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Abstract. In this paper we describe an approach for reasoning aboidatyp

ity and defeasible properties in low complexity preferahbescription Logics.
We describe the non-monotonic extension of the low complédls ££* and
DL-Lite.,r. based on a typicality operat@dr, which enjoys a preferential seman-
tics. We summarize complexity results for such extensioated& £ T, and
DL-LitecTnin. Entailment inDL-Lite. Tnin is in IT5, whereas entailment in
ELT min is EXPTIME-hard. However, for the Left Local fragment&8L T,
the complexity of entailment drops tB%. We present tableau calculi for Left
Local ££*T,.in and forDL-Lite. T,.:n. The calculi perform a two-phase com-
putation in order to check whether a query is minimally dathfrom the initial
knowledge base. The calculi are sound, complete and tetiminand provide
decision procedures for verifying entailment in the twoitsgwhose complexi-
ties match the above mentioned complexity results.

1 Introduction
Nonmonotonic extensions of Description Logics (DLs) hagerbactively investigated
since the early 90s [15,4,2,3,7, 12, 8, 6]. A simple but péw@on-monotonic exten-
sion of DLs is proposed in [12, 8]: in this approach “typicat™normal” properties can
be directly specified by means of a “typicality” operatBrenriching the underlying
DL; the typicality operatofl is essentially characterised by the core properties of non-
monotonic reasoning axiomatized pyeferential logic[13]. In ALC + T [12], one can
consistently express defeasible inclusions and excepsanh as: typical students do
not pay taxes, but working students do typically pay taxesworking students hav-
ing children normally do notT (Student) = —TaxPayer; T (Student M Worker) C
TaxPayer; T(Student 1 Worker M 3HasChild. T) T —TaxPayer. Although the
operatorT is non-monotonic in itself, the logiglLC + T is monotonic. As a con-
sequence, unless a KB contains explicit assumptions algpidatity of individuals
(e.g. that john is a typical student), there is no way of irifer defeasible proper-
ties of them (e.g. that john does not pay taxes). In [8], a m@motonic extension of
ALC + T based on a minimal model semantics is proposed. The regidiic, called
ALC + T'nin, Supports typicality assumptions, so that if one knowsijbtatt is a stu-
dent, one can non-monotonically assume that he is algpieal student and therefore
that he does not pay taxes. As an example, for a TBox specifidtebinclusions above,
in ALC+ T, the following inference holds: TBax { Student(john)} E=acc+T
—TaxPayer(john).

Similarly to other non-monotonic DLs, adding the typicaliperator with its min-
imal model semantics to a standard DL, such.48C, leads to a very high com-

plexity (namely, query entailment W LC + T,y IS in co-NexpNP [8]). This fact
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has motivated the study of non-monotonic extensions of lommexity DLs such as
DL-Liteor [5] and EL£* of the ££ family [1] which are nonetheless well-suited for
encoding large knowledge bases (KBs).

In this paper, we consider the extensions of the low compléagics DL-Lite ..
and& £ with the typicality operator based on the minimal model setica introduced
in [8]. We summarize complexity upper bounds for the reagltogics€ £+ T ,,.;,, and
DL-Lite. T, given in [11]. For€L™, it turns out that its extensiafiL T, is un-
fortunately ExPTIME-hard. This result is analogous to the onediscumscribeds £+
KBs [3]. However, the complexity decreased1d for the fragment of eft LocalE £+
KBs, corresponding to the homonymous fragment in [3]. Theesaomplexity upper
bound is obtained fobL-Lite.T,,,;y,.

We also describe the tableau calculi BIr-Lite.T,,,;,, as well as for the Left Local
fragment ofEL T in fOr deciding minimal entailment iZ}. Our calculi perform a
two-phase computation: in the first phase, candidate m¢defsplete open branches)
falsifying the given query are generated, in the secondeptieessminimality of candidate
models is checked by means of an auxiliary tableau congtructhe calculi do not
require any blocking machinery in order to achieve ternmiamatA reformulation of
existential rules, together with the idea of constructingtitnear models, is sufficient
to match thelT} complexity.

