
Towards More Effective Tableaux Reasoning for CKR

Loris Bozzato1, Martin Homola2, and Luciano Serafini1

1 Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
2 FMFI, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia

{bozzato,serafini}@fbk.eu, homola@fmph.uniba.sk

1 Introduction

Representation of context dependent knowledge in the Semantic Web is a recently emer-
gent issue. A number of logical formalisms with this aim have been proposed [3, 11, 14].
Among them is the DL based Contextualized Knowledge Repository (CKR) [13]. One
of the mostly advocated advantages of context based knowledge representation is that
reasoning procedures can be constructed by composing local reasoners running inside
each context, with the obvious divide-and-conquer advantage.

We recently proposed a tableaux decision algorithm [5, 9] for the case of CKR
framework based on ALC DL. The algorithm extends the well known ALC tableaux
algorithm [6, 12] and it is based on a combination of local reasoning inside each context
with a set of novel rules that propagate knowledge across the neighboring contexts. To
our best knowledge, it is the only direct tableaux reasoning algorithm for contextualized
DL knowledge to date: by direct we mean not based on some reduction to a single DL
knowledge base, which neglects the divide-and-conquer advantage.

In this paper, we review this algorithm and we describe our initial ideas on pos-
sible optimization, including dimensional coverage caching and parallelization. In or-
der to maximize the divide-and-conquer advantage, it is important to propagate only
those symbols between local tableaux which are really needed to assure complete-
ness. We propose a (correctness preserving) modification of three propagation rules that
decreases the amount of propagation and also of related non-deterministic branching.
Proofs of all theorems can be found in the accompanying technical report [9].

2 Contextualized Knowledge Repositories

We briefly introduce the basic definition of CKR, for all details see [13]. A meta vo-
cabulary Γ is used to state information about contexts. It contains contextual attributes
(called dimensions), their possible values and coverage relations between these values.
Formally, it is a DL vocabulary that contains: (a) a finite set of individuals called context
identifiers; (b) a finite set of roles A called dimensions; (c) for every dimensionA ∈ A,
a finite set of individualsDA, called dimensional values, and a role≺A, called coverage
relation. The number of dimensions k = |A| is assumed to be a fixed constant.

Dimensional vectors are used to identify each context with a specific set of di-
mensional values. Given a meta-vocabulary Γ with dimensions A = {A1, . . . , Ak},

a dimensional vector d = {Ai1 :=d1, . . . , Aim :=dm} is a (possibly empty) set of as-
signments such that for every j, h, with 1 ≤ j ≤ h ≤ m, dj ∈ DAij

, and j 6= h

implies ij 6= ih. A dimensional vector d is full if it assigns values to all dimensions
(i.e., |d| = k), otherwise it is partial. If it is apparent which value belongs to which
dimension, we simply write {d1, . . . , dm}. By dA (eA, etc.) we denote the actual value
that d (e, etc.) assigns to the dimension A. The dimensional space DΓ of Γ is the set
of all full dimensional vectors of Γ .

An object-vocabulary, encodes knowledge inside contexts: it is a standard DL vo-
cabulary Σ (with disjoint sets NC of atomic concepts, NR of roles and NI of individ-
uals) closed w.r.t. concept/role qualification. That is, for every concept or role symbol
X of Σ and every (possibly partial) dimensional vector d, a new symbol Xd is added
to Σ, called the qualification of X w.r.t. d. If d is partial then Xd is partially qualified,
if d is full, it is fully qualified. Qualified symbols are used inside contexts to refer to
the meaning of symbols w.r.t. some other context. This will become apparent from the
semantics. Contexts and CKR knowledge bases are formally defined as follows.

Definition 1 (Context). Given a pair of meta and object vocabularies 〈Γ,Σ〉, a context
is a triple 〈C,dim(C),K(C)〉 where: C is a context identifier of Γ ; dim(C) is a full
dimensional vector of DΓ ; and K(C) is an ALC knowledge base over Σ.

Definition 2 (Contextualized Knowledge Repository). Given a pair of meta and ob-
ject vocabularies 〈Γ,Σ〉, a CKR knowledge base (CKR) is a pair K = 〈M,C〉 where C
is a set of contexts on 〈Γ,Σ〉 and M, called meta knowledge, is a DL knowledge base
over Γ such that:
(a) for A∈A and d, d′∈DA, if M |= A(C, d) and M |= A(C, d′) then M |= d = d′;
(b) for C ∈ C with dim(C) = d and for A ∈ A, we have M |= A(C, dA);
(c) the relation {〈d, d′〉 |M |= d≺Ad′} is a strict partial order on DA.

