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Abstract
Graceful degradation is an established concept to improve the resilience of systems, especially when
other resilience mechanisms have failed. Its implementation is often heavily tied to the application code
and, thus, cumbersome and error prone. As IoT systems get not only ubiquitous but also critical, reliable
graceful degradation would be ideal. In this paper, we present the Morpheus framework that provides
a TypeScript-internal DSL to enable a systematic development of degradable IoT systems. The design
of the framework is based on the concept of separation of concerns by providing distinct yet linked
languages to specify hierarchical components and their connections; the components’ operating modes
and transfer functions between them; as well as state machines for the specification of the components’
behaviour in each operating mode. The operating modes for each component serve as degradation levels.
Automatic degradation of a component is triggered in case of failures of connected components. With
recovery from underlying failures, the component is automatically upgraded back to a higher level. We
illustrate our framework using a simplified prototype of an entrance barrier of a parking garage.
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1. Introduction

The Internet of Things (IoT) has made huge progress from a generic vision to concrete reali-
sations. IoT systems are becoming more and more ubiquitous and pervasive. Simultaneously,
our daily lives depend even more on them, e.g., smart homes, smart cities as well as smart
transportation, delivery, and manufacturing processes. By their nature, IoT systems can directly
influence the real world and as a consequence their failures can cause harm and even fatalities.
Thus, it is important that they are highly resilient and particularly, never enter undefined states.

While IoT systems are conceptually close to distributed applications that have been planned,
implemented, and operated for decades, significant differences exist: (i) IoT systems span
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large geographical regions; (ii) they consist of a large number of heterogeneous, even battery-
powered, devices with different capabilities, network bandwidths, and failure characteristics;
(iii) depending on the region, replacing failed devices and patching broken software may be a
matter of days and weeks instead of minutes and hours as with Web-like distributed systems.
Graceful degradation is a known approach to reduce a system’s capabilities in a controlled

manner [1]. Degradation thus can step in when classical approaches to fault tolerance are
unavailable or can no longer mask failures. While classical approaches to resilience, e.g., replica-
tion or checkpointing, can be provided by libraries in an application-agnostic way, degradation
has to be interlaced with application code. This makes the design and implementation of a
degradable IoT system cumbersome, error prone, time intensive, and hard to test and maintain.
To overcome these limitations, we propose Morpheus, a degradation framework for IoT

systems as extension of our previous work [2] within the SORRIR project—an internal DSL for
IoT systems built in TypeScript, which allows the definition of components, their ports and
connections, as well as the behaviour of components using state machines. The contribution
of this paper is an extension that supports developers of IoT systems with the integration of
graceful degradation into their systems. Morpheus ensures automatic degradation and upgrade
of a component, as soon as developer-defined constraints are met. By design, our DSL ensures
the principle of separation of concerns, by splitting the definition of a component’s behaviour
into different operation modes that can serve as degradation levels.
Section 2 discusses related work, while Section 3 introduces previous work and a running

example used throughout the text. Section 4 introduces Morpheus’ concepts and illustrates
their use via the running example. Section 5 concludes and presents future work.

2. Related Work

With graceful degradation, an IoT system is able to sustain some functionality when faults can
no longer be tolerated by other resilience mechanisms [3]: the application copes with partial
failures and adapts. Examples include to retain reduced functionality at the edge in case of
loss of connectivity between cloud and edge. The degraded service could even abstain from
executing certain tasks. Thus, the degradation can affect function, quality and performance.
Graceful degradation approaches are well known for design and operation of distributed

embedded systems [4, 5, 1], but have recently also been introduced for IoT scenarios, e.g., for
a video surveillance application [6], a smart-office case study [7], and a drone application [8].
Degradation often depends on defining a set of different service levels that determine the
graduations of quality-of-service (QoS) a system can operate at. This results in an application
specific mechanism, as the levels and their interpretation are specific to their application domain.
A degraded system may automatically switch back to the originally desired service level,

or at least to a better level, if the cause of the degradation has disappeared or changed. This
graceful upgrade is addressed in only few related works [9, 4].

