
Preferential Low Complexity Description Logics:
Complexity Results and Proof Methods

Laura Giordano1, Valentina Gliozzi2, Nicola Olivetti3, and Gian Luca Pozzato2

1 Dip. di Informatica - U. Piemonte O. - Alessandria - Italy -laura@mfn.unipmn.it
2 Dip. Informatica - Univ. di Torino - Italy{gliozzi,pozzato}@di.unito.it

3 LSIS-UMR CNRS 6168 - Marseille - France -nicola.olivetti@univ-cezanne.fr

Abstract. In this paper we describe an approach for reasoning about typical-
ity and defeasible properties in low complexity preferential Description Logics.
We describe the non-monotonic extension of the low complexity DLs EL⊥ and
DL-Litecore based on a typicality operatorT, which enjoys a preferential seman-
tics. We summarize complexity results for such extensions,calledEL⊥

Tmin and
DL-LitecTmin. Entailment inDL-LitecTmin is in Π

p
2 , whereas entailment in

EL⊥
Tmin is EXPTIME-hard. However, for the Left Local fragment ofEL⊥

Tmin

the complexity of entailment drops toΠp

2 . We present tableau calculi for Left
Local EL⊥

Tmin and forDL-LitecTmin. The calculi perform a two-phase com-
putation in order to check whether a query is minimally entailed from the initial
knowledge base. The calculi are sound, complete and terminating, and provide
decision procedures for verifying entailment in the two logics, whose complexi-
ties match the above mentioned complexity results.

1 Introduction
Nonmonotonic extensions of Description Logics (DLs) have been actively investigated
since the early 90s [15, 4, 2, 3, 7, 12, 8, 6]. A simple but powerful non-monotonic exten-
sion of DLs is proposed in [12, 8]: in this approach “typical”or “normal” properties can
be directly specified by means of a “typicality” operatorT enriching the underlying
DL; the typicality operatorT is essentially characterised by the core properties of non-
monotonic reasoning axiomatized bypreferential logic[13]. In ALC +T [12], one can
consistently express defeasible inclusions and exceptions such as: typical students do
not pay taxes, but working students do typically pay taxes, but working students hav-
ing children normally do not:T(Student) ⊑ ¬TaxPayer ; T(Student ⊓ Worker) ⊑
TaxPayer ; T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer . Although the
operatorT is non-monotonic in itself, the logicALC + T is monotonic. As a con-
sequence, unless a KB contains explicit assumptions about typicality of individuals
(e.g. that john is a typical student), there is no way of inferring defeasible proper-
ties of them (e.g. that john does not pay taxes). In [8], a non-monotonic extension of
ALC + T based on a minimal model semantics is proposed. The resulting logic, called
ALC + Tmin, supports typicality assumptions, so that if one knows thatjohn is a stu-
dent, one can non-monotonically assume that he is also atypical student and therefore
that he does not pay taxes. As an example, for a TBox specified by the inclusions above,
in ALC+Tmin the following inference holds: TBox∪ {Student(john)} |=ALC+Tmin

¬TaxPayer (john).
Similarly to other non-monotonic DLs, adding the typicality operator with its min-

imal model semantics to a standard DL, such asALC, leads to a very high com-
plexity (namely, query entailment inALC + Tmin is in CO-NEXPNP [8]). This fact

has motivated the study of non-monotonic extensions of low complexity DLs such as
DL-Litecore [5] and EL⊥ of theEL family [1] which are nonetheless well-suited for
encoding large knowledge bases (KBs).

In this paper, we consider the extensions of the low complexity logicsDL-Litecore

andEL⊥ with the typicality operator based on the minimal model semantics introduced
in [8]. We summarize complexity upper bounds for the resulting logicsEL⊥

Tmin and
DL-LitecTmin given in [11]. ForEL⊥, it turns out that its extensionEL⊥

Tmin is un-
fortunately EXPTIME-hard. This result is analogous to the one forcircumscribedEL⊥

KBs [3]. However, the complexity decreases toΠ
p
2 for the fragment ofLeft LocalEL⊥

KBs, corresponding to the homonymous fragment in [3]. The same complexity upper
bound is obtained forDL-LitecTmin.

We also describe the tableau calculi forDL-LitecTmin as well as for the Left Local
fragment ofEL⊥

Tmin for deciding minimal entailment inΠp
2 . Our calculi perform a

two-phase computation: in the first phase, candidate models(complete open branches)
falsifying the given query are generated, in the second phase the minimality of candidate
models is checked by means of an auxiliary tableau construction. The calculi do not
require any blocking machinery in order to achieve termination. A reformulation of
existential rules, together with the idea of constructing multilinear models, is sufficient
to match theΠp

2 complexity.

2 The Typicality Operator T and the LogicEL
⊥
Tmin

Before describingEL⊥
Tmin , let us briefly recall the underlying monotonic logic

EL+
⊥

T, obtained by adding toEL⊥ the typicality operatorT. The intuitive idea is

that T(C) selects thetypical instances of a conceptC. In EL+
⊥

T we can therefore
distinguish between the properties that hold for all instances of conceptC (C ⊑ D),
and those that only hold for the normal or typical instances of C (T(C) ⊑ D).