2 The Typicality Operator T and the Logic ELT .y,

Before describing £ T,..., let us briefly recall the underlying monotonic logic
Sﬁ*LT, obtained by adding t§ £* the typicality operatofl’. The intuitive idea is

that T(C) selects theypical instances of a concept. In gL+ T we can therefore
distinguish between the properties that hold for all inseanof concept’ (C' C D),
and those that only hold for the normal or typical instandeS ¢T'(C') C D).

Formally, theSLt T language is defined as follows.

Definition 1. We consider an alphabet of concept narGesf role namesR, and of
individualsO. GivenA € C andR € R, we define

C=A|T|L|CnC Cr:=C|CrnNCg|3R.C CL:=Cr|T(C)
A KB is a pair (TBox, ABox). TBox contains a finite set of general concept inclusions

(or subsumptions)';, = C'r. ABox contains assertions of the for@Y, (a) and R(a, b),
wherea, b € O.

The semantics f £ T is defined by enriching ordinary models®f" by aprefer-
ence relation< on the domain, whose intuitive meaning is to compare thei¢sjjy”
of individuals:z < y, means thai: is more typical thary. Typical members of a con-
ceptC, thatis members oI (C), are the membetrsof C' that are minimal with respect
to this preference relation.

Definition 2 (Semantics ofT). A modelM is any structurg A, <, I) whereA is the
domain; < is an irreflexive and transitive relation ovet that satisfies the following
Smoothness Conditioffior all S C A, for all z € S, eitherz € Min(S) or Jy €
Min.(S) such thaty < =, whereMin_(S) = {u :u € Sandfz € Ss.t.z < u}.



Furthermore,< is multilinear: if u < z andv < z, then eitheru = v oru < v or

v < u. I is the extension function that maps each conc¢eps C! C A, and each role
rtor! € Al x Al. For concepts oL, C! is defined in the usual way. For thE

operator: (T(C))! = Min.(CT).

Given a modelM, I can be extended so that it assigns to each individuzfi O a
distinct element’ of the domainA. We say thatM satisfies an inclusiod’ C D if
C! € DI, and thatM satisfiesC (a) if a! € C! andaRbif (a’,b!) € R!. Moreover,
M satisfies TBox if it satisfies all its inclusions, aind satisfies ABox if it satisfies all
its formulas M satisfies a KB (TBox,ABox), if it satisfies both its TBox ang ABox.

The operatorfT [12] is characterized by a set of postulates that are esdlgnai
reformulation of the KLM [13] axioms opreferential logicP. T has therefore all the
“core” properties of non-monotonic reasoning as it is axatimed byP. The semantics
of the typicality operator can be specified by modal logice Titerpretation ofl' can
be split into two parts: for any of the domain4, = € (T(C))” justin case (i € C,
and (ii) there is noy € CT such thaty < x. Condition (ii) can be represented by
means of an additional modalify, whose semantics is given by the preference relation
< interpreted as an accessibility relation. The interpietadf (J in M is as follows:
(O0)! = {x € A |foreveryy € A, if y < 2 theny € CT}. We immediately get that
r € (T(C))!ifand only ifz € (C M O-C)!. From now on, we considéF(C) as an
abbreviation folC' 1 O-C.

As mentioned in the Introduction, the main limit&L " T is that it ismonotonic
Even if the typicality operatdT itself is non-monotonic (i.€T'(C') C E does notimply

T(C N D) C E), what is inferred from agLt T KB can still be inferred from any
KB’ with KB C KB'. In order to perform non-monotonic inferences, as danggj, we
strengthen the semantics®E+ T by restricting entailment to a class of minimal (or
preferred) models. We call the new logic ' T,,;,. Intuitively, the idea is to restrict
our consideration to models thainimize the non typical instances of a concept
Given a KB, we consider a finite st of concepts: these are the concepts whose
non typical instances we want to minimize. We assume thageb@r contains at least
all concept<” such thafl'(C') occurs in the KB or in the quer¥, where aquery F' is
either an assertio@'(a) or an inclusion relatio”’ = D. As we have just said; € C!
is typical for C' if € (O-C)!. Minimizing the non typical instances &f therefore
means to minimize the objects falsifying~C for C' € Lr. Hence, for a given model
M = (A, <, I), we define:

MZ = {(z,-0-C) |z ¢ (O-C)!, withz € A,C € L1}
Definition 3 (Preferred and minimal models). Given a modeM = (A <,T) of a
knowledge baskB, and a modeM’ = (A’, </, I') of KB, we say that\ is preferred
to M’ w.rt. L, and we writeM <, M, if () A = A/, (i) MZ_ < ML, (i)
al = a! forall a € ©. M is aminimal modeffor KB (w.r.t. L) if it is a model ofKB
and there is no other modg’ of KB such thatM’ <,.. M.

