
Actions over a constructive
semantics for ALC

Loris Bozzato, Mauro Ferrari, and Paola Villa

Dipartimento di Informatica e Comunicazione
Università degli Studi dell’Insubria
Via Mazzini 5, 21100, Varese, Italy

Abstract. Following the approaches and motivations given in recent
works about action languages over description logics, we propose an ac-
tion formalism based on a constructive semantics for ALC.

1 Introduction

In [3] we have introduced the information terms semantics for the basic descrip-
tion logic ALC. This semantics is related to the BHK interpretation, the well
known constructive explanation of logical connectives (see, e.g., [14]). Specifi-
cally, in our semantics the truth of a formula in a given interpretation is explained
by a mathematical object that we call information term. For the time being, the
latter can be visualized as a sort of proof term inhabiting a type/formula. One
of the main features of information terms semantics is that it supports a natural
notion of state which has already been used to define the semantics of CooML
(Constructive Object Oriented Modeling Language) [7, 12], a modeling language
based on a constructive first-order logic.

In recent papers [2, 5, 6] different approaches to the definition of action lan-
guages over description logics have been addressed and different solutions have
been proposed. In this paper we describe an approach based on the notion of
state given by information terms. In our context an action is an expression
P ⇒ Q where P and Q are sets of ALC formulas. An action can be informally
understood as follows: if in a given state the formulas in P (preconditions) are
true, then the action can be applied and in the resulting state the formulas in Q
(postconditions) will be true. In this paper we address the problems to determine
executability of an action, to build the state obtained by an action application
and to check its consistency. As discussed in [7, 8], these problems are strictly
connected with snapshot generation in CooML and with model generation in
SAT [10] and in Answer Set Programming [11].

For expository reasons, in this paper we restrict our attention to the simple
case where the formulas occurring in P ⇒ Q are literals over the terminological
alphabet. However, our approach can be extended to more complex actions.

2 ALC language and semantics

We begin introducing the language L for ALC [1, 13], based on the following
denumerable sets: the set NR of role names, the set NC of concept names and the
set NI of individual names. A concept H is an expression of the kind:

H ::= C | ¬H | H uH | H tH | ∃R.H | ∀R.H

where C ∈ NC and R ∈ NR. Let Var be a denumerable set of individual variables;
the formulas K of L are defined according to the following grammar:

K ::= ⊥ | (s, t) : R | (s, t) : ¬R | t : H | ∀H

where s, t ∈ NI ∪ Var, R ∈ NR and H is a concept. An atomic formula of L is a
formula of the kind ⊥, (s, t) : R or t : C where R ∈ NR and C ∈ NC; a negated
formula is a formula of the kind (s, t) : ¬R or t : ¬H. A formula is closed if it
does not contain variables. We write ¬((s, t) : R), ¬((s, t) : ¬R), ¬(t : H) as
abbreviations for (s, t) : ¬R, (s, t) : R, t : ¬H respectively; A v B stands for
∀(¬A tB).

Let N be a finite subset of NI. By LN we denote the set of formulas K of L
such that all the individual names occurring in K belong to N .

A substitution (over N) is a function σ : Var → N ; we extend σ to LN
so that for every c ∈ N , σ(c) = c. Given a set of formulas Γ of LN and a
substitution σ over N , σΓ denotes the set of closed formulas obtained replacing
every variable x occurring in Γ with σ(x).

A model (interpretation) M for L is a pair (DM, ·M), where DM is a non-
empty set (the domain of M) and ·M is a valuation map such that: for every
c ∈ NI, cM ∈ DM; for every C ∈ NC, CM ⊆ DM; for every R ∈ NR, RM ⊆
DM × DM. A non atomic concept H is interpreted by a subset HM of DM as
usual:

- (¬A)M = DM \AM, (A uB)M = AM ∩BM, (A tB)M = AM ∪BM

- (∃R.A)M = { d ∈ DM | ∃d′ ∈ DM s.t. (d, d′) ∈ RM and d′ ∈ AM }
- (∀R.A)M = { d ∈ DM | ∀d′ ∈ DM, (d, d′) ∈ RM implies d′ ∈ AM }
We say that a model M of LN is reachable if, for every d ∈ DM, there exists
c ∈ NI such that cM = d.