Formally, theEL+
⊥

T language is defined as follows.

Definition 1. We consider an alphabet of concept namesC, of role namesR, and of
individualsO. GivenA ∈ C andR ∈ R, we define

C := A | ⊤ | ⊥ | C ⊓ C CR := C | CR ⊓CR | ∃R.C CL := CR | T(C)

A KB is a pair (TBox, ABox). TBox contains a finite set of general concept inclusions
(or subsumptions)CL ⊑ CR. ABox contains assertions of the formCL(a) andR(a, b),
wherea, b ∈ O.

The semantics ofEL+
⊥

T is defined by enriching ordinary models ofEL⊥ by aprefer-
ence relation< on the domain, whose intuitive meaning is to compare the “typicality”
of individuals:x < y, means thatx is more typical thany. Typical members of a con-
ceptC, that is members ofT(C), are the membersx of C that are minimal with respect
to this preference relation.

Definition 2 (Semantics ofT). A modelM is any structure〈∆, <, I〉 where∆ is the
domain;< is an irreflexive and transitive relation over∆ that satisfies the following
Smoothness Condition: for all S ⊆ ∆, for all x ∈ S, eitherx ∈ Min<(S) or ∃y ∈
Min<(S) such thaty < x, whereMin<(S) = {u : u ∈ S and∄z ∈ S s.t.z < u}.

Furthermore,< is multilinear: if u < z and v < z, then eitheru = v or u < v or
v < u. I is the extension function that maps each conceptC to CI ⊆ ∆, and each role
r to rI ⊆ ∆I × ∆I . For concepts ofEL⊥, CI is defined in the usual way. For theT
operator:(T(C))I = Min<(CI).

Given a modelM, I can be extended so that it assigns to each individuala of O a
distinct elementaI of the domain∆. We say thatM satisfies an inclusionC ⊑ D if
CI ⊆ DI , and thatM satisfiesC(a) if aI ∈ CI andaRb if (aI , bI) ∈ RI . Moreover,
M satisfies TBox if it satisfies all its inclusions, andM satisfies ABox if it satisfies all
its formulas.M satisfies a KB (TBox,ABox), if it satisfies both its TBox and its ABox.

The operatorT [12] is characterized by a set of postulates that are essentially a
reformulation of the KLM [13] axioms ofpreferential logicP. T has therefore all the
“core” properties of non-monotonic reasoning as it is axiomatized byP. The semantics
of the typicality operator can be specified by modal logic. The interpretation ofT can
be split into two parts: for anyx of the domain∆, x ∈ (T(C))I just in case (i)x ∈ CI ,
and (ii) there is noy ∈ CI such thaty < x. Condition (ii) can be represented by
means of an additional modality�, whose semantics is given by the preference relation
< interpreted as an accessibility relation. The interpretation of � in M is as follows:
(�C)I = {x ∈ ∆ | for everyy ∈ ∆, if y < x theny ∈ CI}. We immediately get that
x ∈ (T(C))I if and only if x ∈ (C ⊓ �¬C)I . From now on, we considerT(C) as an
abbreviation forC ⊓ �¬C.

As mentioned in the Introduction, the main limit ofEL+
⊥

T is that it ismonotonic.
Even if the typicality operatorT itself is non-monotonic (i.e.T(C) ⊑ E does not imply

T(C ⊓ D) ⊑ E), what is inferred from anEL+
⊥

T KB can still be inferred from any
KB’ with KB ⊆ KB’. In order to perform non-monotonic inferences, as done in [8], we

strengthen the semantics ofEL+
⊥

T by restricting entailment to a class of minimal (or
preferred) models. We call the new logicEL⊥

Tmin . Intuitively, the idea is to restrict
our consideration to models thatminimize the non typical instances of a concept.

Given a KB, we consider a finite setLT of concepts: these are the concepts whose
non typical instances we want to minimize. We assume that thesetLT contains at least
all conceptsC such thatT(C) occurs in the KB or in the queryF , where aqueryF is
either an assertionC(a) or an inclusion relationC ⊑ D. As we have just said,x ∈ CI

is typical forC if x ∈ (�¬C)I . Minimizing the non typical instances ofC therefore
means to minimize the objects falsifying�¬C for C ∈ LT. Hence, for a given model
M = 〈∆, <, I〉, we define:

M�
−

LT
= {(x,¬�¬C) | x 6∈ (�¬C)I , with x ∈ ∆, C ∈ LT}.

Definition 3 (Preferred and minimal models).Given a modelM = 〈∆ <, I〉 of a
knowledge baseKB, and a modelM′ = 〈∆′, <′, I ′〉 of KB, we say thatM is preferred
to M′ w.r.t. LT, and we writeM <LT

M′, if (i) ∆ = ∆′, (ii) M�
−

LT
⊂ M′�

−

LT
, (iii)

aI = aI′

for all a ∈ O. M is aminimal modelfor KB (w.r.t.LT) if it is a model ofKB
and there is no other modelM′ of KB such thatM′ <LT

M.