Definition 4 (Minimal Entailment in ££1T,,;,,). A query F is minimally entailed
in EL£1T,.;, by KB with respect talr if F is satisfied in all models okB that are
minimal with respect t&Cr. We writeKB |=¢ .o . F.
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Example 1.The KB of the Introduction can be reformulated as followsSif+ T
TazxPayer M NotTaxPayer T 1; Parent C 3HasChild. T; 3HasChild. T C Parent;
T(Student) C NotTazPayer; T(Student M Worker) C TaxPayer; T(Student M
Worker M Parent) C NotTaxPayer. Let Lt = {Student, Student 1 Worker,
Student M Worker 1 Parent}. We have that TBoxJ { Student(john)} Fepip
NotTazPayer(john), sincejohn! € (StudentnO-Student)! for all minimal models
M = (A <,I) of the KB. In contrast, by the non-monotonic character ofima
entailment, TBoxU { Student(john), Worker(john)} \=epvy, . TaxPayer(john).
Last, notice that TBox) {3HasChild.(Student 11 Worker)(jack)} Fepim, .
JHasChild. TaxPayer (jack). The latter shows that minimal consequence applies to
implicit individualsas well, without any ad-hoc mechanism.

Theorem 1 (Complexity for ££* T, KBs (Theorem 3.1 in [11])).The problem of
deciding whetheKB |=¢ ..  Fis EXPTIME-hard.

To lower the complexity of minimal entailment &+ T,,,,,, we considet eft Local
KBs, a restriction similar to that introduced in [3] for ainmscribedS £ KBs.

Definition 5 (Left Local knowledge base) A Left LocalKB only contains subsump-
tionsCEE C Cr, whereC andCp, are as in Definition 1 and:

CEL .= C | CEENCEE | 3R.T | T(O)

There is no restriction on the ABox.

Observe that the KB in the Example 1 is Left Local, as no cohoéfhe form3R.C
with C' # T occurs on the left hand side of inclusions. In [11] an uppeairabfor
the complexity of€L* T, Left Local KBs is provided by a small model theorem.
Intuitively, what allows us to keep the size of the small mquelynomial is that we
reuse the same world to verify the same existential conbeptighout the model. This
allows us to conclude that:

Theorem 2 (Complexity for ££T,,;, Left Local KBs (Theorem 3.12 in [11])).If
KB is Left Local, the problem of deciding whetheB =, .. Fisin I},

3 The LogicDL-Lite. T in
In this section, we present the extension of the I@jieLite.,.. [5] with the T operator.
We call itDL-Lite.T,;,. The language dDL-Lite. T, is defined as follows.
Definition 6. We consider an alphabet of concept nardesf role namesk, and of
individualsO. GivenA € C andr € R, we define

Cr:=A|3R.T|T(A4) R:=r|r" Cr:=A|-A|3RT|-3R.T
A DL-Lite.T,,;, KB is a pair (TBox, ABox). TBox contains a finite set of concept

inclusions of the forn@’;, C C'r. ABox contains assertions of the fo€a) andr(a, b),
whereC'is a concept’, or Cg, r € R, anda,b € O.



As for E£1T,,in, @ modelM for DL-Lite, T,.;,, is any structurd A, <, I'), defined
as in Definition 2, wherd is extended to take care of inverse roles: giveg R,
(r)' ={(a,0) | (b,a) € r'}.

In [11] it has been shown that a small model constructionlaimo the one for
Left LocalEL* T, KBs can be made also f@L-Lite,. T,,;,. As a difference, in this
case, we exploit the fact that, for each atomic ngléhe same element of the domain
can be used to satisfy all occurrences of the existefitidl. Also, the same element of
the domain can be used to satisfy all occurrences of theeetiat3r—.T.

