.Z € L(s), ¢ € L(BP), and Z = V§:1<Qj,zj72j) then there is
Jo, such that Z;, C L(s), E(s)\Q;O C Zj,

where in (P8) and (P9),
ST(s,C) = {t € S| (s,t) € £(S"), for some S' € L(Bg) and C € L(t)}0.

Lemma 1. SRYZQ-Abox A is consistent w.r.t. R iff there exists a tableau for
A w.r.t. R.

Proof. (<)Let T = (S,L,L,E,J) be a tableau for A with respect to R. An
interpretation Z = (AZ,-Z) of A and R can be defined as follows: AT := §,
CT .= {s|C € L(s)}, for a concept name C € clos(A), a := J(a) for an
individual name a € Z4 and for a role name [Q] € R'y, R € R4, we set £([Q)]) :
{{s0,8,) € AT x AT| there are sy, -, 5,1 with (s;,8;41) € E(Siy1), for 0 < i
n—1and 515 --- S, € L(Blg))}, R == {(z,y) € Urecompa) E([Q])|L(x)|r
L(y) and L(y)|r- € L(x)}.
We have to show that Z is a model for A and R.

Next, we show that Z is model for R. Z = R, can be proved by using the same
method as in [5]. Let’s consider a RIA of the form R; --- R,CT} U---UT,,. Let’s
(wo,7n) € (Ry --- Ry)T. According to semantic rules, there are zy, ..., 7,1 such
that (z;, x;41) € R, fori =0,1,...,n—1. Asroles T}; do not appear on the left
hand side of RIAs then R; € comp([Q]) only for Q = R; i.e. RZ C £([R;]). This
means that there are y;0 = @i, ¥i1,....¥i;, = Tit1 such that (y;;, yij+1) € E(Sij+1)
and S;; -+ Su, € E(B[Riﬂ]). According to automata construction, we have the
following: S11 -+ - S11, 521 - Sni,, € L(Biryu..u,,)) 80 (o, Tn) € E([TyL- - -UT,)).
On the other side, according to rule (P6’), the following VBz,...ur,,]-Z € L(z0)
holds, where Z = \/;-n:l(Tj7 ZTj,ZTj). By Si1 -+ Sn, € L(Biryu...ur,,)) and rule

(P4a’) we have VBEJTlu»--uTm]'Z € L(z,)and e € £(BFT1u»--uTm])' From (P4b’) we

have that there is j such that L(xo)|r;, = Z7, € L(%,) and E(wn)|Tf - ZTJ C

L(x), i.e. (xg,x,) € T} . Therefore (zo,z,) € (T1U---UT,)"

Secondly, we prove that Z is model for A. We show that C € L(s) implies
s € CT for each s € S and each C € clos(A). Together with (P11)-(P14), this
implies that Z is a model for A [5]. Consider the case C = VR.D. For the other
cases, see [5].
Let VR.D € L(s) and (s,t) € RZ. If R is role name then according to definition
R7 there exists [Q] such that R € comp([Q]), (s,t) € E([Q]) and L(s)|r C L(¢). If
R = S~, where S role name, then according to definition S there exists role [Q)]
such that S € comp([Q)), (t,s) € E([Q]) and L(s)|g- C L(t) (i.e. L(s)|r C L(t)).
In both cases we have D € L(t). By induction, t € D¥ and thus s € (VR.D)Z.

<
-

5 Rules (P6), (P4a) and (P4b) in [5] are changed with rules (P6’), (P4a’) and (P4b’).



(=) For the converse, suppose Z = (AZ,-7) is a model for A w.r.t. R. We
define tableau T' = (S, L, L, &, J) as follows:
S:= AT, J(a) :=at, E(R) := RE, L(s) := {C € clos(A)}|s € CT}
L(s) = {VB?R].Z\(Ht € AT)(Fw)VBg).Z € Ly(t), (w',q) € PL(Bjg)) and (t,s) €
()%}, where L1(s) := {VBp).Z|Z = V oecomp(r) (@ £(5)|q, L(s)Nclos(A)|g-)}-
We have to prove that T is tableau for A w.r.t R. We restrict our attention
to the only new cases. For the other cases, see [5].
The rule (P6’) follows immediately from the definition of £;(s) and £1(s) C £(s)
(for t = s and w' = ¢).
For (P4d’), let’s VBFR].Z € L(s), (s,t) € £(S). Assume that there is a transition

D N q € BFR}. From definition £(s) there exists v € A% and w’ such that
VB(r).Z € L1(v), (w',p) € PL(Bg)) and (v,s) € (’Lﬁl)z. Let’s w” = w'S then
(w”,q) € PL(B[g)) and (v,t) € (w”), so VBFR].Z € L(t).