In the rest of the paper we assume that CKR knowledge bases are defined over some
suitable vocabulary 〈Γ,Σ〉, and all concepts are in negation normal form (NNF, see
[1]). We also assume the unique name assumption (UNA) for the meta knowledge (i.e.,
if a 6= b are two different symbols then M 6|= a = b). This is just to avoid the confusing
possibility of two contexts located as the same place in the dimensional space.

For a CKR K, we will denote by Cd a context with dim(C) = d. For d, e ∈ DΓ

and B,C ⊆ A, dB := {(A:=d) ∈ d | A ∈ B} is the projection of d w.r.t. B; and
dB+eC := dB ∪ {(A:=d) ∈ eC | A /∈ B} is the completion of dB w.r.t. eC.

An important notion is the strict (≺) and non-strict (�) coverage between dimen-
sional values: for d, d′ ∈ DA, d ≺ d′ if M |= d≺Ad′; and d � d′ if either d ≺ d′ or
M |= d = d′. Similarly, coverage for dimensional vectors: d �B e for some B ⊆ A if
dB � eB for eachB ∈ B; and d ≺B e if d �B e and dB ≺ eB for at least oneB ∈ B.
Also, d � e if d �A e, and d ≺ e if d ≺A e. Finally coverage for contexts: Cd � Ce
if d � e, and Cd ≺ Ce if d ≺ e. Intuitively, if Cd ≺ Ce, then Cd is the narrower and Ce
is the broader context.

An example CKR Kfb shown in Fig. 1 uses three dimensions time, location, and
topic. It has four contexts associated with dimensional vectors sp (general context
of sports in 2010), fb (football in 2010), wc10 (FIFA World Cup 2010), and nfl10

Fig. 1. Example CKR knowledge base Kfb

(national football leagues in 2010). Axioms are placed inside each context while the
associated vector is placed above it. Coverage relation ≺ is visualized with arrows.

Note that in CKR built on top of more expressive logics, conditions 2 (a,c) of Def-
inition 2 can be assured directly in the meta knowledge with respective axioms: each
A ∈ A is declared functional, and each ≺A is declared irreflexive and transitive. In
ALC we do not have this option, however this is not a problem, because the number of
all dimensions is assumed to be finite as it is the number of contexts in a CKR. Hence
after the meta knowledge is modeled, these conditions can be verified even without a
reasoner (e.g., by some script). These conditions are needed to assure reasonable prop-
erties of contextual space, i.e., acyclicity, dimensional values uniquely determined [13].

CKR uses DL semantics inside each context combined with some additional se-
mantic restrictions to ensure proper meaning of qualified symbols. A partial DL inter-
pretation of a DL vocabulary Σ is a DL interpretation I =

〈
∆I , ·I

〉
that allows two

exceptions: ∆I is possibly an empty set, and ·I is totally defined on NC and NR and
it is partially defined on NI (i.e., aI ∈ ∆I can be undefined for some a ∈ NI). Partial
interpretations need not necessarily provide denotations for all individuals of Σ. This is
needed for technical reasons: intuitively, all contexts rely on the same object vocabulary
Σ, but some element of Σ may not be meaningful in all contexts. Also, interpretations
with empty domains are useful to treat inconsistency among contexts [13].

Definition 3 (CKR-Model). A model of a CKR K is a collection I = {Id}d∈DΓ
of

partial DL interpretations (local interpretations) s.t. for all d, e, f ∈ DΓ , B ⊆ A,
A ∈ NC, R ∈ NR, X ∈ NC ∪NR, a ∈ NI:

1. (>d)
If ⊆ (>e)

If if d ≺ e
2. (Af)

Id ⊆ (>f)
Id

3. (Rf)
Id ⊆ (>f)

Id × (>f)
Id

4. aIe = aId if d ≺ e and
– aId is defined or,
– aIe is defined and aIe ∈ ∆d

5. (XdB
)Ie = (XdB+e)

Ie

6. (Xd)
Ie = (Xd)

Id if d ≺ e
7. (Af)

Id = (Af)
Ie ∩∆d if d ≺ e

8. (Rf)
Id = (Rf)

Ie ∩ (∆d×∆d) if d ≺ e
9. Id |= K(Cd)

The semantics takes care that local domains respect the coverage hierarchy (condi-
tion 1). Note that >d represents the domain of Id in the context where it appears. It

gives rigid meaning to individuals, however, the meaning of an individual in a super-
context is independent if its meaning in a sub-context is undefined (condition 4). The
interpretation of anyXf in any context Cd is roofed under (>f)

Id (conditions 2, 3). The
meaning of Xf in some context Ce is based on its context of origin Cf if this context
is less specific than Ce (condition 6); otherwise, at least, any Xf in Cd and Ce must be
equal on the shared part of their domains (conditions 7 and 8). Finally, each Id is a
DL-model of Cd (condition 9). Albeit useful for modeling, partially qualified symbols
are a kind of syntactic sugar in this framework as the completed version of the symbol
can always be used instead (condition 5, cf. [13]). To simplify the algorithm, we as-
sume w.l.o.g. that the CKR on the input is always fully qualified. In the examples we
use non-qualified symbols only for improving readability.