Theorem 3 (Complexity for DL-Lite.T,,;, KBs (Theorem 4.6 in [11])).The prob-
lem of deciding whethefB |=p| _Ljte ., F isinIl5.
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4 The Tableau Calculus for Left Local EL1 T min
In this section we present a tableau calcmﬁuwfn‘j:T for deciding whether a quety
is minimally entailed from a Left Local knowledge base in thgic ELYT in. It per-
forms a two-phase computation: in the first phase, a tablalaulcs, caIIedZ'AB‘fD%LlT,
simply verifies whether KBJ {-F'} is satisfiable in a€ £ T model, building candi-
date models; in the second phase another tableau calcalle) @"AB‘%%ZT, checks
whether the candidate models found in the first phaserémenal models of KB, i.e.

for each open branch of the first phaged35,," tries to build a model of KB which

is preferred to the candidate model w.r.t. Definition 3. THoie proceduréFAlS’fnf:T
is formally defined at the end of this section (Definition 7).

The calcquSTABif;f:T tries to build an open branch representing a minimal model
satisfying KBU {—F'}. The negation of a queryF is defined as follows: if' = C(a),
then—F = (=C)(a); if F = C C D, then—F = (C N —D)(x), wherexz does not
occur in KB. Notice that we introduce the connectiven a very “localized” way. This

is very different from introducing the negation all over trowledge base, and indeed

it does not imply that we jump out of the languagedf T,
TABEE T makes use of labels, which are denoted with, z, . . .. Labels represent

min
individuals either named in the ABox or implicitly expredd®y existential restrictions.
These labels occur ieonstraintqor labelledformulas), that can have the form-—- Y
orz : C, wherez,y are labelsR is a role and”' is either a concept or the negation of
a concept o€ L1 T,,;, or has the fornid—D or —~[0—-D, whereD is a concept.

Let us now analyze the two componentsTodBE4, ™ starting with7.ABS%,, .

min
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4.1 The Tableaux CalculusT. ABSS, "

A tableau ofTAlS’}%f;lT is a tree whose nodes are tuplgs| U | W). S is a set of
constraints, whered$ contains formulas of the for@' = D*, representing subsump-
tion relationsC C D of the TBox. L is a list of labels, used in order to ensure the
termination of the tableau calculud/ is a set of labels:~ used in order to build a
“small” model, matching the construction of Theorem 3.111ifh]. A branch is a se-
quence of node&S; | Uy | Wh),(S2 | Uz | Wa), ..., (S, | Uy | W,) ..., where each
node(S; | U; | W;) is obtained from its immediate predeces&®y 1 | U;—1 | Wi—1)



by applying a rule of LABEL, T, having (S;_1 | U;_1 | Wi_1) as the premise and
(S; | U; | W;) as one of its conclusions. A branch is closed if one of its sagden

instance of a (Clash) axiom, otherwise it is open. A tableatiased if all its branches

are closed. The rules deB‘fgf;lT are presented in Fig. 1. Rulé3]) and(0J~) are
calleddynamicsince they can introduce a new variable in their conclusidhe other
rules are callesstatic We do not need any extra rule for the positive occurrences of
0, since these are taken into account by the computatici]'of, of (0~ ). The (cut)

rule ensures that, given any concépt L, an open branch built b‘y/'ABfD%iT con-
tains eitherr : O-C or z : =O0-C for each label: this is needed in order to allow
TAB}‘;‘};T to check the minimality of the model corresponding to theropench. As
mentioned above, given a nod& | U | W), each formulaC’ C D in U is equipped
with the list L of labels to which unfolding of the subsumption has alreadgrbap-
plied. This avoids multiple unfolding of the same subsumptiith the same label.