Definition 4 (Minimal Entailment in EL⊥
Tmin). A queryF is minimally entailed

in EL⊥
Tmin by KB with respect toLT if F is satisfied in all models ofKB that are

minimal with respect toLT. We writeKB |=EL⊥
Tmin

F .

Example 1.The KB of the Introduction can be reformulated as follows inEL+
⊥

T:
TaxPayer ⊓NotTaxPayer ⊑ ⊥; Parent ⊑ ∃HasChild .⊤; ∃HasChild .⊤ ⊑ Parent ;
T(Student) ⊑ NotTaxPayer ; T(Student ⊓ Worker) ⊑ TaxPayer ; T(Student ⊓
Worker ⊓ Parent) ⊑ NotTaxPayer . LetLT = {Student,Student ⊓ Worker ,

Student ⊓ Worker ⊓ Parent}. We have that TBox∪ {Student(john)} |=EL⊥Tmin

NotTaxPayer (john), sincejohnI ∈ (Student⊓�¬Student)I for all minimal models
M = 〈∆ <, I〉 of the KB. In contrast, by the non-monotonic character of minimal
entailment, TBox∪ {Student(john),Worker (john)} |=EL⊥Tmin

TaxPayer (john).
Last, notice that TBox∪ {∃HasChild .(Student ⊓ Worker)(jack)} |=EL⊥

Tmin

∃HasChild .TaxPayer (jack). The latter shows that minimal consequence applies to
implicit individualsas well, without any ad-hoc mechanism.

Theorem 1 (Complexity for EL⊥
Tmin KBs (Theorem 3.1 in [11])).The problem of

deciding whetherKB |=EL⊥Tmin
F is EXPTIME-hard.

To lower the complexity of minimal entailment inEL⊥
Tmin , we considerLeft Local

KBs, a restriction similar to that introduced in [3] for circumscribedEL⊥ KBs.

Definition 5 (Left Local knowledge base).A Left LocalKB only contains subsump-
tionsCLL

L ⊑ CR, whereC andCR are as in Definition 1 and:

CLL
L := C | CLL

L ⊓ CLL
L | ∃R.⊤ | T(C)

There is no restriction on the ABox.

Observe that the KB in the Example 1 is Left Local, as no concept of the form∃R.C

with C 6= ⊤ occurs on the left hand side of inclusions. In [11] an upper bound for
the complexity ofEL⊥

Tmin Left Local KBs is provided by a small model theorem.
Intuitively, what allows us to keep the size of the small model polynomial is that we
reuse the same world to verify the same existential concept throughout the model. This
allows us to conclude that:

Theorem 2 (Complexity for EL⊥
Tmin Left Local KBs (Theorem 3.12 in [11])).If

KB is Left Local, the problem of deciding whetherKB |=EL⊥
Tmin

F is in Π
p
2
.

3 The Logic DL-LitecTmin

In this section, we present the extension of the logicDL-Litecore [5] with theT operator.
We call it DL-LitecTmin. The language ofDL-LitecTmin is defined as follows.

Definition 6. We consider an alphabet of concept namesC, of role namesR, and of
individualsO. GivenA ∈ C andr ∈ R, we define

CL := A | ∃R.⊤ | T(A) R := r | r− CR := A | ¬A | ∃R.⊤ | ¬∃R.⊤

A DL-LitecTmin KB is a pair (TBox, ABox). TBox contains a finite set of concept
inclusions of the formCL ⊑ CR. ABox contains assertions of the formC(a) andr(a, b),
whereC is a conceptCL or CR, r ∈ R, anda, b ∈ O.

As for EL⊥
Tmin , a modelM for DL-LitecTmin is any structure〈∆, <, I〉, defined

as in Definition 2, whereI is extended to take care of inverse roles: givenr ∈ R,
(r−)I = {(a, b) | (b, a) ∈ rI}.

In [11] it has been shown that a small model construction similar to the one for
Left LocalEL⊥

Tmin KBs can be made also forDL-LitecTmin. As a difference, in this
case, we exploit the fact that, for each atomic roler, the same element of the domain
can be used to satisfy all occurrences of the existential∃r.⊤. Also, the same element of
the domain can be used to satisfy all occurrences of the existential∃r−.⊤.

Theorem 3 (Complexity for DL-LitecTmin KBs (Theorem 4.6 in [11])).The prob-
lem of deciding whetherKB |=DL-LitecTmin

F is in Π
p
2 .

4 The Tableau Calculus for Left LocalEL
⊥
Tmin

In this section we present a tableau calculusTABEL
⊥
T

min for deciding whether a queryF
is minimally entailed from a Left Local knowledge base in thelogic EL⊥

Tmin . It per-

forms a two-phase computation: in the first phase, a tableau calculus, calledTABEL
⊥
T

PH1 ,
simply verifies whether KB∪ {¬F} is satisfiable in anEL⊥

T model, building candi-

date models; in the second phase another tableau calculus, calledTABEL
⊥
T

PH2 , checks
whether the candidate models found in the first phase areminimalmodels of KB, i.e.

for each open branch of the first phase,TABEL
⊥
T

PH2 tries to build a model of KB which

is preferred to the candidate model w.r.t. Definition 3. The whole procedureTABEL
⊥
T

min

is formally defined at the end of this section (Definition 7).

