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Abstract 
In FinFET devices, the high-k gate dielectric materials have been considered as alternative to SiO2 for 
reducing leakage current, diminishing short channel effects and improvingthe effective carrier 
mobility. In this work, various compound gate dielectric materials have been integrated with 14nm 
Silicon on insulator FinFET devices. The performance of these structures have been analysed in the 
term of fin aspect ratio (gate dielectric thickness to gate length). The impact of this ratio on electrical 
performance parameters of FinFETs at ultra-low power has been deliberated. It has been inspected that 
the fin aspect ratio for lanthanum doped zirconium oxide has significantly dwindled, SS by 22%, 
DIBL by 85% , raised ION/IOFFratio in order of 109  andenhanced gmby 1.15 times as contrast to 
conventional FinFET.  
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1. Introduction 

Nowadays, several miniature devices have been devised to meet the need of industry oriented 
applications such as higher speed transistors with low power consumption. It was inspected that FinFET 
device shows noticeable reduction in short channels, utilized less power and improves switching activity 
compared to other devices [1-3]. In transistor manufacturing processes, the several semiconductor 
industries such as Intel, IBM, Samsung, and TSMC has started using high-k gate oxide and metallic gate 
materials for scaled devices. According to ITRS reports, the scaling of gate dielectric material, SiO2 
(k=3.9) below 2nm has resulted in high leakage current due to generation of direct tunneling gate off-
current [4-6]. Therefore, for prevention of this negative effect in sub-22nm technology, various novel 
materials such as Al2O3 (k=9), ZrO2 and HfO2 (k=25), Ta2O5 (22) and CeO2 (23-26) have been widely 
used in microelectronic devices. The important properties of these insulating materials involve high 
energy band gap,chemically compatible with Silicon and high crystallization temperatures. The energy 
band-gap of few materials such as SiO2 (9eV), Al2O3 (6eV), HfO2 (6eV), La2O3 (5.18eV) and ZrO2 
(5.8eV) have been lying in the range of 4-12eV [7-13]. The good electrical characteristics using 
La2Hf2O7 (LHO) high-k dielectric in place of SiO2 has been proved as prominent candidate. Excellent 
transistors with enhanced performance based on Hafnium based gate dielectrics as the insulation layers 
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have been achieved [14-16].For future scaled devices, a gate dielectric material withLaZrO2(k= 40) is 
preferred for below 22nm node FinFET [17-19]. In this work, the different composite high-k gate 
dielectric materials have been used for designing the 14nm SOI FinFETs. Theelectrical performance of 
these devices has been analyzed in the term of fin aspect ratiofor 1.1 and 1.6nm gate oxide thickness.  
This paper is framed as follows: Section 2 explains the description of design of device and simulation 
framework; Section 3 discusses the device characteristics for digital parameters; last section describes 
the conclusion of work. 

2. Device Structures  and Methodology 

The three dimensional structures of n-channel FinFETs (NFinFET) for different high-k materials are 
shown in Figure 1. Table 1 illustrates the NFinFET design parameters [20]. Device simulation is 
performed with Cogenda Technology Computer Aided Design (TCAD) physical simulator at 300K. The 
gate dielectric permittivities vary from 3.9 to 40 [21, 22] and the gate work-functions for all devices are 
kept at 4.6eV [23]. The potency of the simulator is examined by matching results of simulated work with 
published experimental data. It has been observed that our results are in good agreement with Andrade et 
al. [24] as shown in Figure 2. Therefore, it shows that the models and parameters used in this paper are 
valid. The devices have been designed with Drift diffusion model (DDM), Kane’s Model, Lucent 
Mobility Model and SRH Model[25]. Figure 3 describes the NFinFET transfer characteristics for 
Lg=14nm, k= 3.9 to40, Vg=0 to 0.75V and Vd=0.75V. 
 

 
(a) SOI NFinFET   (b) Devices with different high-k materials 

 
Figure 1: Structure of SOI NFinFET for different high-k materials 
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Figure 2: Transfer characteristics of proposed FINFET and reference FinFET [24] 
 
 

Table 1:NFinFET design parameters  
Device’s Performance  

Parameters 
Proposed device(NFinFET) 

Length gate terminal, Lg(nm) 14 
Fin Pitch of transistor (nm) 42 
Fin Width of transistor (nm) 8 
Fin Height of transistor (nm) 24 
Work function of gate 
terminal (eV) 

4.6 

Gate dielectric permittivity , k 3.9 - 40 
Physical Oxide Thickness(nm) 1.1,1.6 
Supply Voltage (Volts) 0.75 
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Figure 3: NFinFET Transfer characteristics for Lg=14nm, k =3.9 to 40, Vg= 0 to 0.75V and Vd=0.75V. 

 



3. Result and Discussions 
 

The defined range of novel gate oxide materials viz. Silicon nitride (Si3N4, k=7), Aluminium oxide 
(Al2O3, k=9), Hafnium silicate (HfSiO4, k=11), Yttrium oxide (Y2O3, k=15), Hafnium oxide 
(HfO2,k=20-25), Niobium pentaoxide (Nb2O5, k=35), and lanthanum doped zirconium oxide (LaZrO2, 
k=40) are integrated with FinFET device. These materials have high k values (7-40), more energy 
band gaps, chemically compatible with Si as compared to SiO2. Moreover, these materials can be 
deposited at high temperature on a silicon active channel using ALD and CVD methods [17-19, 
26].The influence of fin aspect ratio on device characteristics have been demonstrated below using 
these novel materials. 