Degradation is supported by various modelling approaches such as the Architecture Analysis
& Design Language (AADL) and its error annex [10, 11]. Bozzano et al. extend AADL to enable
the specification of multiple modes for components to define normal and degraded behaviour
using event-data automata [12]. The approach supports formal analysis of such models by



model checking as well as safety analyses like generation of fault trees. A similar approach has
been presented in the area of self-adaptive systems where Borda and Koutavas [13] present a
formal approach which supports the specification of adaptation transitions between automata.
The approach supports the formal verification of safety requirements by a translation to CSP.

3. Background

3.1. Modelling System

Morpheus builds upon our previous work—an internal Domain Specific Language [2] developed
in TypeScript [14]—that covers the two relevant aspects: structure and behaviour. The structure
of the IoT system is defined as an architecture covering the most relevant structural elements
of an architectural description language based on [15]. Particularly, it provides atomic and
hierarchical components, ports and connections. Components interact with one another by
exchanging events over connections which connect two ports.
Each atomic component contains internal state consisting of a discrete finite state as in

automata and local data structures (similar to the state in abstract state machines [16]) as well
as a user-developed TypeScript-function which takes this internal state, the contents of the
event queue, and updates state and queue. This basic definition of behaviour is complemented
by a framework, which allows the specification of state machines using TypeScript data struc-
tures and TypeScript as action language and includes an interpreter for these state machines.
Hierarchical components do not have their own behaviour, but aggregate the behaviour of their
subcomponents to simplify the design of systems, particularly, the definition of degradation.

Our experience as presented in our previous paper [2] has been very positive. The usage of
TypeScript as “meta-modelling” and action language streamline the development. Our result
fits very nicely into the overall JavaScript/TypeScript ecosystem. For example, we can easily
reuse libraries for communication via MQTT and HTTP as well as logging. Another advantage
is our ability to use IDEs and all of their features, including debugging facilities.

3.2. Running Example

In order to demonstrate the capabilities of Morpheus, we implemented a physical prototype1 of
a Smart Entrance Barrier (SEB) that could be deployed in a parking garage. Customers of the
garage reserve a parking spot through an online reservation system using credit card details
and license plate number. The SEB automatically recognises customers on entrance and exit.
Our SEB prototype is composed of multiple dependent sub-components: a barrier unit BU , a
barrier sensor BS , a car sensor CS , a card reader CR , and a camera CAM . Further, it uses two external
software components: a plate recognition service PRS and a parking management system PMS .

When a car approaches the SEB , the car sensor detects its presence and the camera scans the
license plate. The image is then sent to the PRS , which extracts the license plate number in text
format. This information is used to query the PMS , and if a valid reservation is found, the SEB will
open. In this seamless authentication process with multiple interacting components, a faulty
component shall not prevent a car from passing the barrier. The prototype is equipped with

1The prototype uses an ESP8266-based microcontroller and a Raspberry Pi Zero-based camera OctoCam.



degradation functionality: Morpheus adjusts the SEB ’s functionality based on the availability of
internal and external components as detailed in Section 4.

barrierUnit: ExternalComponent 
barrierMCU

barrierSensor: ExternalComponent 
barrierMCU

carSensor: ExternalComponent 
barrierMCU

MQTT

REST (internal)

Connections

REST (external)

cardReader: ExternalComponent 
barrierMCU 

parkManagementSystem: ComponentsmartEntranceBarrier: Component

camera: ExternalComponent 

PRS: ExternalComponent 
(Python-based CV)

Figure 1: Physical prototype of our running example Smart Entrance Barrier. Components and their
connections are also shown.