The calculusTABEL
⊥
T

min tries to build an open branch representing a minimal model
satisfying KB∪ {¬F}. The negation of a query¬F is defined as follows: ifF ≡ C(a),
then¬F ≡ (¬C)(a); if F ≡ C ⊑ D, then¬F ≡ (C ⊓ ¬D)(x), wherex does not
occur in KB. Notice that we introduce the connective¬ in a very “localized” way. This
is very different from introducing the negation all over theknowledge base, and indeed
it does not imply that we jump out of the language ofEL⊥

Tmin .

TABEL
⊥
T

min makes use of labels, which are denoted withx, y, z, Labels represent
individuals either named in the ABox or implicitly expressed by existential restrictions.

These labels occur inconstraints(or labelledformulas), that can have the formx
R

−→ y

or x : C, wherex, y are labels,R is a role andC is either a concept or the negation of
a concept ofEL⊥

Tmin or has the form�¬D or¬�¬D, whereD is a concept.

Let us now analyze the two components ofTABEL
⊥
T

min , starting withTABEL
⊥
T

PH1 .

4.1 The Tableaux CalculusTAB
EL

⊥
T

P H1

A tableau ofTABEL
⊥
T

PH1 is a tree whose nodes are tuples〈S | U | W 〉. S is a set of
constraints, whereasU contains formulas of the formC ⊑ DL, representing subsump-
tion relationsC ⊑ D of the TBox.L is a list of labels, used in order to ensure the
termination of the tableau calculus.W is a set of labelsxC used in order to build a
“small” model, matching the construction of Theorem 3.11 in[11]. A branch is a se-
quence of nodes〈S1 | U1 | W1〉, 〈S2 | U2 | W2〉, . . . , 〈Sn | Un | Wn〉 . . ., where each
node〈Si | Ui | Wi〉 is obtained from its immediate predecessor〈Si−1 | Ui−1 | Wi−1〉

by applying a rule ofTABEL
⊥
T

PH1 , having〈Si−1 | Ui−1 | Wi−1〉 as the premise and
〈Si | Ui | Wi〉 as one of its conclusions. A branch is closed if one of its nodes is an
instance of a (Clash) axiom, otherwise it is open. A tableau is closed if all its branches

are closed. The rules ofTABEL
⊥
T

PH1 are presented in Fig. 1. Rules(∃+

1) and(�−) are
calleddynamicsince they can introduce a new variable in their conclusions. The other
rules are calledstatic. We do not need any extra rule for the positive occurrences of
�, since these are taken into account by the computation ofSM

x→y of (�−). The(cut)

rule ensures that, given any conceptC ∈ LT, an open branch built byTABEL
⊥
T

PH1 con-
tains eitherx : �¬C or x : ¬�¬C for each labelx: this is needed in order to allow
TABEL

⊥
T

PH2 to check the minimality of the model corresponding to the open branch. As
mentioned above, given a node〈S | U | W 〉, each formulaC ⊑ D in U is equipped
with the list L of labels to which unfolding of the subsumption has already been ap-
plied. This avoids multiple unfolding of the same subsumption with the same label.

The calculusTABEL
⊥
T

PH1 is different from the calculusALC + Tmin [8] in two re-
spects. First, the rule(∃+) is split in the two rules(∃+)1 and (∃+)2. When the rule
(∃+)1 is applied to a formulau : ∃R.C, it introduces a new labelxC only when the set

W does not already containxC . Otherwise,xC is already on the branch andu
R

−→ xC

is simply added to the conclusion of the rule. As a consequence, in a given branch,
(∃+)1 introduces a unique new labelxC for each conceptC occurring in the initial
KB in some∃R.C, and no blocking machinery is needed to ensure termination.This
simplification is possible since we are considering Left Local KBs, which have small
models; in these models all existentials∃R.C occurring in KB are made true by reusing
a single witnessxC (Theorem 3.12 in [11]). Notice also that the rules(∃+)1 and(∃+)2
introduce a branching on the choice of the label used to realize the existential restriction
u : ∃R.C. However, just the leftmost conclusion of(∃+)1 introduces a new labelxC ;
in all the other branches, a labelyi occurring inS is chosen.

Second, in order to build multilinear models of Definition 2,the calculus adopts
a strengthened version of the rule(�−) used inTABALC+T

min [8]. We write S as an
abbreviation forS, u : ¬�¬C1, . . . , u : ¬�¬Cn. Moreover, we defineSM

u→y = {y :

¬D, y : �¬D | u : �¬D ∈ S} and, fork = 1, 2, . . . , n, we defineS
�

−k

u→y = {y :