3.1. Impact of Fin Aspect ratio (Tk/Lg) on Device Characteristics 

The impact of fin aspect ratios on FinFET’s digital device performance metrics such as Off- current 
(IOFF) ,current ratio (ION/IOFF),On-current (ION), Drain-induced BarrierLowering(DIBL), Subthreshold 
swing (SS), transconductance (gm) are discussed through TCAD simulation [12, 27-29]. The aspect 
ratio for a given ‘k’ is solved by ( ){ } g

g

k Lk
L

T
oxT 9.3  ×=  , where Toxis gate oxide thickness, Tk is gate 

dielectric thickness, 3.9 is SiO2 dielectric constant and Lg is gate length.  The range of k is taken from 
3.9 to 40 for gate oxide thickness of 1.1nm and 1.6nm [21]. 
 

3.1.1. ION and IOFF currents 

Figure 4 (a-b) demonstrates that on-current (calculated at Vg=Vd=0.75V) enhances and off-current 
(determined at Vg=0, Vd=0.75V) reduces with the increase in aspect ratio. Furthermore, on-current 
and off-current improvement is more for Tox =1.1nm as compared to Tox =1.6nm. This is convenient 
to understand, as the narrow gate oxide has greater command over the channel region and thereby 
superior performance at short channel [18, 30]. The maximum on-current and minimum off-current is 
obtained for highest Tk/Lg ratio (k=40, LaZrO2). 
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Figure 4. The influence of compound gate dielectric on (a) ION and (b) IOFF for oxide thickness of 
1.1nm and 1.6nm. (Fin aspect ratio is calculated as Tk/Lg= (k/3.9)*(1.1 or 1.6)*(1/14).  

3.1.2. DIBL and SS 

            DIBL signifies the decrease of the cut-in voltage of device at higher drain voltages [12]. SS 
shows fluctuations in drain current corresponding to gate voltage. The theoretical value of SS is 
60mV/dec at 300K. As the gate dielectric permittivity increases, the gate capacitance rises which 
results in reduced SS and DIBL as shown in Figure 5 [12, 30, 31].The SS and DIBL for FinFET with 



LaZrO2 as gate dielectric oxide obtains 10% and 76% reduction for Tox =1.1nm as compared to SiO2 
gate oxide material and for Tox =1.6nm the same metrics are declined by 14% and 70% 
respectively.Lesser DIBL and reduced SS results in low leakage current and better on/off switching 
performance, respectively [31]. 
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Figure 5. Influence of aspect ratio (Tk/Lg) of given k dielectric permittivity on (a) SS and (b) DIBL 
for oxide thickness of 1.1nm and 1.6nm. 

3.1.3. ION/IOFF and Threshold Voltage (Vt) 

The Vt is one of the important parameters characterizing the behavior of metal-insulator-
semiconductor interfaces in FinFET structures. To extract the value of Vt, the constant current method 
is used [32]. The influence of compound gate dielectric permittivity on threshold voltage and the 
current ratio ION/IOFF as shown in Figure 6 implies that thinner gate oxide (Tox=1.1nm) has higher 
current ratio and larger Vt as compared to thicker gate oxide (Tox=1.6nm). It is also interesting to note 
that ION/IOFF is increasing with increasing Vt for both gate oxide thicknesses. An ION/IOFF of order of 
109 for higher dielectric gate oxide materials indicates that Vg has greater control over the operation of 
MOSFET as compared to Vd. Therefore, it is recognized that device with thin gate oxide thickness 
and high-k gate dielectric permittivity is suitable for the implementation of VLSI circuits [33-35]. 
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Figure 6. Dependence of (a) Vt and (b) ION/IOFF on the aspect ratio (Tk/Lg) for varied k of 1.1nm 
and 1.6nm gate oxide thickness. 

 
 
 



3.1.4. Gate Transconductance 

The gate transconductance, gm is defined as ratio of drain current variation and gate voltages variation 
at a constant drain voltage (gm=∂Id /∂Vg). It is expressed in the Siemens unit (S). It is observed that 
thicker gate oxide has lesser gm as outlined in Figure 7. The highest magnitude of gm decides the gain 
and operating speed of a transistor [33-35].  
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Figure 7: Transconductance trend for variable dielectric permittivity (k) of Tox=1.1nm. 
 

4. Conclusion 

The impact of fin aspect ratio on the electrical performance of compound gate dielectric based 
FinFET devices have been analyzed in Cogenda TCAD environment with drift-diffusion transport 
framework. It is found that the device proposed with higher fin aspect ratio demonstrates superior 
SCEs immunity. The SS and DIBL for FinFET with lanthanum doped zirconiumas gate dielectric 
oxide obtains 10% and 76% reduction for Tox =1.1nm as compared to SiO2 gate oxide material and for 
Tox =1.6nm the same metrics are declined by 14% and 70% respectively. It has been inspected that the 
fin aspect ratio of LaZrO2 for Tox =1.1nm has significantly dwindled SS by 22% , DIBL by 85%and 
ION/IOFF is increased in order of 109 over 107 as compared to work done in previous literature [36]. The 
notable enhancement for gm showsits suitability in VLSI applications as an inverter circuit 
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