Given a CKR K and d ∈ DΓ , a concept C is d-satisfiable w.r.t. K if there exists
a CKR model I = {Ie}e∈DΓ

of K such that CId 6= ∅; K is d-satisfiable if it has a
CKR model I = {Ie}e∈DΓ

such that ∆d 6= ∅; K is globally satisfiable if it has a CKR
model I = {Ie}e∈DΓ

such that ∆e 6= ∅ for every e ∈ DΓ . An axiom α is d-entailed
by K (denoted K |= d : α) if for every model I = {Ie}e∈DΓ

of K it holds Id |= α. As
usual, d-entailment can be reduced to d-satisfiability: in particular K |= d : C v D iff
C u ¬D is not d-satisfiable w.r.t. K.

3 Tableaux Algorithm for CKR

We denote by clos(C) the set of all syntactically correct atomic and complex concepts
that occur in a concept C. The closure of a concept C w.r.t. a CKR K is closK(C) =
clos(C) ∪ {clos(¬D t E) | D v E ∈ K(C) for some context C of K} ∪ {clos(D) |
D(a) ∈ K(C) for some context C of K} ∪ {clos(¬>e t >f) | e ≺ f}. We denote
with RK,C the set of roles R ∈ NR appearing in C or some K(C) of K. The sets
closK(C) and RK,C contain all possible concepts and roles relevant in order to verify
d-satisfiability of C w.r.t. K.

The tableaux algorithmCT for CKR decides the d-satisfiability of a conceptC w.r.t.
a CKR K: it is partly based on the well knownALC tableaux algorithm [12, 6] which is
extended in order to deal with multiple contexts. The algorithm works on a completion
tree, a partial representation of a CKR model that the algorithm incrementally builds.

Definition 4 (Completion tree). Given a CKR K, a completion tree is a triple T =
〈V,E,L〉 s.t.:

1. 〈V,E〉 is a tree, where V is an ordered set of elements with order <V ;
2. there is a collection {Vd}d∈DΓ

of sets such that Vd ⊆ V ;
3. Ed = {〈x, y〉 ∈ E | x, y ∈ Vd}, for each d ∈ DΓ ;
4. L = {Ld}d∈DΓ

is a collection of labeling functions such that for each d ∈ DΓ :
(a) Ld(x) ⊆ closK(C), for each x ∈ Vd;
(b) Ld(〈x, y〉) ⊆ RK,C , for each 〈x, y〉 ∈ Ed.

In order to verify d-satisfiability of a conceptC w.r.t. a CKR K, the algorithm initializes
and then iteratively expands the tree using a number of tableaux expansion rules. To
avoid infinite looping, a blocking policy adapted from Buchheit et al. [6] is used. We
assume that the algorithm always adds nodes into the completion tree respecting the
order <V (i.e., whenever a new node x is added, y <V x holds for all y already in V).

Table 1. CKR completion rules

u-rule: if x ∈ Vd, C1 u C2 ∈ Ld(x),
{C1, C2} 6⊆ Ld(x)

then Ld(x) := Ld(x) ∪ {C1, C2}

t-rule: if x ∈ Vd, C1 t C2 ∈ Ld(x),
{C1, C2} ∩ Ld(x) = ∅

then Ld(x) := Ld(x)∪{C1} or
Ld(x) := Ld(x)∪{C2}

∃-rule: if x ∈ Vd, ∃R.C ∈ Ld(x), and there is no
R-successor y ∈ Vd of x s.t. C ∈ Ld(y)

then Vd := Vd ∪ {z} with z new,
Ed := Ed ∪ {〈x, z〉}
Ld(〈x, z〉) := {R}, Ld(z) := {C}

∀-rule: if x ∈ Vd, ∀R.C ∈ Ld(x),
and there existsR-successor
y ∈ Vd of x s.t. C /∈ Ld(y)

then Ld(y) := Ld(y) ∪ {C}

T -rule: if x ∈ Vd, C v D ∈ K(Cd),
nnf(¬C tD) /∈ Ld(x)

then Ld(x) := Ld(x) ∪ {nnf(¬C tD)}

∆↑-rule: if x ∈ Vd,d ≺ e, x /∈ Ve

then Ve := Ve ∪ {x}

∆↓-rule: if x ∈ Ve,d ≺ e,>d ∈ Le(x), x /∈ Vd

then Vd = Vd ∪ {x}

A-rule: if x ∈ Vd ∩ Ve,d ≺ e or d � e,
Af ∈ Ld(x), Af /∈ Le(x)