¬�¬Cj ⊔ Cj | u : ¬�¬Cj ∈ S ∧ j 6= k}. The strengthened rule(�−) contains: (i)
n branches, one for eachu : ¬�¬Ck in S, in which anewtypical Ck individualx is
introduced (i.e.x : Ck andx : �¬Ck are added), and for all otheru : ¬�¬Cj , either
x : Cj holds or the formulax : ¬�¬Cj is recorded; (ii) othern × m branches, one for
each labelyi and for eachu : ¬�¬Ck in S (m is the number of labels occurring inS):
in these branches, a givenyi is chosen as a typical instance ofCk, that is to sayyi : Ck

andyi : �¬Ck are added, and for all otheru : ¬�¬Cj , eitheryi : Cj holds or the
formulayi : ¬�¬Cj is recorded. This rule is sound with respect to multilinear models.
The advantage of this rule over the(�−) rule in the calculusTABALC+T

min is that all the
negated box formulas labelled byu are treated in one step, introducing only a new label
x in one of the conclusions. To keepS readable, we have used⊔. Hence, our calculus
requires the rule for⊔, even if this constructor does not belong toEL⊥

Tmin .
In order to check the satisfiability of a KB, we build itscorresponding constraint

system〈S | U | ∅〉, and we check its satisfiability. Given KB=(TBox,ABox), itscorre-

〈S, u : ∃R.C | U | W 〉

〈S, u
R

−→ xC , xC : C | U | W ∪ {xC}〉 . . .
(∃+)1

if y : ¬C !∈ S

〈S | U,C ⊑ DL | W 〉

if x occurs in S and x !∈ L

(Unfold)〈S, x : T(C) | U | W 〉 〈S, x : ¬T(C) | U | W 〉

〈S, x : C, x : !¬C | U | W 〉 〈S, x : ¬C | U | W 〉 〈S, x : ¬!¬C | U | W 〉
(T+) (T−)

(⊓+) (⊓−)

(cut)

x occurs in S

if x : ¬!¬C !∈ S and x : !¬C !∈ S
C ∈ LT

〈S, x : ¬D | U | W 〉〈S, x : ¬C | U | W 〉〈S, x : C, x : D | U | W 〉

〈S, x : C ⊓ D | U | W 〉 〈S, x : ¬(C ⊓ D) | U | W 〉

〈S, x : C, x : ¬C | U | W 〉 (Clash)⊥(Clash)
¬⊤

〈S, x : !¬C | U | W 〉〈S, x : ¬∃R.C, x
R

−→ y, y : ¬C | U | W 〉

〈S, x : ¬∃R.C, x
R

−→ y | U | W 〉
(∃−)

(Clash)

〈S, x : ¬!¬C | U | W 〉

〈S | U | W 〉

〈S, x : ⊥ | U | W 〉〈S, x : ¬⊤ | U | W 〉

〈S, x : ¬C ⊔ D | U,C ⊑ DL,x | W 〉

(∃+)2
〈S, u : ∃R.C | U | W 〉

〈S, u
R

−→ xC | U | W 〉

〈S, x : C | U | W 〉 〈S, x : D | U | W 〉

〈S, x : C ⊔ D | U | W 〉
(⊔+)

〈S, u
R

−→ y1, y1 : C | U | W 〉

. . .〈S, u
R

−→ y1, y1 : C | U | W 〉

〈S, u
R

−→ ym, ym : C | U | W 〉

〈S, u
R

−→ ym, ym : C | U | W 〉

〈S, x : Ck, x : !¬Ck, SM

u→x
, S

!
−k

u→x
| U | W 〉

. . .

(!−)

〈S, y1 : Ck, y1 : !¬Ck, SM

u→y1
, S

!
−k

u→y1
| U | W 〉 〈S, ym : Ck, ym : !¬Ck, SM

u→ym
, S

!
−k

u→ym
| U | W 〉

k = 1, 2, . . . , n

x new

if xC !∈ W and y1, . . . , ym are all the labels occurring in S

if xC ∈ W and y1, . . . , ym are all the labels occurring in S

if y1, . . . , ym are all the labels occurring in S, y1 != u, . . . , ym != u

〈S, u : ¬!¬C1, u : ¬!¬C2, . . . , u : ¬!¬Cn | U | W 〉

Fig. 1. The calculusTABEL
⊥
T

PH1 .

sponding constraint system〈S | U | ∅〉 is defined as follows:S = {a : C | C(a) ∈

ABox} ∪ {a
R

−→ b | R(a, b) ∈ ABox}; U = {C ⊑ D∅ | C ⊑ D ∈ TBox}. KB
is satisfiable if and only if its corresponding constraint system〈S | U | ∅〉 is satisfi-

able. In order to verify the satisfiability of KB∪ {¬F}, we useTABEL
⊥
T

PH1 to check
the satisfiability of the constraint system〈S | U | ∅〉 obtained by adding the constraint
corresponding to¬F to S′, where〈S′ | U | ∅〉 is the corresponding constraint system

of KB. To this purpose, the rules of the calculusTABEL
⊥
T

PH1 are applied until either a
contradiction is generated (Clash) or a model satisfying〈S | U | ∅〉 can be obtained
from the resulting constraint system.