An assignment on a model M is a map θ : Var→ DM. If t ∈ NI∪ Var, tM,θ

is the element of DM denoting t in M w.r.t. θ, namely: tM,θ = θ(t) if t ∈ Var;
tM,θ = tM if t ∈ NI. A formula K is valid in M w.r.t. θ, and we write M, θ |= K,
if K 6= ⊥ and one of the following conditions holds:

- M, θ |= t : H iff tM,θ ∈ HM

- M, θ |= (s, t) : R iff (sM,θ, tM,θ) ∈ RM

- M, θ |= (s, t) : ¬R iff (sM,θ, tM,θ) 6∈ RM

- M, θ |= ∀H iff HM = DM

We write M |= K iff M, θ |= K for every assignment θ. Note that M |= ∀H iff
M |= x : H, with x any variable. If Γ is a set of formulas, M |= Γ means that
M |= K for every K ∈ Γ . We say that K is a logical consequence of Γ , and we
write Γ |= K, iff, for every M and every θ, M, θ |= Γ implies M, θ |= K.

2

3 Information terms semantics

We introduce information terms that will be the base structure of our construc-
tive semantics. Given a finite subset N of NI and a closed formula K of LN , we
define the set of information terms itN (K) by induction on K as follows.

itN (K) = {tt}, if K is an atomic or negated formula

itN (c : A1 uA2) = { (α, β) | α ∈ itN (c : A1) and β ∈ itN (c : A2) }
itN (c : A1 tA2) = { (k, α) | k ∈ {1, 2} and α ∈ itN (c : Ak) }
itN (c : ∃R.A) = { (d, α) | d ∈ N and α ∈ itN (d : A) }
itN (c : ∀R.A) = itN (∀A) = {φ : N →

⋃
d∈N itN (d : A) | φ(d) ∈ itN (d : A) }

Information terms for a formula K provide possible justifications for the validity
of K in a classical model. Formally, let M be a model for L, K a closed formula
of LN and η ∈ itN (K). We define the realizability relation M�〈η〉K as follows:

M� 〈tt〉K iff M |= K, where K is an atomic or negated formula

M� 〈(α, β)〉 c : A1 uA2 iff M� 〈α〉 c : A1 and M� 〈β〉 c : A2

M� 〈(k, α)〉 c : A1 tA2 iff M� 〈α〉 c : Ak

M� 〈(d, α)〉 c : ∃R.A iff M |= (c, d) : R and M� 〈α〉 d : A

M� 〈φ〉 c : ∀R.A iff M |= c : ∀R.A and, for every d ∈ N ,
M |= (c, d) : R implies M� 〈φ(d)〉 d : A

M� 〈φ〉 ∀A iff M |= ∀A and, for every d ∈ N ,M� 〈φ(d)〉 d : A

If Γ = {K1, . . . ,Kn} is a finite set of closed formulas of LN , itN (Γ) denotes the
set of n-tuples η = (η1, . . . , ηn) such that, for every 1 ≤ j ≤ n, ηj ∈ itN (Kj);
M� 〈η〉Γ iff, for every 1 ≤ j ≤ n, M� 〈ηj〉Kj .

We remark thatM�〈η〉K impliesM |= K, hence the constructive semantics
is compatible with the usual classical one. The converse in general does not hold
and stronger conditions are required:

Proposition 1. Let K be a closed formula of L and let M be a finite model for
L. If M |= K, there exists a finite subset N of NI and η ∈ itN (K) such that
M� 〈η〉K. ut

We point out that in our setting negation has a classical meaning, thus negated
formulas are not constructively explained by an information term. However, in-
formation terms semantics can be extended to treat various kinds of constructive
negation as those discussed in [9].

In the following we will indicate with the term theory a set T of closed
formulas of LN consisting of a TBox and an ABox. The TBox is a set of formulas
of the kind K = ∀A, representing the constraints of our system. The ABox is a
set of concept and role assertions that represent our knowledge about the current
state of the system. A state of the system is any γ ∈ itN (T).