then Le(x) := Le(x) ∪ {Af}

R-rule: if x, y ∈ Vd ∩ Ve, 〈x, y〉 ∈ E,
d ≺ e or d � e, Rf ∈ Ld(〈x, y〉),
Rf /∈ Le(〈x, y〉)

then Le(〈x, y〉) := Le(〈x, y〉) ∪ {Rf}

>A-rule: if x ∈ Ve, Ad ∈ Le(x),>d /∈ Le(x)
then Le(x) := Le(x) ∪ {>d}

>R-rule: if x, y ∈ Ve, 〈x, y〉 ∈ E,
Rd ∈ Le(〈x, y〉),
>d /∈ Le(x) ∩ Le(y)

then Le(x) :=Le(x)∪{>d},
Le(y) :=Le(y)∪{>d}

>v-rule: if x ∈ Vd, e ≺ f ,¬>e t >f /∈ Ld(x)
then Ld(x) := Ld(x) ∪ {¬>e t >f}

M-rule: if ag ∈ Vd, a
h ∈ Ve, and d � e,

then merge(ag, ah)

Definition 5 (Blocking). Given a CKR K and a completion tree T = 〈V,E,L〉, we
say that a node w ∈ V is the witness for x ∈ V , if Ld(x) = Ld(w) for all d ∈ DΓ ,
w <V x and there is no y ∈ V such that y <V w and Ld(x) = Ld(y) for all d ∈ DΓ .
We say that x ∈ V is blocked by w ∈ V if w is the witness for x.

We say that a tableaux rule is applicable if all of its preconditions (the if-part of the rule)
are satisfied for some node x ∈ V or a pair of nodes x, y ∈ V and the nodes are not
blocked. A completion tree T is complete, if none of the tableaux rules is applicable. A
completion tree T = 〈V,E,L〉 contains a clash in a node x ∈ V , if for some d ∈ DΓ

and some concept C both C ∈ Ld(x) and ¬C ∈ Ld(x), or if ⊥ ∈ Ld(x). We say that
T is clash-free if no clash occurs in any of its nodes.

In initialization, ABox axioms are encoded in the initial completion tree. This tech-
nique is well known for logics like ALC [1]. However, we must consider that in CKR
same individuals appearing in different contexts may possibly have different meanings.
In the completion tree, individuals will be represented by elements of the form ag where
a ∈ NI and g ∈ DΓ identifies the context in which the individual was first introduced.
To implement condition 4 of CKR-models we will merge nodes when needed.

Definition 6 (Merging). Executing merge(x, y) on a completion tree T = 〈V,E,L〉,
with x, y ∈ V , transforms T as follows: a) node x is added into Ve for all e ∈ DΓ s.t.
y ∈ Ve; b) all concepts from Le(y) are added into Le(x), for all e ∈ DΓ ; c) all edges
directed into/from y are redirected into/from x; d) node y is removed from V .

Finally, the algorithm is formally defined as follows:

Definition 7 (Algorithm CT). Given as input a CKR K, d ∈ DΓ , and a concept C in
NNF, the algorithm CT verifies the d-satisfiability of C w.r.t. K in the following steps:

1. for all e ∈ DΓ , initialize Ve, E, and Le as follows:
(a) Ve := {ae |C(a) ∈ K(Ce)} ∪ {ae, be |R(a, b) ∈ K(Ce)};

E := {〈ae, be〉 |R(a, b) ∈ K(Ce), e ∈ DΓ };
Le(a

e) := {C |C(a) ∈ K(Ce)}; Le(〈ae, be〉) := {R |R(a, b)∈K(Ce)};
(b) Vd := Vd ∪ {s0}, where s0 is a new constant in Vd; Ld(s0) := {C};

2. exhaustively apply completion rules of Table 1 on T ;
3. once T is complete, answer “C is d-satisfiable w.r.t. K” if T is clash-free; answer

“C is not d-satisfiable w.r.t. K” otherwise.

The first five rules used by the algorithm (fromu- to T -rule) are the usualALC tableaux
rules [1] responsible for local reasoning inside each context. The additional rules are
new and they handle propagation of information between contexts.

The ∆↑- and ∆↓-rules are responsible for propagation of nodes: if d ≺ e, all nodes
from Vd are propagated to Ve (∆↑-rule), but only the nodes belonging to >d are prop-
agated from Ve to Vd (∆↓-rule).

Given contexts Cd and Ce, with d ≺ e, the conditions 6 and 7 of CKR-models
require that the interpretations of any symbol Xf in the contexts agree on all elements
shared by their domains. Hence, if a node (or a pair of nodes) belongs to both Vd and
Ve (i.e. it belongs to both local tableaux), then its labels are propagated by A-rule and
R-rule from one local tableaux to another, in both directions.

