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Abstract 
This paper presents the drain current analyses for the different parameters of Nanowire tunnel 
field-effect transistor (TFET). The device has been designed using an n-channel P+-I-N+ 
structure for tunneling junction of TFET with gate-all-around (GAA) Nanowire. The gate 
length has been taken as 100 nm using silicon Nanowire to obtain the various parameters 
such as ON-current (ION), OFF-current (IOFF), current ratio, and Subthreshold slope (SS) by 
applying different values of work function at the gate, the radius of Nanowire and oxide 
thickness of the device. The simulations are performed on Silvaco TCAD which gives a 
better parametric analysis over conventional tunnel field-effect transistor. The results 
obtained will be useful for the scientific and research community working in this area.  
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1. Introduction 

 The regular scaling in metal oxide semiconductor field effect transistors (MOSFETs) is very 
difficult due to various aspects such as current carrier mechanism (thermal emission of electrons); 
higher short channel effects (SCEs), high OFF current and limited subthreshold slope (60mV/decade) 
in the Nanoscale regimes [1]–[8]. The main demerit of MOSFET is Subthreshold Slope (SS) which is 
defined as rate of increase in output (drain) current with the increase in the gate-source voltage (Vgs) 
from 0 volt.  The higher SS are effects the supply voltages, which is required for the switching of 
device from OFF state to ON state [9]–[12]. For the development of new devices in the semiconductor; 
there is need to be especially low power, lower SS and power efficient device. The tunnel field effect 
transistor (TFET) is most preferable candidate in the semiconductor industry from the last decade [13]–
[18]. The current carrier mechanism of TFET is performed by tunneling instead of thermionic 
emission. The structure of TFET is in asymmetrical nature (p-i-n) with different material of source and 
drain (either n-type or p-type). TFET has number of merits which overcomes the problem of MOSFET 
such as low Subthreshold Slope (SS) which is suitable for low power supply, reduced SCEs [19]–[23] 
and low OFF-current (IOFF) due to band to band tunneling mechanism; but it suffers from low ON-
current (ION), which is required for high speed operation of the device. So it should be needed that an 
advance device which mitigates the problem of low ION and operating speed. The Nanowire based 
TFET structures have the potential to gives the better results in terms of high ON-current and higher 
operation speed with reduced SCEs [12], [24]–[26]. So we have designed and simulate gate all around 
Nanowire TFET (NWTFET) and analyze its various parameters such as ION, IOFF, ON-OFF current 
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ratio (ION/IOFF) and SS with the impact of its dimensional parameters such as gate length, oxide 
thickness and radius of Nanowire. 

2. Device Structure 

 The structure of designed gate all around Nanowire TFET (NWTFET) is shown in Figure 1. The 
basic p+-i-n+ structure of TFET is used for device designing with Silicon GAA Nanowire. The basic 
parameters NWTFET taken as gate length (Lg) = 100 nm, Nanowire Radius (R) = 10 nm, Source/Drain 
length (Ls/d) = 80 nm, thickness of gate oxide (Tox) = 1.5 nm with Gaussian doping concentration are 
used for simulation of the device using Silvaco Atlas Tools.   

 

 

 

 

 

 

 

 

 

Figure 1: Strcture of  NWTFET 

The high source/drain doping concentration, channel doping concentration and gate-workfunction 
of NWTFET are taken as 1*10-19 cm-3, 1*10-17 cm-3 and 4.3 eV respectively. The Silicon thickness are 
maintained under Debye-length; as√([(𝜖𝜖_𝑠𝑠𝑠𝑠 𝑉𝑉_𝑇𝑇)/𝑞𝑞 +  60.𝑁𝑁] ), where as q, N, VT represents the 
charge of electron, concentration and  thermal voltage respectively while  𝜖𝜖𝑠𝑠𝑠𝑠  refer as dielectric 
constant [27]. The proposed structure is calibrated with reported conventional TFET structure [19]. 
The basic parameters of conventional device are taken same as reported in ref [19]. The calibration 
has been done using plot digitizer tools and Silvaco Simulation Tool. The calibration curve of 
NWTFET is shown in Figure 2.  

 

 

 

 

 

 

 

Figure 2: Calibration Curve of  NWTFET with ref [19] 
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 The different models have been used for simulations such as BTBT model for tunneling, BGN 
model for the effect of bandgap and FLDMOB for field-dependent mobility as well as FERMI model 
for Fermi–Dirac statistics with the addition of CVT model. The used parameter for NWTFET 
designing is illustrating in Table 1. 