3

Example 1 (The alert system). In this example we model a simple home alert
system. The system has two kinds of sensors, namely to detect fire and flood
events: whenever a sensor activates and signals the occurrence of one of these
events, a corresponding alert goes off. When a sensor stops signaling an event,
the alarm must stop.

The theory that models our system consists of the TBox Tas, representing
the constraints of the model:

(Ax1) : ∀(¬CurrentAlert t (∃hasReason.CurrentSignal u Alert))

(Ax2) : ∀(¬CurrentSignal t (Active u (Fire t Flood)))

that can be restated as:

(Ax1) : CurrentAlert v ∃hasReason.CurrentSignal u Alert

(Ax2) : CurrentSignal v Active u (Fire t Flood)

and an ABox Aas0:

alert1:Alert fire s1:Fire flood s1:Flood

alert2:Alert fire s2:Fire flood s2:Flood

asserting that our system has two sensors for every kind. Moreover, in the initial
state none of the signals is active.

Let As0 = Tas∪Aas0 and let W be the set of the individual names occurring
in Aas0. As an example, an element of itW(Ax1) is a function φ mapping each
c ∈ W to an element

δ ∈ itW(c : ¬CurrentAlert t (∃hasReason.CurrentSignal u Alert))

where, δ is either (1, tt) (meaning that c is not a current alert) or (2, ((d, tt), tt))
(i.e., c is a current alert and his reason is the current signal d).

Now, we have to select an initial state of the system consistent with our
knowledge contained in Aas0. To this aim let γ1 ∈ itW(Ax1) and γ2 ∈ itW(Ax2)
the functions mapping every c ∈ W in (1, tt). The initial state of our system is
the information term γ0 ∈ itW(As0) associating γ1 to Ax1, γ2 to Ax2 and tt
to every formula of the ABox Aas0. It is easy to define a model M of As0 such
that M � 〈γ0〉As0. We remark that γ0 is the only state that can justify our
theory only assuming the information contained in Aas0. We also notice that γ0

assumes a sort of closed world assumption about the current state, in the sense
that what is not true in the current state is assumed as false. 3

According to the above definitions an information term is a structured data
whose correct reading is provided by the related formula. According to this
interpretation we call piece of information over LN a pair 〈α〉F , where F is a
closed formula of LN and α ∈ itN (F). Given a theory T over LN , we introduce
two notions of consistency:
- A state (information term) γ ∈ itN (T) is consistent if there exists a model
M such that M� 〈γ〉T.

- T is state consistent if there exists γ ∈ itN (T) such that γ is consistent.

4

Now, we will see how, introducing the notion of information content, we can
reduce the problem to check consistency of a state to the problem to check
classical consistency of a set of atomic and negated formulas.

Given a finite subset N of NI, let RN = {(s, t) : R | R ∈ NR and s, t ∈ N}.
This set intuitively represents the set of all the possible role assertions that we
can express over N . Given a finite subset R of RN , we define the information
content (w.r.t. R) of a piece of information as follows:

- icR(〈tt〉c : H) = {c : H}, if c : H is an atomic or negated formula
- icR(〈(α, β)〉c : A1 uA2) = icR(〈α〉c : A1) ∪ icR(〈β〉c : A2)
- icR(〈(k, α)〉c : A1 tA2) = icR(〈α〉c : Ak) (k = 1 or k = 2)
- icR(〈(d, α)〉c : ∃R.A) = icR(〈α〉d : A) ∪ {(c, d) : R}
- icR(〈φ〉c : ∀R.A) =

⋃
(c,d):R∈R icR(〈φ(d)〉d : A) ∪ {(c, d) : R | (c, d) : R ∈ R}

- icR(〈φ〉∀A) =
⋃

d∈N icR(〈φ(d)〉d : A)

If Γ = {K1, . . . ,Kn} is a set of closed formulas of LN and γ ∈ itN (Γ),
icR(〈γ〉Γ) =

⋃
Ki∈Γ (〈γi〉Ki).

We remark that the information content of a piece of information is a set of
atomic and negated formulas. The following relation holds between a piece of
information and its information content:

Theorem 1. Let N be a finite subset of NI, let K be a closed formula of LN ,
let R ⊆ RN and let M be a reachable model of LN such that M |= (c, d) : R iff
(c, d) : R ∈ R. Then M� 〈α〉K iff M |= icR(〈α〉K). ut
According with this theorem, icR(〈α〉K) intuitively represents the minimum1

amount of information needed to get evidence for K according to the information
term α, assuming the roles in R. We remark that, by Theorem 1, checking
consistency of a state γ of T is equivalent to check consistency of icR(〈γ〉T) for
the given R.