The rules ofTABEL
⊥
T

PH1 are applied with the followingstandard strategy: 1. apply a
rule to a labelx only if no rule is applicable to a labely such thaty ≺ x (wherey ≺ x

says that labelx has been introduced in the tableaux later thany); 2. apply dynamic rules
only if no static rule is applicable. In [9] it has been shown that the calculus is sound

and complete and terminating. In particular, any tableau generated byTABEL
⊥
T

PH1 for
〈S | U | ∅〉 is finite, and the length of the tableau branches built by the strategy is
O(n2). This follows from the fact that dynamic rules(∃+)1 and(�−) generate at most
O(n) labels in a branch, and that, for each label, static rules areapplied at mostO(n)
times. Hence, given a KB and a queryF , the problem of checking whether KB∪ {¬F}

in TABEL
⊥
T

PH1 is satisfiable is in NP.

(∃+)

(Unfold)

(Clash)〈S, x : C, x : ¬C | U | K〉

(Clash)∅ (Clash)!−〈S | U | ∅〉 〈S, x : ¬!¬C | U | K〉
if x : ¬!¬C !∈ K

〈S | U, C ⊑ DL | K〉

x ∈ D(B) and x !∈ L

〈S, x : C ⊓ D | U | K〉

〈S, x : C, x : D | U | K〉 〈S, x : ¬C | U | K〉
(T+)

(T−)

(⊓+) (⊓−)

(cut)

if x : ¬!¬C !∈ S and x : !¬C !∈ S

C ∈ LT

〈S, x : ¬D | U | K〉

〈S, x : ¬(C ⊓ D) | U | K〉

〈S, x : !¬C | U | K〉 〈S, x : ¬!¬C | U | K〉

〈S | U | K〉〈S, x : ¬T(C) | U | K〉

〈S, x : ¬C | U | K〉 〈S, x : ¬!¬C | U | K〉

〈S, x : T(C) | U | K〉

〈S, x : C, x : !¬C | U | K〉

〈S, u : ¬!¬C1, . . . , u : ¬!¬Cn | U | K, u : ¬!¬C1, . . . , u : ¬!¬Cn〉

(Clash)⊥〈S, x : ¬⊤ | U | K〉 (Clash)
¬⊤ 〈S, x : ⊥ | U | K〉

(!−)

〈S, x : ¬C ⊔ D | U,C ⊑ D
L,x | K〉

x ∈ D(B)

〈S, u
R

−→ y1, y1 : C | U | K〉

〈S, u : ∃R.C | U | K〉

〈S, u
R

−→ ym, ym : C | U | K〉

〈S, ym : Ck, ym : !¬Ck, SM
u→ym

, S
!

−k

u→ym
| U | K〉

. . .

〈S, y1 : Ck, y1 : !¬Ck, SM

u→y1
, S

!
−k

u→y1
| U | K〉 . . .

if D(B) = {y1, . . . , ym}

if D(B) = {y1, . . . , ym} and y1 != u, . . . , ym != u

Fig. 2. The calculusTABEL
⊥
T

PH2 . To save space, we omit the rule(⊔+).

4.2 The Tableaux CalculusTAB
EL

⊥
T

P H2

Let us now introduce the calculusTABEL
⊥
T

PH2 which, for each open branchB built by

TABEL
⊥
T

PH1 , verifies whether it represents a minimal model of the KB. Given an open

branchB of a tableau built fromTABEL
⊥
T

PH1 , letD(B) be the set of labels occurring on
B. Moreover, letB�

−

be the set of formulasx : ¬�¬C occurring inB, that is to say
B�

−

= {x : ¬�¬C | x : ¬�¬C occurs inB}.

A tableau ofTABEL
⊥
T

PH2 is a tree whose nodes are tuples of the form〈S | U | K〉,
whereS andU are defined as in a constraint system, whereasK contains formulas

of the formx : ¬�¬C, with C ∈ LT. The basic idea ofTABEL
⊥
T

PH2 is as follows.

Given an open branchB built by TABEL
⊥
T

PH1 and corresponding to a modelMB of

KB ∪ {¬F}, TABEL
⊥
T

PH2 checks whetherMB is a minimal model of KB by trying to
build a model of KB which is preferred toMB. To this purpose, it keeps track (inK)
of the negated box used inB (B�

−

) in order to check whether it is possible to build

a model of KB containing less negated box formulas. The tableau built byTABEL
⊥
T

PH2

closes if it is not possible to build a model smaller thanMB, it remains open otherwise.
Since by Definition 3 two models can be compared only if they have the same domain,

TABEL
⊥
T

PH2 tries to build an open branch containing all the labels appearing onB, i.e.
those inD(B). To this aim, the dynamic rules use labels inD(B) instead of introducing

new ones in their conclusions. The rules ofTABEL
⊥
T

PH2 are shown in Fig. 2.
More in detail, the rule(∃+), when applied to a formulax : ∃R.C, introduces,

for each labely ∈ D(B), x
R

−→ y andy : C. The choice of the labely introduces
a branching in the tableau construction. The rule (Unfold) is applied toall the labels
of D(B) (and not only to those appearing in the branch). The rule(�−) is applied
to a node〈S, u : ¬�¬C1, . . . , u : ¬�¬Cn | U | K〉, when{u : ¬�¬C1, . . . , u :

¬�¬Cn} ⊆ K, i.e. when the negated box formulasu : ¬�¬Ci also belong to the
open branchB. Also in this case, the rule introduces a branch on the choiceof the
individualyi ∈ D(B) to be used in the conclusion. In case a tableau node has the form

〈S, x : ¬�¬C | U | K〉, andx : ¬�¬C 6∈ K, thenTABEL
⊥
T

PH2 detects a clash,
called (Clash)�− : this corresponds to the situation wherex : ¬�¬C does not belong
to B, while the model corresponding to the branch being built containsx : ¬�¬C, and
hence isnot preferred to the model represented byB.