4. Morpheus Degradation

4.1. Operating Mode

In Morpheus, an operating mode defines a component’s functionality. By default, each com-
ponent implements the operating mode Off , which specifies that the component is currently
unable to provide any reasonable functionality. This operating mode is entered if essential
sub-components are unreachable or have failed, or the component itself suffers from internal
faults. It is required that each component is equipped with at least one additional non-trivial
operating mode, which implements the component’s intended feature set. Developers can now
define further operating modes that provide a graduated subset of the component’s capabilities.
In order to ensure that the specified functionality can actually be provided, it has to be defined
which dependant sub-components have to be available.

Our example uses the following operating modes for the SEB :

• Off : The SEB does not provide any reasonable functionality.
• Blocked : The SEB is locked, no car can enter or leave, e.g., to lock the garage.
• Open : The SEB is open and allows entrance and exit of cars, e.g., for maintenance.
• Manual : The SEB requires manual authentication with a credit card for every car.
• Automatic : The SEB automatically recognises cars by their licence plates, authenticates
the user, and authorises entrance.

Table 4.1 presents the pre-conditions for each non-trivial operating mode implemented by
the SEB . We assume that all sub-components and external components only implement the two



Table 1
Pre-conditions for the SEB’s implemented operating modes.

Level CAM CS BU BS CR PRS PMS
L4 - Automatic On On On On DC On On

L3 - Manual
Off DC On On On DC On
DC Off On On On DC On
DC DC On On On Off On

L2 - Open DC DC On On DC DC DC

L1 - Blocked

Off DC On On DC DC DC
DC Off On On DC DC DC
DC DC On On Off DC DC
DC DC On On DC Off DC
DC DC On On DC DC Off

L0 - Off DC DC DC DC DC DC DC

operation modes On and Off , which means that they are either fully functional or not available
at all. Further, DC (don’t care) entries indicate that the operating mode of the given component
is irrelevant. Automatic requires all other components to be On except the card reader, as it is
not used. In case the camera CAM , the car sensor CS or the plate recognition service PRS are
faulty, the automatic authentication procedure is unavailable and therefore the SEB should be
operated in Manual . If further the card reader CS is also unavailable, the SEB can not provide
reasonable service and should be operated in Blocked , which effectively closes the gate to the
garage. If the parking garage utilises multiple entrance barriers, the garage could proceed to
operate with degraded performance. The operating mode Open is intended for maintenance or
free parking campaigns, because the barrier will remain open until it is manually reconfigured.
In case either the barrier unit BU or the barrier sensor BS suffer from a mechanical failure, none
of the pre-conditions can be fulfilled which leads to the operating mode Off . In this case only
the physical state of the barrier is unknown and has to be inspected by a technician, but the
application logic is still in a well-defined state.

Implementation – Framework: A component can be switched into one of the available
operating modes either by human operators, software logic, or Morpheus. To realise these
features, we first extend the basic type AbstractState [2] with an operatingMode value, as shown
in Listing 1. Additionally, the DegradableState is equipped with a degradationHistory field that
can be used to track the component’s degradation behaviour.
We further introduced a new type called DepdencyFunction that is used to define the pre-

conditions for each operating mode. Essentially, this is a boolean function that takes the
components current state and the sub-component’s operating modes into account. These are
called Shadow Modes since it can not be reliably determined wether an external component is
unavailable due to a hardware failure or because of an interrupted network connection. We
choose to realize this as a generic function, which evaluates declarative conditions like Table 4.1,
while still providing great freedom, e.g., to perform arbitrary calculations.



1 interface AbstractState<S, E, P> = {
2 readonly state: S,
3 readonly events: Event<E, P>[]
4 }
5 interface DegradableState<S, E, P, D> extends AbstractState<S, E, P> {
6 readonly operatingMode: D;
7 readonly degradationHistory: [D, S][];
8 }

Listing 1: The datatypes that are used to store a component’s state.