Example 2 (Information content). Let us consider the theory As0 and the in-
formation terms γ1 and γ2 defined in Example 1. Let R = ∅, corresponding to
the initial state of our system where no role is specified. Then the information
content of the initial state of our system is:

icR(〈γ1〉Ax1) = {a : ¬CurrentAlert | a ∈ W}
icR(〈γ2〉Ax2) = {a : ¬CurrentSignal | a ∈ W}

Moreover, since every formula in the Aas0 is atomic, its information content is
Aas0 itself. So we have that:

icR(〈γ0〉As0) = {a : ¬CurrentAlert | a ∈ W} ∪
{a : ¬CurrentSignal | a ∈ W} ∪Aas0

Now, let M0 be the model having the set of individual names W as domain and
mapping every individual name in itself, every concept so to satisfy Aas0 and
every role in the empty set. M0 satisfies the hypothesis of Theorem 1 and hence
the state γ0 is consistent. 3

1 Minimality of icR(〈α〉K) can be formalised in model-theoretic terms (see [7]).

5

4 Actions

We call literal a formula either of the kind t : C, t : ¬C, (s, t) : R or (s, t) : ¬R
where C ∈ NC and R ∈ NR. Given a set of literals L, we denote with L =
{¬K | K ∈ L} where we assume that ¬¬H = H if H is either a role or a
concept name.

An action over LN is an expression of the kind P ⇒ Q where P and Q are
sets of literals over LN and every individual variable occurring in Q also occurs
in P. Informally an action can be understood as follows: if in a given state the
formulas in P (preconditions) are true, then the action can be applied and in the
resulting state the formulas in Q (postconditions) will be true. Given an action
α ≡ P ⇒ Q we denote with Pre(α) the preconditions of α and with Post(α) the
postconditions of α.

Now, let T be a theory with ABox A over LN and let γ ∈ itN (T). The action
α ≡ P ⇒ Q is active in the state γ w.r.t. a substitution σ if σP ⊆ icR(〈γ〉T).
An active action can be applied and its application in state γ has two effects:

- We get a new ABox A′ = (A \ σQ) ∪ σQ (ABox update);
- We get the set Out(α) = ((icR(〈γ〉T) ∪R) \ σQ) ∪ σQ (action output).

An action application changes both the ABox of the theory and the state of
the system. Obviously, given a consistent state of our system, an action appli-
cation could lead the system to an inconsistent state. According to Theorem 1
to guarantee that action application is consistent we must prove that the action
output is consistent and that we can construct an information term for T from
the formulas in the action output. Before discussing the consistency issues let us
define the actions governing the behaviour of our alert system.

Example 3 (Actions of the alert system). For every fire and flood sensor, we
define the following actions (here defined for fire s1) that model the beginning
and the end of a signal from the sensor:

SignalF ireS1() : ∅ ⇒ {fire s1 : Active}

UnSignalF ireS1() : ∅ ⇒ {fire s1 : ¬Active}

We remark that the above actions have an empty set of preconditions, thus they
are active in every state and they simply update the knowledge base. The system
reacts to these signals with the following actions:

StartF ireAlert(x) : {x:Fire, x:Active} ⇒
{alert1:CurrentAlert, x:CurrentSignal,
(alert1,x):hasReason}

StartF loodAlert(x) : {x:Flood, x:Active} ⇒
{alert2:CurrentAlert, x:CurrentSignal,
(alert2,x):hasReason}

6

StopAlert(x, y) : {x : ¬Active, (y, x) : hasReason} ⇒
{y : ¬CurrentAlert, x : ¬CurrentSignal,
(y, x) : ¬hasReason}

We write actions in a function-like form to emphasise the free variables and how
they are instantiated. Note that the above three actions are not active in the
initial state γ0.