The calculusTABES,, T is different from the calculuslCC + Tonin [8] in two re-
spects. First, the rulé3™) is split in the two ruleg3*); and(3*)2. When the rule
(31), is applied to a formula : 3R.C, it introduces a new label- only when the set

W does not already contairy:. Otherwise ¢ is already on the branch and-- To

is simply added to the conclusion of the rule. As a consegeieinca given branch,
(3%); introduces a unique new labe}; for each concepf’ occurring in the initial
KB in some3R.C, and no blocking machinery is needed to ensure terminafibis.
simplification is possible since we are considering Leftald€Bs, which have small
models; in these models all existentidl8.C occurring in KB are made true by reusing
a single witness: (Theorem 3.12 in [11]). Notice also that the ru(es); and(37)
introduce a branching on the choice of the label used toze#iie existential restriction
u : IR.C. However, just the leftmost conclusion @f); introduces a new labelc;

in all the other branches, a lahgloccurring inS is chosen.

Second, in order to build multilinear models of DefinitiontBe calculus adopts

a strengthened version of the rylg~) used in7ABAC*T [8]. We write S as an
abbreviation forS,u : =0-C1,...,u : =0-C,. Moreover, we defin&}’, = {y :
D—k

-D,y : O-D | v :0O-D € S} and, fork = 1,2,...,n, we define?u_,y ={y:
-0-C; UC; | uw: —-0-C; € SAj # k}. The strengthened rul&l~) contains: (i)
n branches, one for eagh: —[J-C}, in S, in which anewtypical C;, individual z is
introduced (i.ex : Cj, andz : O~C}, are added), and for all other: -0-Cj}, either
x : C; holds or the formula: : -0-C} is recorded; (ii) other. x m branches, one for
each label; and for each: : -[0-C}, in S (m is the number of labels occurring ):
in these branches, a givenis chosen as a typical instance®f, that is to sayy; : Cj,
andy; : -C}, are added, and for all other : —[0-=C}, eithery; : C; holds or the
formulay; : -00-C} is recorded. This rule is sound with respect to multilineadeils.
The advantage of this rule over ttié ) rule in the calculu§ ABA<C*7T is that all the
negated box formulas labelled lyare treated in one step, introducing only a new label
x in one of the conclusions. To kegpreadable, we have used Hence, our calculus
requires the rule for), even if this constructor does not belong6= T, ..,

In order to check the satisfiability of a KB, we build it®rresponding constraint
system(S | U | @), and we check its satisfiability. Given KB=(TBox,ABox), itsrre-



(S,z:C,z:~C |U| W) (Clash) (S,x: =T |U| W) (Clash)-t (S,z: L |U| W) (Clash)

(S2:CND|U W) (sr:oEnD)UIW) (z:0uD|UIW)

(S,x:Cow:D|U|W) (S, :=C|U|W) (S,z:=D|U|W)  (Sz:C|U|W) (S,z:D|U|W)

(8.2:TO) |UIW) (ps) (S, : ~T(C) | U | W) () (S|U,CC D" W) (Unfold)

(S,z:C,z:0-C|U|W) (S,z:=C|U|W) (S,a:=0-C|U|W) (S,a:-CUD|UCLCD-|W)
if z occurs in S and z ¢ L

(S,u:3R.C|U|W) 39
8 1
(S u i»xg,zc (O U [ WU{zc}) (S,u i yL,y O LU W) - (S,u A, YmoYm 1 C | U | W)
if zc € W and y1,...,ym are all the labels occurring in .S
_ (S,u:3RC|U| W) .
(S5 ac [UIW) (Syu =5 yyyn s O[U W) (Su =5 g,y s C | U | W)
if zc € W and y,..., Ym are all the labels occurring in S
(S,z:-3AR.C,x 2y | U | W) o+ (S|U| W) (cut)
cut
(S,2:-3R.C.x L yy:~C |U | W) (S,x:-0-C|U|W) (S,z:0-C|U|W)
ify:~C¢&58 ife:-0-C¢gSandz:0-C¢S
x occurs in S CeLly
(S,u: ~0-Cr,u: —0-Cy, ... ,u: ~0-Cy, | U | W)
@)

=
(S Crow: O-C, S, 5,00 | U | W)
y P N y — Ok
(S.y1 : Cryyr - O-Cy, SIS [U[W) = {S.ym : Chyym : O-Cr, S2L,, S, U W)

u—y1
T new

Fig. 1. The calculusT ABES;, T.