1 type DependencyFunction<S, E, P, D> = (
2 state: DegradableState<S, E, P, D>,
3 shadowMap: Map<string, string>
4 ) => boolean;

Listing 2: The DependencyFunction is used to define pre-conditions for an operating mode.

Implementation – Running Example: An example usage of the DependencyFunction is
shown in Listing 3, which provides a snippet of the dependency map implementation for the
SEB . In essence, this map stores the pre-conditions for each operating mode. The snippet shows
an example implementation for the operating mode Automatic .

1 enum Modes {L0=”OFF”, L1=”BLOCKED”, L2=”OPEN”, L3=”MANUAL”, L4=”AUTOMATIC”};
2 enum ShadowModes {OFF=”OFF”, ON=”ON”};
3 enum SubComp {CAM=”CAM”, CS=”CS”, BU=”BU”, BS=”BS”, CR=”CR”, PRS=”PRS”, PMS=”PMS”};
4 const dependencyMap = new Map<Modes, DependencyFunction<any, Events, Ports, Modes»([
5 [Modes.L4, (state, shadowMap) => {
6 if (shadowMap.get(SubComp.CAM) === ShadowModes.ON &&
7 shadowMap.get(SubComp.CS) === ShadowModes.ON &&
8 shadowMap.get(SubComp.BU) === ShadowModes.ON &&
9 shadowMap.get(SubComp.CR) === ShadowModes.ON &&
10 shadowMap.get(SubComp.PRS) === ShadowModes.ON &&
11 shadowMap.get(SubComp.PMS) === ShadowModes.ON) {
12 return true;
13 }
14 return false;
15 }], // further DependencyFunctions follow here
16 ]);

Listing 3: Implementation of a DependencyFunction for the operating mode Automatic .



4.2. Degradation DAG

At any given time, each component 𝐶 has a target operation mode. Under normal circumstances
this is the operating mode that provides the full intended feature set (Automatic in our example).
Yet, due to external dependencies to other components, 𝐶 may not be able to provide this ideal
mode. In this case, Morpheus picks another operation mode for 𝐶 for which all dependencies
are met. We refer to this operation mode as 𝐶’s degradation level. For enabling Morpheus to
select an appropriate degradation level Morpheus requires a developer to specify a directed
acyclic graph (DAG) for each degradable component. The graph connects the component’s
implemented operating modes, such that each of them is directly or indirectly degradable to
operating mode Off . Morpheus selects the next degradation level along the graph that fulfils its
preconditions, and executes adjacent transitions. Operating modes that are connected through a
path that leads to the operating mode Off should provide a graduated subset of the component’s
functionality. Whenever the operating mode of a subcomponent changes, Morpheus first checks
if the current operating mode/degradation level can be kept and if not selects a new operation
mode to degrade/upgrade to. Further, based on the DAG, it determines the path to reach that
state and iteratively degrades/updates along the path from one operation mode to the next until
the selected mode has been reached.

Implementation – Framework: For each operation mode associated with its own state
machine, a mechanism is needed to not only switch between modes, but also to transfer the
state of one state-machine to the state of another. This functionality can be implemented using
the TransferFunction whose signature is provided in Listing 4. While the main task of a transfer
functions is to take one operating mode as an input and output another one, it can be used to
perform additional tasks. First, it is possible to save a component’s internal state on a stack, such
that it can be restored if the operating mode is reached later again. Second, the component’s
degradation path can be recorded and analysed in order to make fine-grained adjustments to
the component state.

1 type TransferFunction<S, E, P, D> =
2 (current: DegradableState<S, E, P, D>) => DegradableState<S, E, P, D>;

Listing 4: The TransferFunction is used for the state transfer between two operating modes.