For (P4b), let’s VBf.Z € L(s), € € L(By), and Z = v;zl(gj,zj,zj). By
definition L(s) there exists z € AT and w’ such that VB().Z € L1(x), (w',q) €
PL(Bjg)) and (z,s) € (w')%. Further, we have [R] = [Q1 U --- U Qy, Z; =
L(x)|q, and Z; = L(z) N clos(A)|Q;. By ¢ € BFR] we have w’' € L(Bg)), so

w? C(QLU---UQ)T, ie. (z,5) € (Q1U---UQ;)E. This means that there is j
such that (z,s) € Q7. By the rules of semantics and the definition of £(s), we

have Z; = L(z)|q, C L(s) and L(s)[o- C L(z) N clos(A)|5- = Z; 0.

Tableau algorithm for SRYZQ DL works on the completion forest on similar
manner as described in [5].

Definition 9. (Completion forest) Completion forest for a SRZIQ-Abox A and
a Rbox R is a labeled collection of trees G = (V,E, L, L, ;é) whose distinguished
root modes can be connected arbitrarily, where each node x € V is labeled with
two sets L(z) C clos(A) and L(x) C NFAclos(A,R). Each edge (z,y) € E is
labeled with a set L({x,y)) C R.a. Additionally, we care of inequalities between
nodes in V, of the forest G, with a symmetric binary relation #.

If (x,y) € E, then y is called successor of the x, but x is called predecessor of y.
Ancestor is the transitive closure of predecessor, and descendant is the transitive
closure of successor. A node y is called an R-successor of a node x if, for some
R’ with R E R, R' € L({z,y)). A node y is called a neighbor (R-neighbor) of
a node x if y is a successor (R-successor) of x or if x is a successor (Inv(R)-
successor) of y. For S € Ra, x € V, C € clos(A) we define set S¢(x,C) = {yly
is S — neighbour of x and C € L(y)}

Definition 10. A completion forest G is said to contain a clash if there is a
node x such that:

— 1L eL(x), or
— for a concept name A, {A,-A} C L(z), or
— x 18 an S-neighbor of x and —~3S.Self € L(x), or



x and y are root nodes, y is an R-neighbor of x, and -R € L({x,y)), or

— there is some Dis(R,S) € R, and y is an R and an S-neighbor of x, or
there exists a concept (< nS.C) € L(z) and {yo,...,yn} C S%(x,C) with
yﬁéy] forall0 <i< j<n,

— there is VBP.Z € L(x), with e € L(BP), Z = \/é’:l(Qj’ Z;,Z;) and there are
no j such that £(x)\QJ_ C Z;.

A completion forest that does not contain a clash is called clash-free. ad

The blocking is employed in order to have termination [5].

Definition 11. A node is called blocked if it is either directly or indirectly
blocked [5]. A node x is directly blocked if none of its ancestors are blocked,
and it has ancestors ', y and y' such that [5]:

— none of ', y and y' is a root node,

— x is a successor of ¥’ and y is a successor of y', and
— L(z) = L(y) and L(z") = L(Y'), and

— L(z) = L(y) and L(z") = L(y'), and

— L&', x)) = LIy, y)-

In this case we say that y blocks x. A mode y is indirectly blocked if one of its
ancestors is blocked [5].

The non-deterministic tableau algorithm can be described as follows:

— Input: Non-empty SRYZQ-Abox A and a reduced Rbox R
— Output: ”Yes” if SRYZTQ-Abox A is consistent w.r.t. Rbox R, otherwise
”NO”
— Method:
1. step: Construct completion forest G = (V, E, L, L, 7&) as follows:
e for each individual a occurring in A, V contains a root node z,,

o if (a,b): Re Aor (a,b) : =R € A, then E contains an edge (24, Zp),
o if ab € A, then z,#xp is in G,
o L(zy) :={Cla:C € A},
o L(z,):=10,
o L({zq,2p)) :={R|(a,b) : R€ A} U{-R|(a,b) : "R € A}
Go to step 2.