sponding constraint systefi$ | U | () is defined as followsS = {a : C' | C(a) €
ABoz} U {a L | R(a,b) € ABox}; U = {C C D” | C C D € TBoxz}. KB

is satisfiable if and only if its corresponding constrainsteyn(S | U | () is satisfi-
able. In order to verify the satisfiability of KB {~F}, we useTAB%,;T to check
the satisfiability of the constraint systeffi | U | () obtained by adding the constraint
corresponding te-F' to S’, where(S’ | U | 0) is the corresponding constraint system
of KB. To this purpose, the rules of the calcuMslB‘%fle are applied until either a
contradiction is generated (Clash) or a model satisfyiifig U | #) can be obtained

from the resulting constraint system.

The rules of7. ABffj;lT are applied with the followingtandard strategyl. apply a
rule to a labek: only if no rule is applicable to a labglsuch thaty < = (wherey < «
says that labetl has been introduced in the tableaux later thia2. apply dynamic rules
only if no static rule is applicable. In [9] it has been showattthe calculus is sound
and complete and terminating. In particular, any tableanegaed byTAB}ggf;lT for
(S | U | 0)is finite, and the length of the tableau branches built by thetegy is
O(n?). This follows from the fact that dynamic rulés™); and(CJ~) generate at most
O(n) labels in a branch, and that, for each label, static rulesyppdied at mosO(n)
times. Hence, given a KB and a qudrythe problem of checking whether KB {—F}

in TABSS,,T is satisfiable is in NP.



(S,x:C,z:~C|U|K) (Clash) (S,z: =T |U | K) (Clash)-+ (S,z: L |U|K) (Clash)

(S|U,CC D" K)
(S| U | 0)(Clash)y (S,z: =0-C | U | K) (Clash)g- (Unfold)
if o :-0-C ¢ K ($,2:-CUD|U,CC D" |K)

ze€DB) and z & L

z:C T:o S,z : T(C <
(S, CHD\U\K? ) (S,z:=(CND)|U|K) ) (S,2:T(C)|U| K) ()
(S,z:C,z:D|U|K) (S,z:=C|U|K) (S,z2:-D|U]|K) (S,z:C,z:0-C|U|K)
(8,2: =T(C) |U | K) () (S|U| K) (cut)
(S,x:=C|U|K) (Sx:-0-C|U|K) (S,2:0-~C|U|K) (Sa:-0-C|U|K)

ifz:-0-C¢gSandz:0-C¢S
ze€DB) Cecly
(S,u:3R.C|U | K)

(€L
(Sou gy 1 ClUIK) -+ (S~ gy : C | U | K)
if D(B) ={y1,-Ym}

(S,u:=0-Cy,...,u:-0-C, | U | K,u:-0-Cy,..., w: =0-C)
Y = O°F . [y = OF -
(S,y1: Cryyr = O-Ck, S48y, [ U T KD -+ (S,ym < Cryy - O-Cr, SIL, 57y, | U K)
i DB)={y1.....ym} and y1 # u,...,ym # u

(@)

Fig. 2. The calculusTABES:, . To save space, we omit the rule™).

ectT
4.2 The Tableaux CalculusT.ABL

Let us now introduce the calcullﬁAprﬁizT which, for each open brandb built by

TAB%;T, verifies whether it represents a minimal model of the KB.g&ian open

branchB of a tableau built fronﬂ’AB‘fﬁ;T, let D(B) be the set of labels occurring on
B. Moreover, leBY" be the set of formulas : ~[J-C occurring inB, that is to say
BY = {x:-0-C |z : -0-C occurs inB}.

A tableau of’Z’AB‘;%;T is a tree whose nodes are tuples of the fafm U | K),
where S andU are defined as in a constraint system, wher&asontains formulas

of the formz : —~C, with C € L. The basic idea o ABES,,T is as follows.

Given an open brancB built by TAB?‘;T and corresponding to a modgh® of

KB U {~F}, TABS:,,T checks whethem B is a minimal model of KB by trying to
build a model of KB which is preferred t81B. To this purpose, it keeps track (i)

of the negated box used B (B” ") in order to check whether it is possible to build
a model of KB containing less negated box formulas. The tablmuilt byTABffj{;T
closes if it is not possible to build a model smaller thedf, it remains open otherwise.
Since by Definition 3 two models can be compared only if theyetthe same domain,

TAB%{;T tries to build an open branch containing all the labels appg@nB, i.e.
those inD(B). To this aim, the dynamic rules use label§i(B) instead of introducing
new ones in their conclusions. The rulesTod355,,T are shown in Fig. 2.

