
The OntoWeb Evaluation Experiment for Ontology Editors:
Using Protégé-2000 to Represent the Travel Domain

Natalya F. Noy
Stanford Medical Informatics, Stanford University

noy@smi.stanford.edu

1 Design decisions
Our goal was to represent the domain as close to its natural-language description as
possible. We tried to introduce only the concepts and relations that were necessary and
sufficient to represent the facts in the description. We did not add any other common-
sense facts about the domain.

1.1 Assumption that we have made in interpreting the domain description
Several facts in the description allowed more than one interpretation. Here is a list of
assumptions that we have made:

• Prices for flights (business and economy class) are constant for a particular flight
and do not change from day to day. In other words, it always costs the same to fly
from Madrid to New York on the flight number UA345

• Other trips (not just flights) also have arrival and departure city, arrival and
departure time, port (airport, station) of arrival/departure, etc.

• The description said: “We know that each model of transport belongs only to one
kind of transportation (e.g., it’s either a plane, or a bus, or a car, etc.).” We
interpreted this sentence to mean that each maker of transportation manufactures
only one type of transportation. For example, if Boeing makes planes, it cannot
make trains.

We believe that other statements in the description were unambiguous and there was only
one possible interpretation.

1.2 Classes and slots
Figure 1 shows elements of the class structure and some relations among classes.

Figure 1. Elements of the class structure and relations. Boxes represent classes and
arrows represent relations.

We start defining a customer’s trip as an instance of the class Customer trip. Each
instance of this class contains the customer’s name and points to one or more legs of the
trip. Each trip leg is an instance of the class Trip leg describing departure
and arrival time and departure and arrival cities. It points to more
specific trip information: the specific flight the customer is taking on that trip, or
specific train, or the car he is renting. There is a constraint indicating that the arrival and
departure cities for the trip leg must be the same as the arrival and departure cities in the
corresponding Trip information instance.
An instance of Trip information represents information about particular flights,
train rides, etc. That is, an instance of this class could be flight UA455 that leaves Paris at
9am and arrives to NY at 1pm every day. The Flight subclass of Trip
information will include prices for economy and business class, and a flight number.
We assume that this information does not change from day to day.
Arrival and departure cities on the trips are instances of the Destination class. In
addition to the city name, its country and continent (we need the latter for one of
the constraints), instance of the Destination class describes local transport
in the city, points of interest, and a list of available lodging options. The
options for the local transport are the default values for the local transport slot at
the destination. The list of available lodging options contains instances of the class
Lodging. In addition, each destination has a Boolean slot indicating whether it has an
airport.
The Lodging class has two subclasses—Hotel and Bed&Breakfast. Each instance
of Lodging points back to the Destination (the slot location is inverse of the
slot lodging at the Destination class). Each Hotel instance has a required slot
indicating its star rating. Each Lodging instance points to an instance of the
Room facilities class describing individual rooms.

A class Means of transport represents different transport options for customer’s
travels. Specific means of transport are subclasses of this class. Each instance has a make
and model. Hence, we can represent makes and models of particular planes,
automobiles, etc. The Means of transport class is abstract to indicate that every
instance of this class must be an instance of one of its subclasses. We attached a PAL
axiom to this class expressing the constraint on makes and models: each maker produces
only one type of transportation (see the Assumption above). Specific makes and models
of planes, cars, etc. are instances of this class.
Instances of Trip information point to instances of the Means of transport
class indicating which model of a plane, ship, train, is used for a particular flight, voyage,
train ride, respectively.
There is a class Distance table which contains pairs of distances between destinations.