Now, let us consider the situation where a fire is detected by fire s1. This
raises the action SignalF ireS1(). Let As1 = Tas∪Aas1 where Aas1 = Aas0∪
{fire s1:Active} and let γ1 be the information term for As1 associating γ1

and γ2 of Example 1 to Ax1 and Ax2 respectively, and associating tt to every
formula in Aas1. It is easy to check that icR(〈γ1〉As1) is exactly the result of
applying this action to the state γ0.

In the state γ1 the action StartF ireAlert(fire s1) can be activated, and
the result of its application is the output

Out = Aas0 ∪ {a : ¬CurrentAlert | a ∈ (W \ {alert1})} ∪
{a : ¬CurrentSignal | a ∈ (W \ {fire s1})} ∪
{fire s1:Active, alert1:CurrentAlert, fire s1:CurrentSignal,

(alert1,fire s1):hasReason}

Now, let Aas2 = Aas1 ∪ Post(StartF ireAlert(fire s1)), and let As2 = Tas ∪
Aas2. Let M2 be a model of Out, it is easy to check that M2 is also a model
of As2. 3

5 An algorithm to build up information terms

We remark that we have concluded the above example without giving the state
corresponding to the action application. To build up the output state of an
action we will use the algorithm GenIt(X, F) of Figure 1. This algorithm takes
as input a set X of closed atomic and negated formulas of LN and a closed
formula F of LN and generates as output a (possibly empty) set of information
terms in itN (F). GenIt invokes the function OpenIt of Figure 2 to compute
the information terms for compound and open formulas. OpenIt taken as input
the set X and a formula F and returns a (possibly empty) set of pairs (α, c)
where α ∈ itN (F) and c ∈ N (intuitively, if the pair (α, c) is built, α justifies
the formula F with respect to the individual name c).

It is easy to prove, by induction on the structure of the formula F , the
following result:

Theorem 2. Let X be a set of closed atomic and negated formulas of LN , let
R = {(t, t′) : R | (t, t′) : R ∈ X} and let F be a closed formula of LN . Then, for
every τ ∈ GenIt(X, F), icR(〈τ〉F) ⊆ X. ut

7

if (F is either (c, d) : R or (c, d) : ¬R) then

if (F ∈ X) then return {tt};
else return ∅;

else if (F = ∀A) then begin

let Z = OpenIt(X, x : A);
let Γ = {c | (α, c) ∈ Z)};
if (Γ 6= N) then return ∅;
else return {φ |φ(c) = α with (α, c) ∈ Z};

end

else return {α | (α, c) ∈ OpenIt(X, F)};

Fig. 1. The GenIt algorithm

Example 4 (State generation). The execution of GenIt(Out,Ax1) provides the
following information term γ′1 ∈ itW(Ax1), where we enclose between square
brackets the pairs (c, γ′1(c)) belonging to the function:

[(alert1,(2,((fire_s1, tt), tt))), (alert2,(1,tt)), (fire_s1,(1,tt)),

(fire_s2,(1,tt)), (flood_s1,(1,tt)), (flood_s2,(1,tt))]

while the execution of GenIt(Out,Ax2) provides the information term γ′2 ∈
itW(Ax2):

[(alert1,(1,tt)), (alert2,(1,tt)), (fire_s1,(2,(tt,(1,tt)))),

(fire_s2,(1,tt)), (flood_s1,(1,tt)), (flood_s2,(1,tt))]

Consider Aas2 as defined in the previous example. If γ2 is the information term
associating γ′1 to Ax1, γ′2 to Ax2 and tt to every formula of Aas2 and if M2 is a
model of Out, then it follows that M2 � 〈γ2〉As2. Hence the action application
leads to a consistent state and thus As2 is state consistent.