More in detail, the rulg3*), when applied to a formula : 3R.C, introduces,

for each labely € D(B), « E, y andy : C. The choice of the labeg} introduces
a branching in the tableau construction. The rule (Unfadddpplied toall the labels
of D(B) (and not only to those appearing in the branch). The (ile) is applied
to a node(S,u :-0-Cy, . u s SO0, | U | K), When{u :0-Cq, . u



-0-C,} C K, i.e. when the negated box formulas: -[0-C; also belong to the
open branctB. Also in this case, the rule introduces a branch on the choficbe
individualy; € D(B) to be used in the conclusion. In case a tableau node has the for
(S,z : -O-C | U | K), andz : -0-C ¢ K, thenTABSE,,T detects a clash,
called (Clashy;-: this corresponds to the situation whare —[0-C' does not belong
to B, while the model corresponding to the branch being builtaiosa: : -C0-C, and
hence imot preferred to the model representediy

The calculuSTAlS’ffj;T also contains the clash condition (Clagtince each ap-
plication of (0~) removes the negated box formulas —-[1-C; from the seti’, when
K is empty all the negated boxed formulas occurrinddialso belong to the current

branch. In this case, the model built B’;AB%%ZT satisfies the same set®of -[1-C;

(for all individuals) asB and, thus, it is not preferred to the one represente.by
Let KB be a knowledge base whose corresponding constrastemsyis(S | U |

(). Let F' be a query and le§’ be the set of constraints obtained by adding'tthe

constraint corresponding toF. TABSE,,T is sound and completia the following

sense: an open bran&hbuilt by TAB}E&ZT for (S” | U | 0) is satisfiable in @ minimal

model of KB iff the tableau iTABSE,,T for (S | U | BE ™) is closed.

Termination of the calculugABffj{;T is ensured by the fact that dynamic rules
make use of labels belonging 18(B), which is finite, rather than introducing “new”
labels in the tableau. Also, it is possible to show that thebfem of verifying that a
branchB represents a minimal model for KB iﬁAB}%f;QT isin NP in the size oB.

The overall procedur@AB: '~ is defined as follows:

Definition 7. Let KB be a knowledge base whose corresponding constraint system i

(S| U | 0). LetF be a query and les’ be the set of constraints obtained by adding to
S the constraint corresponding teF'. The calculug'ABifl;T checks whether a query
Fis minimally entailed fronKB by means of the following procedurghase 1}he
calculusTABEE, T is applied to(S’ | U | 0); if, for each branctB built by 7ABE5,,T,
either (i) B is closed or (ii)(phase 2}the tableau built by the calcquEAB}if;T for
(S|U | BP9 )isopen, theikB =-T F, otherwiseKB 5T F.

min min

In [9] it has been shown thaABEE T is a sound and complete decision procedure

min

for verifying if KB |=¢,. . F. Furthermore, the problem of deciding whetls
ecor,, Fbymeans o ABES Tisin I75.

min

5 A Tableau Calculus forDL-Lite. T ,.in
Lite.T

In this section we shortly describe a tableau calcdlu3,.; ~<~ for deciding query
entailment in the logi®L-Lite.T,;,. The calculus is similar to the one introduced
for EL1 T, in the previous section, however it is significantly diffierérom it in
the definition of some of the rules. Given a set of constrathésd a roler € R, let
r(S) ={z > y|x -5y ecS} The caIcquSTABII;',EﬁCT used in the first phase

differs from Z.485%,,™ in the following points:



1. As in the calculug-ABES,, T, the split of the(3+) in the two rules:

(S,z:3Ir.T|U) ) S, I T|U
,. ,. L T aeer IS
(S,2 ==y |U) (Ssz—>uy|U)(Se—ym|U) (Ssz ==y | U) - (S;z == ym | U)
ifr(S)=0 if r(S) #0
. . ynew if 4 Ym are all the labels occurring in S
if y1,...,ym are all the labels occurring in S Yoo s Ym A - °

reflects the main idea of the construction of a small moddi@tbiase of Theorem 4.5
in [11]. Such small model theorem essentially shows iiat.ite. T),,,;,, KBs can have
small models in which all existentials?. T occurring in KB are made true in the model
by reusing a single witnegs In the calculus we use the same idea: when the(tiite’

is applied to a formula : 3. T, it introduces a new label and the constraint —— y
only when there is no other previous constraint— v in S, i.e.r(S) = (). Otherwise,
rule (3%)3 is applied and it introduces —— y. As a consequencé;l™); does not
introduce any new label in the branch wheréas)} only introduces a new label
for each roler occurring in the initial KB in somélr.T and no blocking machinery is
needed to ensure termination.

2. In order to keep into account inverse roles, two furthéegtdior existential for-
mulas are introduced:

(S,z: 3T |U) @) (S,z:3Ir".T|U) 3y
r o r v T 1 T T 2
(S;y —a|U) (S;y1 — x| U) -+ (S,ym — x| U) (S,yr — x| U) -+ (S,ym — x| U)
ifr(S)=0 ifr(S)#0
Y new iYL Ym , 1 rino in S
if y1,...,ym are all the labels occurring in S i£y1,-- ym are all the labels oceurring in S

These rules work similarly t¢3+)] and(37)% in order to build a branch representing
a small model: when the rulg’*)} is applied to a formula : 3r~.T, itintroduces a
new labely and the constrainf — 2 only when there is no other constraint— v

in S. Otherwise, since a constraint— u has been already introduced in that branch,
y — x is added to the conclusion of the rule.

3. Negated existential formulas can occur in a branch, biyttwewing the form (i)
x:—3r. T or (i) z : =3r~.T. (i) means that has no relationships with other individ-
uals via the role-, i.e. we need to detect a contradiction if both (i) ane— y belong
to the same branch (for somg, and mark the branch as closed. The clash condition

(Clash). is added to the calcquEABII;'IE,efT in order to detect such a situation. Anal-
ogously, (ii) means that there is nosuch thaty is related tor by means of-, then
(Clash).- is introduced in order to close a branch containing botte(il, for somey,

a constrainyy — x. These clash conditions are as follows:

(S, > y,x: =3r.T |U) (Clash), (S,y — z,x: =3r~.T | U) (Clash),

Apart from the differences above, the ruIesﬁﬂBllg'lgefT are the same as those of

TAB%;T. Similarly for the calcquSTABII;E,e;T used in the second phase. In [10] it

has been shown that bdl?hélBII;i,tﬁcT andTABII;E,e;T are sound, complete and termi-
nating. Furthermore, the problem of deciding whetheri&B, _| jte r, . £ by means

of TABUIET ig in 172,

min

min



6 Conclusions

We have proposed a non-monotonic extension of low complédé@scription Log-
ics £ andDL-Lite,,,. for reasoning about typicality and defeasible propertiés.
have summarized complexity results recently studied foh®xtensions [11], namely
that entailment is EPTIME-hard for€£T,,;,, Whereas it drops tdI} when con-
sidering the Left Local Fragment &L+ T, 0im. The samel7} complexity has been
found for DL-Lite.T,,;,. These results match the complexity upper bounds of the
same fragments in circumscribed KBs [3]. We have also pexvibleau calculi for
checking minimal entailment in the Left Local fragment&£-T,,;, as well as in
DL-Lite.T,.;». The proposed calculi match the complexity results abo¥edDrse,
many optimizations are possible and we intend to study timefuture work.

As mentioned in the Introduction, several non-monotonieesgions of DLs have
been proposed in the literature and we refer to [12] for aeurConcerning non-
monotonic extensions of low complexity DLs, the complexfycircumscribedfrag-
ments of the€ £ andDL-Lite families have been studied in [3]. Recently, a fragment
of ££+ for which the complexity of circumscribed KBs is polynomies been identi-
fied in [14]. In future work, we shall investigate complexdfyminimal entailment for
such a fragment extended wilhand possibly the definition of a calculus for it.
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