The following rules maintain the first three semantic conditions of CKR-models.
The >A- and >R-rules take care that any qualified symbol Xd is always roofed under
>d in any context Ce. If a qualified concept Ad (role Rd) is found in the Le-label of
some node (edge) in Ve, then >d is added to the Le-label of this node (or both nodes
connected by this edge). Also, if e ≺ f , then the >v-rule assures that the subsumption
>e v >f must hold in any context. Finally, the M-rule takes care of cases when it is
inferred that the same individual a appears in two different contexts.

It is however not the case that there is one-to-one correspondence between the se-
mantic conditions of CKR (Definition 3) and the tableaux rules. Consider condition 6
and the case when Xd = Ad and d ≺ e. If for instance due to a firing of the ∃-rule a
new node x was added into Ve with Le(x) initiated to {Ad}, to maintain condition 6
the same node with the same label must also be added to Vd and Ld respectively. This
is achieved by consecutive firing of >A-, ∆↓-, and A-rules. A more complex example
of reasoning with CKR tableaux rules follows.

Example 1 (Tableaux algorithm). Using the algorithm and our example CKR Kfb , let
us show the proof for the following subsumption:

Kfb |= nfl10 : WorldChampionPlayerfb v ∀playsForwc10.WinnerTeamwc10

Initialization yields Vnfl10 := {s0} and Lnfl10(s0) := {WorldChampionPlayerfb u
∃playsForwc10. ¬WinnerTeamwc10}. Then tableaux rules are applied as follows:

(1) Lnfl10(s0) :=Lnfl10(s0) ∪ {WorldChampionPlayerfb,
∃playsForwc10.¬WinnerTeamwc10} by u-rule;

(2) Vnfl10 := Vnfl10 ∪ {s1}, Enfl10 := {〈s0, s1〉},
Lnfl10(〈s0, s1〉) := {playsForwc10}, Lnfl10(s1) := {¬WinnerTeamwc10} by ∃-rule;

(3) Vfb := {s0, s1}, Lfb(s0) := {WorldChampionPlayer},
Lfb(〈s0, s1〉) := {playsForwc10} by ∆↑-, A- and R-rules;

(4) Lfb(s0) ∪ {ChampionPlayerwc10} by T - and t-rules;
(5) Lfb(s0) := Lfb(s0) ∪ {>wc10}, Lfb(s1) := Lfb(s1) ∪ {>wc10} by >R-rule;
(6) Vwc10 := {s0, s1}, Lwc10(s0) := {ChampionPlayer},
Lwc10(〈s0, s1〉) := {playsFor} by ∆↓-, A- and R-rules;

(7) Lwc10(s0) := Lwc10(s0) ∪ {∀playsFor.WinnerTeam} by T - and t-rules;
(8) Lwc10(s1) := Lwc10(s1) ∪ {WinnerTeam} by ∀-rule;
(9) Lfb(s1) := Lfb(s1) ∪ {WinnerTeamwc10},
Lnfl10(s1) := Lnfl10(s1) ∪ {WinnerTeamwc10} by A-rule;

The application of last rule creates a clash, since Lnfl10(s1) = {¬WinnerTeamwc10,
WinnerTeamwc10}. Note that in the non-deterministic choices asked in steps 4 and
7 (due to t-rule), all other choices immediately lead to a clash. Hence no clash-free
completion tree can be constructed and the algorithm answers that the input concept is
nfl10-unsatisfiable w.r.t. Kfb . This implies that the subsumption in question is entailed.

Note the required inter-contextual knowledge propagation: we first had to propagate
nodes and their labels from Vnfl10 to Vfb and finally to Vwc10 by tracking the context
coverage structure (steps 3–6). Then with the last rule application (step 9), we propagate
back the derived concepts to the label Lnfl10 and detect the clash. 3

The algorithm CT is correct: it terminates on any input and it is sound and complete.

Theorem 1 (Correctness). Given a CKR K, d ∈ DΓ , and a concept C in NNF on the
input, the tableaux algorithm CT always terminates and C is d-satisfiable w.r.t. K iff
CT generates a complete and clash free completion tree.

The ALC tableaux algorithm which we extended in this paper is in NEXPTIME [6],
and this is the case also for the resulting tableaux algorithm for CKR.

Theorem 2 (Complexity). The complexity of the CT algorithm is NEXPTIME with
respect to the combined size of the input.

In general, the problem of deciding d-satisfiability (and thus d-subsumption) in ALC-
based CKR is EXPTIME-complete [4]. That is, the complexity is the same as forALC
with general TBoxes [1]. To obtain an optimal algorithm for CKR on top of ALC we
would have to extend one of the EXPTIME algorithms forALC (like, e.g., [7]). On the
other hand, the algorithm presented in this paper is an important first step towards the
algorithmic support for CKR based on more expressive DL (like SHIQ or SROIQ),
since the tableaux algorithms for these logics can be seen as extensions of the basic
ALC algorithm on top of which we have built.