1.3 Constraints
The three constraints describing when customers would prefer to travel by train or car are
PAL constraints.
The first constraint is “we know that it is not possible to go from America to Europe by
train, car, bike nor motorbike.” To express this fact, we attach the following PAL axiom
to the Trip information class:
(forall ?trip

(=> (and (name (continent ('arrival city' ?trip)) "Europe")
(name (continent ('departure city' ?trip)) "North America"))
(instance-of ('means of transport' ?trip) Plane)))

A similar axiom expresses the constraint for the opposite direction (from Europe to North
America).
The second constrain is “If distance between two cities is between 400 and 800 miles,
and there is no airport close to one of them, the customer will prefer going by car or by
train.” We attach the following PAL axiom to the Trip Leg class:
(forall ?tripleg

(=> (exists ?distance
(and (to ?distance ('arrival city' ?tripleg))
(from ?distance ('departure city' ?tripleg))
(> ('distance in miles' ?distance) 400)
(< ('distance in miles' ?distance) 800)
('has airport' ('arrival city' ?tripleg) FALSE)
('has airport' ('departure city' ?tripleg) FALSE)))
(or (instance-of ('means of transport'

('trip information' ?tripleg))
Automobile)

(instance-of ('means of transport' ('trip information' ?tripleg))
Train))))

To express the last constraint “The customer also prefer to go by car or train if he hates
travel by plane.”, we attach an axiom to the Customer trip class:
(forall ?customer

(=> ('hates planes' ?customer true)
(forall ?tripleg
(=> ('trip legs' ?customer ?tripleg)

(or (instance-of ('means of transport'
('trip information' ?tripleg))

Automobile)

(instance-of ('means of transport'
('trip information' ?tripleg))

Train))))))

1.4 Instances
To represent a specific trip, we create an instance of Customer trip (Figure 2). It has
pointers to three trip legs. Each leg points to a Trip information instance describing
specific flights for the trips to and from Madrid. We do not specify means of
transportation for the New York-Washington leg.

Figure 2. The customer traveling from Madrid to the US

2 Discussion
We were able to represent most of the facts from the description. We found that we had
to revise the class structure significantly twice: First, when we got to the instance
definition, we learned that a trip can have several legs and therefore had to add an
intermediate Trip leg concept. Then, in order to express some of the additional
constraints, we needed to add a number of new attributes to many of the classes and
introduce the Continent class.
The class structure ended up being somewhat complicated. We believe that this
complexity resulted from some of the requirements in the description: that customers can
have several legs in one trip, using different means of transportation for each of them,
that we define ticket prices for each flight, etc. However, these complexities exist in the
real life and a real-life ontology would probably have been even more complicated.
We used many of the available knowledge-modeling primitives:

• inverse slots to link lodging and location

• default values to indicate default list of options for local transport at the
destination. Designers can change this list for a specific destination since not all
the towns have metro, for example; and some may have trams.

• slots as first class objects to attach the same slots to different classes. The slots
arrival city and departure city are attached both to the Trip leg
and Trip information classes. The slot name is attached to several classes
as well.

• abstract classes to indicate that the subclasses of the Means of transport
class enumerate all the possible means of transport

We used the Ontoviz plug-in to visualize relationships between classes and instances
graphically (and to generate figures in this report). Being able to see the resulting
structure in a graph, helped a lot in analyzing the emerging ontology.
We also used the Protégé Axiom Language to express domain constraints that could not
be expressed in the frame formalism directly. In addition to the three constraints in the
domain description, we specified a PAL axiom linking arrival and departure cities in the
instances of Trip information and Trip leg. We also used a PAL axiom to
express the fact that lodging at destination must be located in the same city as the
destination.
There were several facts in the domain description that we did not represent. First, we did
not represent the following fact: “From all of them, the travel agency is specially
interested in flights, as it is the means of transport mostly used by its customers” In our
representation, when we fill in the value for the means of transport slot (in the Trip
information class), we put in instances of specific planes, trains, etc. thus, we cannot seta
preferred class of transport.
 “The most common destinations are ….”. If there was only one most common
destination, we could have put it as default value for destination. However, selecting
some of the destinations as more common and some others as less common (given that
we then set the corresponding slot value to only one of those destinations) was not
possible.
We used the Protégé RDFS backend to generate RDF. Since the backend is designed to
store all the information that is necessary to restore a complete project, we did not need
any other format.

3 Conclusions
We were able to represent most of the information in the domain description. To do that,
we used many of the knowledge-modeling features available in Protégé, such as inverse
slots, default values, slots as first-class objects, abstract classes. Features that we lacked
included more flexible default (or some other mechanism) to support preferences and
prototypical instances.