Morpheus now provides the updateOperatingMode function, which automatically selects the
optimal operating mode for the component based on the defined pre-conditions, the degrada-
tion DAG and the availability of the dependent subcomponents. The implementation of this
function is provided in Listing 5. Internally, it evaluates the implemented DependencyFunctions
in descending order. If a function returns true, it is checked whether the degradation level of the
assigned operating mode is higher or lower than the degradation level of the current operating
mode. If the degradation level is lower, the internal degrade function is executed, which performs
a depth-first search on the degradation DAG, that produces an array of TransferFunctions . This
array of TransferFunctions is then iteratively processed, and the function finally returns the
degraded state. In case no path could be found the state is returned unaltered. The implemen-



tation of the upgrade function is quite similar. This function is executed if the degradation
level of the new operating mode is higher than the degradation level of the current operating
mode. However, it additionally guarantees that an upgrade path is only executed if it leads to
the component’s target operating mode. This property is especially important if only a partial
upgrade can be performed, i.e. if the component can be upgraded, but the target operating
mode can not be reached yet.

1 function updateOperatingMode<S, E, P, D> (component: Component<E, P, D>,
2 currentState: DegradableState<S, E, P, D>, shadowModes: ShadowMap)
3 : DegradableState<S, E, P, D> {
4 const degradationLevel = [...(component.dependencyMap.keys()].sort().reverse();
5 for (const level of degradationLevel) {
6 const dependency = component.dependencyMap.get(level);
7 if (dependency(currentState, shadowModes)) {
8 if (level > currentState.operatingMode) {
9 const upgradedState = upgrade(component, currentState, level);
10 if (upgradedState != currentState)
11 return upgradedState;
12 } else if (level < currentState.operatingMode) {
13 const degradedState = degrade(component, currentState, level);
14 if (degradedState != currentState)
15 return degradedState;
16 } else {
17 return currentState;
18 }
19 }
20 }
21 return currentState;
22 }

Listing 5: The implementation of the exported updateOperatingMode function

Implementation – Running Example: Figure 2 shows an example DAG for the SEB , based
on the conditions from Table 4.1. If the SEB ’s current operating mode is Automatic and the
conditions are no longer true, e.g., the PRS switched to mode Off , then the next possible mode
is considered in the DAG. Concretely, operating mode Manual is the first degradation level for
target operating mode Automatic . Further, the operating mode Open can only be reached through
manual reconfiguration, if it is assumed that Automatic is the standard target operating mode.
Listing 6 provides a snippet that shows how the TransferFunction can be used to implement
the transition from Automatic to Manual . Here, we utilise the degradationHistory to record the
component’s current operating mode and internal state.



L4 –Automatic L3–Manual L1–Blocked

L2–Open

L0 –Off

Figure 2: Degradation DAG of the Smart Entrance Barrier.

1 const DegradationDAG: [[OperatingModes, OperatingModes],
2 TransferFunction<any, Events, Ports, OperatingModes>][] = [
3 [[OperatingModes.L4, OperatingModes.L3], (current) => {
4 let newState = { ... current };
5 newState.degradationHistory.push([current.operatingMode, current.state]);
6 newState.operatingMode = OperatingModes.L3;
7 if(current.state.fsm === States.OPEN)
8 newState.state.fsm = States.OPEN;
9 else
10 newState.state.fsm = States.CLOSED;
11 return newState;
12 }], // Further Transferfunctions follow here
13 ]

Listing 6: Snippet of the SEB ’s degradation DAG implementation.

5. Conclusion

In this paper we presented Morpheus, a framework that aims to assist developers in realising
graceful degradation and automatic recovery. Morpheus provides lightweight integration into
our previously presented internal DSL based on operating modes of interconnected components.
In our previous internal DSL [2] we provided integrated state-space exploration. Currently, this
exploration is not realised for Morpheus, as the automatic recovery algorithm and transfer func-
tions complicate the state-transition exploration. Otherwise, Morpheus provides a functional
extension of our previous results. Morpheus allows developers to separate their concerns on
the levels of functionality and interdependence of components, while providing clear guidance
for realising resilience through graceful degradation and upgrade.
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