2. step: Apply an expansion rule (see table 1) to the forest G, while it is
possible. Otherwise, go to step 3.

3. step: If the forest G does not contain clash return ” Yes”, otherwise return
b2 NO” .

Lemma 2. Let A be a SREZQ-Abox and R a reduced Rbox. The tableau algo-

rithm terminates when started for A and R.

Lemma 3. Let A be a SRZQ-Abox and R a reduced Rbox. Tableau algorithm
returns answer ”Yes” if and only if there is a tableau for A w.r.t. R.



Table 1. Expansion rules for SRYZQ tableau algorithm (updated from [5])

The rules M, U, 3, Self, <., >, <

are defined in [5], but only in rules that create new node y should set £(y) := {)
ch' If x is not indirectly blocked and

there is concept C € clos(A) with {C,~C} N L(x) =0

then £(z) — L(z) U{E}, for some E € {C,~C}

v} If x is not indirectly blocked and it is not possible to apply ch/-rule to £(z),
and VBip).Z ¢ L(z), where Z =V e comp(rp (@ £(2)|@, L(x) N clos(A)|o-)
then L(z) — L(x) U{VBr).Z}

V¥, If VBP.Z € L(z), and = is not indirectly blocked, p = ¢ € B” and
there is S-neighbor y of x with VBY.Z ¢ L(y)
then L(y) — L(y)U {VB1.Z}

V4 If VBP.Z € L(y), and y is not indirectly blocked, ¢ € £L(B?),

Z = \/;Zl(Qj7Zj7 Z;) and there is no j such that Z; C £(y) and L(y)lo- C Z;

then choose j such that L(y)|,- € Zj and L(y) = L(y) U Z;.
Wi

Proof. For the if direction, suppose that the algorithm returns ”Yes”. It means
that the algorithm generated completion forest G = (V, E, L, L, ;é) without clash
and there are no expansion rules (see table 1) that can be applied.

Let’s b(z) = x, if x is not blocked and b(z) = y, if y blocks node x.

A path [6] is a sequence of pairs nodes of G of the form

p= <($0,$6),...,($n,$;)>. (5)
For such a path, we define Tail(p) = x,, and Tail’ (p) = x!,. We denote the path

<(l‘0,$6), (JJ1, xll)’ R (Jin,JZ;L), ($n+1,l‘fn+1)> (6)

with (p|(zn+1,2},11))- The set of Paths(G) can be defined inductively as follows:

— if 29 is root node then (g, x0) € Paths(G)
— ifp € Paths(G),z € V and z is not indirectly blocked, such that (T'ail(p), z) €
E, then (p, (b(2),2)) € Paths(G)

We define structure T = (S,£,L,E,J) as follows S := Paths(G), L(p) :=
L(Tail(p)), L(p) := L(Tail(p)), if root node z, denotes individual a then J (a) =
((xa,24)) and E(R) := {(s,t) € S x S|t = (s,{b(y),y)) and y is an R —
successor of T'ail(s) or s = (¢, (b(y),y)) and y is an Inv(R)—successor of Tail(t)}
U{(TJ (a), T (b)) |zp is an R-neighbour of x}.

Thus defined structure T is a tableau. New rules (P6’), (P4a’) directly follows
from V) and V, rule, but (P4b’) follows from V% and definition of clash (see
definition (10)). For the other cases, see [6].

For the only-if direction, the proof is the same as proof in [4, 5] (i.e., we take
a tableau and use it to steer the application of the non-deterministic rules).O

From Theorem 1 in [5] and Lemmas 1, 2 and 3, we thus have the following
theorem:



Theorem 1. The tableau algorithm decides satisfiability and subsumption of
SRYTQ-concepts with respect to Aboxzes, Rboxes, and Tboxes.

4 Conclusion

It is important to note that original idea of extension ALC DL with composition-
based RIAs is presented in [11]. We introduce more expressive formalism that
allows composition-based RIAs and relaxed restrictions defined in [11]. Moti-
vated by practical applications in manufacturing engineering we define tableau
algorithm in order to check satisfiability of SRYZQ DL. Future research will be
focused on how to extend regularity conditions for SROZQ DL in order to sup-
port composition-based RIAs as well as at the same time support RIAs proposed
in [9]. We use the algorithm proposed in this paper for modeling the regulations
of capital adequacy of credit institutions.
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