If we consider R = {(alert1,fire s1):hasReason}, which is the set of role
formulas asserted by Aas2, then the information content of As2 for the axioms
in Tas is defined as:

icR(〈γ′1〉Ax1) = {alert1:Alert, fire s1:CurrentSignal,

(alert1,fire s1):hasReason} ∪
{a : ¬CurrentAlert | a ∈ W \ {alert1}}

icR(〈γ′2〉Ax2) = {fire s1:Active, fire s1:Fire} ∪
{a : ¬CurrentSignal | a ∈ W \ {fire s1}}

So we have that icR(〈γ2〉As2) = icR(〈γ′1〉Ax1) ∪ icR(〈γ′2〉Ax2) ∪ Aas2. As in
Example 2, if M2 satisfies the hypotheses, then Theorem 1 holds and M2 �

〈γ2〉As2 iff M2 |= icR(〈γ2〉As2).
Note that, if fire s1 stops being active and UnSignalF ireS1() is exe-

cuted, in the new state it does not hold that fire s1:Active and so the action
StopAlert(fire s1, alert1) can be fired. If that is the case, it is easy to verify
that the system returns in the initial state of our example.

8

if (F = t : A with A ∈ NC or A = ¬H) then

if (t ∈ N) then

if (t : A ∈ X) then return {(tt, t)};
else return ∅;

else return {(tt, c) | c : A ∈ X};
if (F = t : A uB) then

return {((α, β), c) | (α, c) ∈ OpenIt(X, t : A) and (β, c) ∈ OpenIt(X, t : B)};
if (F = t : A tB) then

return {((1, α), c)) | (α, c) ∈ OpenIt(X, t : A)} ∪ {((2, β), c) | (β, c) ∈ OpenIt(X, t : B)};
if (F = t : ∃R.A) then

if (t ∈ N) then let D = {t};
else let D = {c | (c, d) : R ∈ X}
return {((d, α), c) | c ∈ D and (c, d) : R ∈ X and (α, d) ∈ OpenIt(X, x : A)};

if (F = t : ∀R.A) then begin

if (t ∈ N) then begin

let D = {t};
let Z = {d | (t, d) : R ∈ X and (α, d) ∈ OpenIt(X, x : A)};

else begin

let D = {c | (c, d) : R ∈ X};
let Z = {d | (α, d) ∈ OpenIt(X, x : A)};

end let Φ = ∅;
for all (c ∈ D) do begin

let C = {d | (c, d) : R ∈ X};
if (C ⊆ Z) then

Φ = Φ ∪
{

(φ, c) | φ(d) =

{
α if d ∈ C and (a, d) ∈ Z

any η+ of itN (d : A) otherwise

}
end;
return Φ;

end

Fig. 2. The OpenIt function

Moreover, it is possible to show that, for example, since GenIt(Out,Ax1) =
{γ′1} and icR(〈γ′1〉Ax1) ⊆ Out, then Theorem 2 holds. 3

We remark that in general GenIt generates more than one state. In this case the
action could lead the system to different states and a non deterministic choice
has to be done. Moreover, given a state generated by GenIt, one has to show
that this state is consistent. As for the latter point, the usual considerations
about checking consistency hold (see, e.g., [7]). In relation with this problem we
plan to study connections of our semantics with SAT [10] and ASP [11].

An important point of our approach is that we can use GenIt as a first
consistency check for an action application. Indeed, if X is the output of an
action application over icR(〈γ〉T) and GenIt(X, F) is empty for some F ∈ T
then T is not state consistent. This usually means that the action does not

9

provide enough information to justify the system constraints as shown in the
following example.

Example 5 (Action consistency check). Suppose that, in the development of our
system, we write the following (wrong) version of StartF ireAlert(x):

StartF ireAlert2(x) : {x:Fire, x:Active} ⇒
{alert1:CurrentAlert, (alert1,x):hasReason}

As can be noted, we forgot to set x:CurrentSignal in Post(StartF ireAlert2(x)).
This action is “wrong” in the sense that its execution leads to an inconsistent
action output: if that is the case, GenIt will find this inconsistency as it is
unable to generate a set of information terms for an axiom.