4 Algorithm Optimization

In this section we share our initial ideas about optimization of the algorithm. CKR
maintains a certain level of separation between meta and object knowledge (the former
influences the latter but not vice versa). Object reasoning queries the meta knowledge
only to verify the coverage between dimensional vectors. The number of contexts m is
typically much smaller than the size of whole KB n and the number of dimensions k

is assumed to be a constant, it hence makes sense to precompute3 the context coverage
beforehand. This can be done within k×m2 = O(m2) queries of the form M |=d≺A d′.
Consequently, meta reasoning does not slow down object reasoning more than in other
approaches with simpler meta knowledge representations [14].

One of the advantages of contextual reasoning is that the KB is split into smaller
units and reasoning can be parallelized. Let us briefly sketch how this can be done with
CKR. Reasoning in each context will be handled by a separate processor, which will
exchange messages to deal with knowledge propagation. The computation time will
be bounded by the context which requires the longest execution time together with the
number of required messages. In this sense, the t-, u-, ∃-, ∀-, >A-, >R-, and >v-rules
are locally executed. The remaining rules will be implemented as follows:

∆↑-, ∆↓-rules: the fact that a node has to be added into the target context is detected
locally in the source context. A message is sent into the target context and this fact
is also cached in the source context, which will be used by the other rules.

A-, R-rules: thanks to caching of the information to which contexts nodes have been
added, it can be locally detected that the concept and role labels of some node have
to be propagated to the target context which is then done by a message.

M-rule: note that if ag ∈ Vd, ah ∈ Ve, and d ≺ e, then eventually ag is added into Ve

by the ∆↑-rule. Therefore also the precondition the M-rule can be locally verified
and once detected, a respective message is sent to all other contexts.

Propagation of knowledge increases the number of messages and can trigger additional
computation in the target context. It is hence desired to limit it to the necessary cases
only. Using a technique similar to lazy unfolding [1], we were able to optimize the three
tableaux rules >A, >R, and >v for propagation of the >e symbols as follows:

>∗A-rule: if x ∈ Vf , d � e, Ad ∈ Lf (x),>e /∈ Lf (x)

then Lf (x) := Lf (x) ∪ {>e}
>∗R-rule: if x, y ∈ Vf , d � e, Rd ∈ Lf (〈x, y〉),>e /∈ Lf (x) ∩ Lf (y)

then Lf (x) :=Lf (x)∪{>e}, Lf (y) :=Lf (y)∪{>e}
>∗v-rule: if x ∈ Vf , d ≺ e, ¬>e ∈ Lf (x),¬>d /∈ Lf (x)

then Lf (x) := Lf (x) ∪ {¬>d}

The main idea of these optimized rules is to avoid the introduction of a number of
disjunctive concept expressions of the form ¬>d t >e caused by the >v-rule which
could possibly cause unnecessary non-deterministic branching. Instead, we apply each
disjunction only after one of the disjuncts is proven untrue.

Normally the >A-rule would add >d into the label of any node x in which Ad

was found. Consequently, the >v-rule would be fired once for each e � d and add
¬>d t >e every time. This eventually results into adding >e into the same label for
each such e over the run of the algorithm. The optimized>∗A-rule skips the introduction
of these disjunctions and directly adds the>e symbol for all such e. The>R-rule is also
optimized in the very same fashion. Hence the two optimized rules >∗A- and >∗R-rule

3 This does not imply that a DL KB at meta level is useless. In meta knowledge modeling, DL
axioms on dimensional values can constrain the coverage structure, e.g., given a location di-
mension, we can require cities to be located within some country: City v ∃ ≺location .Country.

do the work previously done by the >A- and >R-rules but in addition they take care
of the first part of the disjunction ¬>d t >e (i.e., the one which adds >e if >d was
found). We still have to take care of the second part, and this is done by the >∗v-rule
which adds ¬>d to any label in which ¬>e was found for d ≺ e.

The version of the algorithm CT that uses the >∗A-, >∗R-, and >∗v-rules instead of
the >A-, >R-, and >v-rules respectively, will be denoted by CT ∗.

Theorem 3 (Correctness of optimized rules). Given a CKR K, d ∈ DΓ , and a con-
ceptC in NNF on the input, the algorithmCT

∗ always terminates andC is d-satisfiable
w.r.t. K iff CT ∗ generates a complete and clash free completion tree.