The calculusTABEL
⊥
T

PH2 also contains the clash condition (Clash)∅. Since each ap-
plication of(�−) removes the negated box formulasx : ¬�¬Ci from the setK, when
K is empty all the negated boxed formulas occurring inB also belong to the current

branch. In this case, the model built byTABEL
⊥
T

PH2 satisfies the same set ofx : ¬�¬Ci

(for all individuals) asB and, thus, it is not preferred to the one represented byB.
Let KB be a knowledge base whose corresponding constraint system is〈S | U |

∅〉. Let F be a query and letS′ be the set of constraints obtained by adding toS the

constraint corresponding to¬F . TABEL
⊥
T

PH2 is sound and completein the following

sense: an open branchB built by TABEL
⊥
T

PH1 for 〈S′ | U | ∅〉 is satisfiable in a minimal

model of KB iff the tableau inTABEL
⊥
T

PH2 for 〈S | U | B�
−

〉 is closed.

Termination of the calculusTABEL
⊥
T

PH2 is ensured by the fact that dynamic rules
make use of labels belonging toD(B), which is finite, rather than introducing “new”
labels in the tableau. Also, it is possible to show that the problem of verifying that a

branchB represents a minimal model for KB inTABEL
⊥
T

PH2 is in NP in the size ofB.
The overall procedureTABALC+T

min is defined as follows:

Definition 7. Let KB be a knowledge base whose corresponding constraint system is
〈S | U | ∅〉. LetF be a query and letS′ be the set of constraints obtained by adding to

S the constraint corresponding to¬F . The calculusTABEL
⊥
T

min checks whether a query
F is minimally entailed fromKB by means of the following procedure:(phase 1)the

calculusTABEL
⊥
T

PH1 is applied to〈S′ | U | ∅〉; if, for each branchB built byTABEL
⊥
T

PH1 ,

either (i) B is closed or (ii)(phase 2)the tableau built by the calculusTABEL
⊥
T

PH2 for
〈S | U | B�

−

〉 is open, thenKB |=LT

min F , otherwiseKB 6|=LT

min F .

In [9] it has been shown thatTABEL
⊥
T

min is a sound and complete decision procedure
for verifying if KB |=EL⊥Tmin

F . Furthermore, the problem of deciding whetherKB

|=EL⊥
Tmin

F by means ofTABEL
⊥
T

min is in Π
p
2 .

5 A Tableau Calculus forDL-LitecTmin

In this section we shortly describe a tableau calculusTABLitecT

min for deciding query
entailment in the logicDL-LitecTmin. The calculus is similar to the one introduced
for EL⊥

Tmin in the previous section, however it is significantly different from it in
the definition of some of the rules. Given a set of constraintsS and a roler ∈ R, let
r(S) = {x

r
−→ y | x

r
−→ y ∈ S}. The calculusTABLitecT

PH1
used in the first phase

differs fromTABEL
⊥
T

PH1 in the following points:

1. As in the calculusTABEL
⊥
T

PH1 , the split of the(∃+) in the two rules:

y new

〈S, x : ∃r.⊤ | U〉

〈S, x
r

−→ y | U〉
(∃+)r

1

〈S, x : ∃r.⊤ | U〉
(∃+)r

2

〈S, x
r

−→ y1 | U〉 〈S, x
r

−→ ym | U〉. . . 〈S, x
r

−→ y1 | U〉 〈S, x
r

−→ ym | U〉. . .

if y1, . . . , ym are all the labels occurring in S if y1, . . . , ym are all the labels occurring in S

if r(S) != ∅if r(S) = ∅

reflects the main idea of the construction of a small model at the base of Theorem 4.5
in [11]. Such small model theorem essentially shows thatDL-LitecTmin KBs can have
small models in which all existentials∃R.⊤ occurring in KB are made true in the model
by reusing a single witnessy. In the calculus we use the same idea: when the rule(∃+)r

1

is applied to a formulax : ∃r.⊤, it introduces a new labely and the constraintx
r

−→ y

only when there is no other previous constraintu
r

−→ v in S, i.e.r(S) = ∅. Otherwise,
rule (∃+)r

2 is applied and it introducesx
r

−→ y. As a consequence,(∃+)r
2 does not

introduce any new label in the branch whereas(∃+)r
1 only introduces a new labely

for each roler occurring in the initial KB in some∃r.⊤ and no blocking machinery is
needed to ensure termination.