Table 1 
Parameter of NWTFET 

Parameters Values 
Gate length (Lg) 100 nm 

Work-function of Gate (ϕg) 4.3eV 

Thickness of  gate oxide (Tox) 2.5 nm 

Nanowire Radius (R) 20 nm 

Channel Concentration 1 ×1017cm-3 

Source/Drain  Concentration 1 ×1019cm-3 

 
Figure 3. Illustrate the energy band diagrams of NWTFET in ON state and OFF state which is 
performing as tunneling actions during simulation process. When the gate voltage is equal to zero and 
greater than zero (~1.5V), device will act as OFF state (dash line) and ON state (solid line) respectively 
by applying drain-source voltage is 1.0 V as shown in Figure 3. The energy gap between valance band 
and conduction band is higher in OFF state but lesser in ON state. So the tunneling of electrons has 
possible only in ON state as shown in energy band diagram.  

 

 

 

 

 

 

 

 

 

 

Figure 3: Energy band diagram of NWTFET 

3. Result and Simulation 

 The result and simulation of NWTFET are explained in this section by using Silvaco simulation 
tool. To calculate the different parameters such as drain current, ON/OFF ratio and SS, dimensional 
parameters has been varied such as gate work-function (ϕg), oxide thickness and radius of Nanowire. 
The drain current variation of NEFET are observed with the effect/impact of different parameters such 
as 

3.1 Effect of work-function (φg) 

 Firstly, the ID characteristics are observed with different ϕg and taken as 4.0 eV and 4.3 eV shown in 
Figure 4. For the simulation work the gate voltage varied from -0.2 to 1.2 voltage and drain-source 
voltage (Vds) taken as 1.2V. According to Figure 4, the maximum ON current (3.60×10-6) and 
minimum SS (20.25 mV/dec) are observed at ϕg =4.0 eV, but OFF (2.45×10-13) current is also high 

 



which leads the SCEs. On the other hand lower OFF current is observed at 4.3 eV. So ϕg =4.3 has been 
taken for proposed device for minimum SCEs. 

 

 

 

 

 

 

 

 

Figure 4: Effect of gate work-function on drain current 

3.2 Effect of oxide thickness (Tox) 

 Secondly, the ID characteristics are observed with different Tox (1.5 nm and 3.5 nm). Figure 5 
illustrates the simulation work of NWTFET on drain current with the impact of different Tox at 1.2V 
drain-source voltage. It is observed that better parametric value of ID and current ratio with minimum 
SS (19.40) at Tox=1.5 nm. During the simulation process ϕg , R and Tox  has been taken as 4.3 eV, 20 
nm and 3.5 nm respectively. The minimum value oxide thickness has given good parametric values 
and lesser leakage current in the device.  

 

 

 

 

 

 

 

 

Figure 5: Drain current variation due to effect of Tox 

3.3 Effect of Nanowire Radius (R) 

 The drain current variation with the effect of nanowire radiu are shown in Figur 6. According to 
characteristics curve it observed that higher ION (7.63×10-7) at R= 20 nm, but the IOFF current is also 
higher at this stage. Due to R variation on NWTFET the better SS (15. 22) has been archived on 10 
nm. During to simulation work, gate voltage is varied from 0 to 1.5 and Vds=1.2. 

 

 



 

 

 

 

 

 

 

 

 

Figure 5: Drain current variation due to effect of Radius (R) 

The detailed observed parametric values are given in Table 2. 

Table 2 
Parameters of NWTFET after Simulation 

Parameter ION (A/μm) IOFF (A/μm) ION/ IOFF Ratio SS (mV/dec) 

φg = 4.0 eV 3.60×10-6 2.45×10-13 1.47×107 20.25 

φg = 4.3 eV 7.63×10-7 3.23×10-18 2.36×1011 20.32 

Tox = 1.5 nm 2.05×10-6 2.95×10-19 6.94×1012 19.40 

Tox = 3.5 nm 1.71×10-6 7.40×10-19 
2.31×1012 25.67 

R = 10 nm 1.69×10-7 1.17×10-18 1.45×1011 15.22 

R = 20 nm 7.63×10-7 3.23×10-18 2.36×1011 20.32 

  

4. Conclusion 

 The device NWTFET has been designed and simulated using Gaussian doping profile and 
analyzed parametric variations of ION, IOFF, ION/IOFF and SS. The simulated results have also shows the 
effect on drain-current (Id) with impact of Tox, R and ϕg of the device. The most suitable parametric 
value are observed such as ION = 3.60x10-6 A/μm, IOFF = 2.95x10-19 A/μm, SS = 15.22 mV/dec and 
ION/OFF = 6.94×1012. The proposed NWTFET device structure will be suitable for low power 
applications.  
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