Example 2 (Optimized tableaux rules). Let us now compare the original tableaux rules
with the optimized rules by the following deduction:

Kfb |= sp : TopSportsman v ∀playsForwc10.WinnerTeamwc10

The algorithm is initialized with Vsp = {s0} and the label Lsp = {TopSportsmanu
∃playsForwc10. ¬WinnerTeamwc10}. The original algorithm CT proceeds as follows:

(1) Lsp(s0) :=Lsp(s0) ∪ {TopSportsman, ∃playsForwc10.¬WinnerTeamwc10} by u-rule;
(2) Vsp := Vsp ∪ {s1}, Esp = {〈s0, s1〉}, Lsp(〈s0, s1〉) = {playsForwc10},
Lsp(s1) = {¬WinnerTeamwc10} by ∃-rule;

(3) Lsp(s0) := Lsp(s0) ∪ {>wc10}, Lsp(s1) := Lsp(s1) ∪ {>wc10} by >R-rule;
(4) Lsp(s0) := Lsp(s0) ∪ {¬>wc10 t >fb,¬>nfl10 t >fb, ¬>wc10 t >sp,¬>nfl10 t
>sp,¬>fb t >sp},
Lsp(s1) := Lsp(s1) ∪ {¬>wc10 t >fb,¬>nfl10 t >fb, ¬>wc10 t >sp,¬>nfl10 t
>sp,¬>fb t >sp} by multiple applications of the >v-rule;

(5) Lsp(s0) := Lsp(s0)∪{>fb,>sp},Lsp(s1) := Lsp(s1)∪{¬>nfl10,>fb,>sp} byt-rule;
(6) Vfb = {s0, s1}, Lfb(s0) = {TopSportsmansp} by ∆↓- and A-rules;
(7) Lfb(s0) := Lfb(s0) ∪ {WorldChampionPlayer} by T -rule4 and t-rule;
(8) Lfb(s0) := Lfb(s0) ∪ {ChampionPlayerwc10} by T - and t-rules;
(9) Vwc10 = {s0, s1}, Lwc10(s0) = {ChampionPlayer}, Lwc10(〈s0, s1〉) = {playsFor} by

∆↓- A and R-rules;
(10) Lwc10(s0) := Lwc10(s0) ∪ {∀playsFor.WinnerTeam} by T - and t-rules;
(11) Lwc10(s1) := Lwc10(s1) ∪ {WinnerTeam} by ∀-rule;
(12) Lsp(s1) := Lsp(s1) ∪ {WinnerTeamwc10} by A-rule;

The last rule application yields a clash since we obtain Lsp(s1)={¬WinnerTeamwc10,
WinnerTeamwc10}. Notice that out of the ten applications of the >v-rule in step (4),
only the one resulting into adding ¬>wc10 t >fb into Lfb(s0) is actually needed for
propagation of the concept TopSportsman into Lfb(s0). On the other hand, the addition
of ¬>nfl10 t >fb,¬>nfl10 t >sp into the labels of both nodes (carrying irrelevant
information about the context for nfl10) is preliminary at this point and it may lead
to unnecessary choices by the t-rule which may need to be backtracked later on – for
instance the choice to add ¬>nfl10 to s1 in step (5). If instead the optimized algorithm
CT
∗ is used, a similar derivation is obtained in which steps (3)–(5) are replaced with:

4 The two disjunctive concepts ¬TopSportsmansp t WorldChampionPlayer and
¬WorldChampionPlayer t ChampionPlayerwc10 which are added to Lfb in steps (7)
and (8) respectively by the T -rule are not listed here to improve readability.

(3’) Lsp(s0) := Lsp(s0) ∪ {>wc10,>fb,>sp},
Lsp(s1) := Lsp(s1) ∪ {>wc10,>fb,>sp} by >∗R-rule;

The remainder of derivation is the same: the unnecessary choice is thus avoided. 3

The optimized rules constrain the propagation of >e concepts, which are needed to
reflect the context hierarchy in reasoning, to necessary propagations only and avoid the
introduction of unnecessary disjunctive concepts which may cause branching. Observe
that in Examples 1 and 2 we have shown the application of rules in the right order.
However, additional non relevant rules may be applied by the algorithm before a clash
is reached. For instance, due to the axiom WinnerTeam ≡ WinnerFinal in K(Cwc10)
the algorithm may add WinnerFinal into Lwc10(s1) after step (11) in Example 2 (by T -
and t-rules) and consequently propagate WinnerFinalwc10 into Lfb(s1) and Lsp(s1)
by A-rule. Such a propagation is unnecessary as there are no axioms in Cfb nor Csp
which could derive new knowledge from WinnerFinalwc10. Therefore in the future we
would also like to investigate when it is necessary to propagate qualified symbols.