2. In order to keep into account inverse roles, two further rules for existential for-
mulas are introduced:

(∃+)r
−

1

〈S, x : ∃r
−

.⊤ | U〉〈S, x : ∃r
−

.⊤ | U〉

〈S, y
r

−→ x | U〉 〈S, y1

r

−→ x | U〉 〈S, ym
r

−→ x | U〉

y new

. . . 〈S, y1

r

−→ x | U〉 〈S, ym
r

−→ x | U〉. . .
(∃+)r

−

2

if y1, . . . , ym are all the labels occurring in S
if y1, . . . , ym are all the labels occurring in S

if r(S) = ∅ if r(S) != ∅

These rules work similarly to(∃+)r
1 and(∃+)r

2 in order to build a branch representing
a small model: when the rule(∃+)r−

1 is applied to a formulax : ∃r−.⊤, it introduces a
new labely and the constrainty

r
−→ x only when there is no other constraintu

r
−→ v

in S. Otherwise, since a constrainty
r

−→ u has been already introduced in that branch,
y

r
−→ x is added to the conclusion of the rule.

3. Negated existential formulas can occur in a branch, but only having the form (i)
x : ¬∃r.⊤ or (ii) x : ¬∃r−.⊤. (i) means thatx has no relationships with other individ-
uals via the roler, i.e. we need to detect a contradiction if both (i) andx

r
−→ y belong

to the same branch (for somey), and mark the branch as closed. The clash condition

(Clash)r is added to the calculusTABLitecT

PH1
in order to detect such a situation. Anal-

ogously, (ii) means that there is noy such thaty is related tox by means ofr, then
(Clash)r− is introduced in order to close a branch containing both (ii)and, for somey,
a constrainty

r
−→ x. These clash conditions are as follows:

(Clash)r
(Clash)

r
−〈S, x

r

−→ y, x : ¬∃r.⊤ | U〉 〈S, y
r

−→ x, x : ¬∃r
−

.⊤ | U〉

Apart from the differences above, the rules ofTABLitecT

PH1
are the same as those of

TABEL
⊥
T

PH1 . Similarly for the calculusTABLitecT

PH2
used in the second phase. In [10] it

has been shown that bothTABLitecT

PH1
andTABLitecT

PH2
are sound, complete and termi-

nating. Furthermore, the problem of deciding whether KB|=DL-LitecTmin
F by means

of TABLitecT

min is in Π
p
2 .

6 Conclusions
We have proposed a non-monotonic extension of low complexity Description Log-
ics EL⊥ andDL-Litecore for reasoning about typicality and defeasible properties.We
have summarized complexity results recently studied for such extensions [11], namely
that entailment is EXPTIME-hard forEL⊥

Tmin , whereas it drops toΠp
2 when con-

sidering the Left Local Fragment ofEL⊥
Tmin . The sameΠp

2 complexity has been
found for DL-LitecTmin. These results match the complexity upper bounds of the
same fragments in circumscribed KBs [3]. We have also provided tableau calculi for
checking minimal entailment in the Left Local fragment ofEL⊥

Tmin as well as in
DL-LitecTmin. The proposed calculi match the complexity results above. Of course,
many optimizations are possible and we intend to study them in future work.

As mentioned in the Introduction, several non-monotonic extensions of DLs have
been proposed in the literature and we refer to [12] for a survey. Concerning non-
monotonic extensions of low complexity DLs, the complexityof circumscribedfrag-
ments of theEL⊥ andDL-Lite families have been studied in [3]. Recently, a fragment
of EL⊥ for which the complexity of circumscribed KBs is polynomialhas been identi-
fied in [14]. In future work, we shall investigate complexityof minimal entailment for
such a fragment extended withT and possibly the definition of a calculus for it.

References
1. Baader, F., Brandt, S., Lutz, C.: Pushing theEL envelope. In: IJCAI. pp. 364–369 (2005)
2. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in

treating specificity in terminological default logic. J. ofAutom. Reas. 15(1), 41–68 (1995)
3. Bonatti, P.A., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs. J. Artif.

Intell. Res. (JAIR) 42, 719–764 (2011)
4. Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in DLs. J. Artif. Intell.

Res. (JAIR) 35, 717–773 (2009)
5. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning

and efficient query answering in Description Logics: the DL-Lite family. J. Autom. Reason-
ing (JAR) 39(3), 385–429 (2007)

6. Casini, G., Straccia, U.: Rational closure for defeasible DLs. In: JELIA. pp. 77–90 (2010)
7. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation

as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)
8. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about typicality in prefer-

ential Description Logics. In: JELIA. pp. 192–205 (2008)
9. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Atableau calculus for a nonmonotonic

extension ofEL⊥. In: TABLEAUX. pp. 180–195 (2011)
10. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.:A tableau calculus for a nonmonotonic

extension of the Description Logic DL-Litecore . In: AI*IA. pp. 164–176 (2011)
11. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.:Reasoning about typicality in low com-

plexity DLs: the logicsEL⊥
Tmin and DL-litecTmin. In: IJCAI. pp. 894–899 (2011)

12. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.:ALC + Tmin: a preferential extension
of Description Logics. Fundamenta Informaticae 96, 1–32 (2009)

13. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

14. Bonatti, P.A., Faella, M., Sauro, L.:EL with default attributes and overriding. In: ISWC. pp.
64–79 (2010)

15. Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: IJCAI. pp. 676–
681 (1993)