For example, consider the set Out′ obtained applying the above action to
the state γ1 of Example 3 (namely, Out′ = Out \ {fire s1 : CurrentSignal}).
The inconsistency of Out′ is verified with the execution of GenIt(Out′, Ax1):
this execution leads to the following recursive executions of OpenIt on the
subformulas of Ax1

OpenIt(Out′, x′ : CurrentSignal) = ∅
OpenIt(Out′, x : ∃hasReason.CurrentSignal) = ∅
OpenIt(Out′, x : ∃hasReason.CurrentSignal u Alert) = ∅
OpenIt(Out′, x : ¬CurrentAlert t (∃hasReason.CurrentSignal u Alert)) = H

with H = {((1, tt), a) | a ∈ W \ {alert1}}. Since no information term in
H can be associated to alert1, GenIt(Out′, Ax1) = ∅. This means that the
corresponding theory is not state consistent. We also remark that the execution
of GenIt(Out′, x′ : CurrentSignal) traces the reason of state inconsistency. 3

We conclude this section noting that GenIt is exponential in the size of N : this
complexity is due to the case of F = ∀A, where the algorithm must generate all
the possible functions φ such that φ : N →

⋃
d∈N itN (d : A). The number of

such functions is obviously exponential in the number of elements of N , hence
the complexity of GenIt.

6 Conclusion and future works

In this paper we have presented an action formalism based on the information
terms semantics. We have shown how our semantics supports a natural notion of
state and how an action language can be defined on the top of this notion. The
problem to determine the consistency of an action is reduced to the problem to
study the information terms generated by the application of GenIt. We have
shown, by means of an example, how GenIt can be used, in some cases, to
debug inconsistent actions. For lack of space we have not treated in details the
problem to study the consistency of an action when the output of GenIt is
not empty. However, we remark that this problem is similar to the problem to
check snapshot consistency in CooML [7]. As for the future works we plan to

10

investigate this question also considering its relations with model generation in
SAT [10] and ASP [11] and with the planning problem. Moreover, we plan to
study the projection problem (see, e.g., [2]), that needs to be restated in our
setting. We are also working on an implementation of our action language.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

2. F. Baader, M. Milicic, C. Lutz, U. Sattler, and F. Wolter. Integrating description
logics and action formalisms: First results. In I. Horrocks, U. Sattler, and F. Wolter,
editors, Proceedings of the 2005 International Workshop on Description Logics
(DL2005), volume 147 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.

3. L. Bozzato, M. Ferrari, C. Fiorentini, and G. Fiorino. A constructive semantics
for ALC. In Calvanese et al. [4], pages 219–226.

4. D. Calvanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, S. Tessaris, and
A. Turhan, editors. Proceedings of the 20th International Workshop on Description
Logics (DL2007), volume 250 of CEUR Workshop Proceedings. CEUR-WS.org,
2007.

5. D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Actions and programs
over description logic ontologies. In Calvanese et al. [4], pages 29–40.

6. C. Drescher and M. Thielscher. Integrating action calculi and description logics. In
J. Hertzberg, M. Beetz, and R. Englert, editors, KI, volume 4667 of Lecture Notes
in Computer Science, pages 68–83. Springer-Verlag, 2007.

7. M. Ferrari, C. Fiorentini, A. Momigliano, and M. Ornaghi. Snapshot generation in
a constructive object-oriented modeling language. In A. King, editor, Logic Based
Program Synthesis and Transformation, LOPSTR 2007, Selected Papers, volume
4915 of Lecture Notes in Computer Science, pages 169–184. Springer-Verlag, 2008.

8. C. Fiorentini and M. Ornaghi. Answer set semantics vs. information term seman-
tics. In ASP2007: Answer Set Programming, Advances in Theory and Implemen-
tation. http://cooml.dsi.unimi.it/papers/asp.pdf, 2007.

9. K. Kaneiwa. Negations in description logic - contraries, contradictories, and sub-
contraries. In Proceedings of the 13th International Conference on Conceptual
Structures (ICCS ’05), pages 66–79. Kassel University Press, 2005.

10. F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic program by SAT
solvers. Artif. Intell., 157(1-2):115–137, 2004.

11. I. Niemelä and P. Simons. Smodels - an implementation of the stable model and
well-founded semantics for normal LP. In LPNMR, pages 421–430, 1997.

12. M. Ornaghi, M. Benini, M. Ferrari, C. Fiorentini, and A. Momigliano. A Construc-
tive Modeling Language for Object Oriented Information Systems. In Constructive
Logic for Automated Software Engineering, volume 153 of Electronic Notes in The-
oretical Computer Science, pages 55–75, 2006.

13. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48(1):1–26, 1991.

14. A. S. Troelstra. From constructivism to computer science. TCS, 211(1-2):233–252,
1999.

11