5 Related Works

The only other approach for reasoning with DL-based CKR is a translation from CKR
into a single DL KB [13]. Unfortunately, this solution is not practically efficient, as the
translation adds a large number of axioms in order to track complex relations between
qualified symbols in a single KB. This is reflected also by a significant (cubic) blow up
in the size of knowledge base after the translation. In contrast, a direct tableaux algo-
rithm allows for more effective reasoning: local reasoning is executed in the respective
part of the completion tree and only relevant consequences posed on other contexts are
propagated into their respective tableaux labels, thus opening the possibility of paral-
lelization. Our tableaux procedure is also related to the distributed tableaux algorithms
for DDL [8] and P-DL [2], especially in the way how symbols are propagated between
local tableaux. Apart from the fact that each of these algorithms implements a different
semantics, our algorithm is also able to handle semantic dependencies between roles
which is an open problem for DDL and P-DL so far.

Our newly introduced optimizations bring us near to approaches interested in paral-
lelization of DL reasoning. One relevant approach in this area is presented in [10]. This
work proposes a saturation procedure for the classification of the polynomial fragment
ELHR+ of OWL 2 EL, distributable among multiple processors as a concurrent algo-
rithm. The paper also presents an implementation in the reasoner ELK together with a
promising evaluation over known EL ontologies. Even if the scope of [10] is different
from our work, it highlights some aspects that support our approach. In particular, it
shows that there is interest in a parallelized vision of DL reasoning algorithms. More-
over, it suggests that the sort of knowledge distribution and independence between con-
texts which we point to can effectively result in promising performance improvements.

6 Conclusions

Contextualized Knowledge Repository (CKR) is a knowledge representation frame-
work that provides a contextual layer for DL knowledge bases. The recently introduced

reasoning algorithm [5, 9] for ALC-based CKR provides the first direct tableaux deci-
sion procedure for contextualized knowledge. This solution is more effective than the
previously known approaches based on reduction that lead to KB blow ups and loss of
the divide-and-conquer advantage of contextual representation.

In this paper, we reviewed the algorithm and discussed on its possible optimization
including dimensional structure caching, parallelization and a set of new rules that opti-
mize the propagation of symbols among local tableaux. In the future we want to extend
the algorithm towards more expressive DL such as SHIQ and SROIQ and formu-
late an EXPTIME algorithm based on the existing approaches [7]: we note that some
of the optimizations (e.g. the lazy unfolding for >v or the precomputation of context
coverage) can be easily adapted to different formulations of the algorithm. We will also
study further optimizations for the propagation of qualified symbols.

Acknowledgements: This research was supported from the LiveMemories project.
Martin Homola is also supported from the Slovak national project VEGA no. 1/1333/12.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
description logic handbook. Cambridge University Press (2003)

2. Bao, J., Caragea, D., Honavar, V.: A distributed tableau algorithm for package-based descrip-
tion logics. In: CRR 2006 (2006)

3. Bao, J., Tao, J., McGuinness, D.L.: Context representation for the semantic web. In: Web-
Sci10 (2010)

4. Bozzato, L., Homola, M., Serafini, L.: ExpTime reasoning for contextualized ALC. Tech.
Rep. TR-FBK-DKM-2012-1, Fondazione Bruno Kessler, Trento, Italy (2012), http://
dkm.fbk.eu/index.php/Resources

5. Bozzato, L., Homola, M., Serafini, L.: Tableaux for contextualized description logics. Sub-
mitted (2012)

6. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological knowledge
representation systems. J. Artif. Intell. Res. (JAIR) 1, 109–138 (1993)

7. Goré, R., Nguyen, L.: EXPTIME tableaux forALC using sound global caching. In: DL2007.
CEUR-WP, vol. 250, pp. 299–306. CEUR-WS.org (2007)

8. Homola, M., Serafini, L.: Augmenting subsumption propagation in distributed description
logics. App. Artif. Intell. 24(1-2), 137–174 (2010)

9. Homola, M., Bozzato, L., Serafini, L.: Tableaux algorithm for reasoning with contextual-
ized knowledge. Tech. Rep. TR-FBK-DKM-2011-1, Fondazione Bruno Kessler, Trento, Italy
(2011), http://dkm.fbk.eu/index.php/Resources

10. Kazakov, Y., Krötzsch, M., Simancik, F.: Concurrent classification of EL ontologies. In:
ISWC 2011. LNCS, vol. 7031, pp. 305–320. Springer (2011)

11. Klarman, S., Gutiérrez-Basulto, V.: Two-dimensional description logics for context-based
semantic interoperability. In: AAAI-11. AAAI Press (2011)

12. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Art.
Int. 48(1), 1–26 (1991)

13. Serafini, L., Homola, M.: Contextualized knowledge repositories for the semantic web. J. of
Web Sem., Special Issue: Reasoning with context in the Semantic Web 12 (2012)

14. Straccia, U., Lopes, N., Lukacsy, G., Polleres, A.: A general framework for representing and
reasoning with annotated Semantic Web data. In: AAAI-10. AAAI Press (2010)

