
eMoflon::Neo - Consistency and Model Management
with Graph Databases
Nils Weidmann1, Anthony Anjorin2

1Paderborn University, Zukunftsmeile 2, 33102 Paderborn, Germany
2IAV GmbH Ingenieurgesellschaft Auto und Verkehr, Nordhoffstraße 5, 38518 Gifhorn, Germany

Abstract
Maintaining the consistency of interrelated models is an important task in the context of Model-Driven
Engineering (MDE). Appropriate tool support is crucial to achieve an adequate level of automation re-
quired for successful model management in general, and consistency maintenance in particular. Numer-
ous MDE tools, including the tools in the eMoflon toolsuite, build upon the Eclipse Modeling Framework
(EMF), a de-facto MDE standard. While EMF is a great framework, it has some drawbacks regarding
scalability and flexibility with respect to metamodel conformance.

As our focus in recent years has turned to concurrent synchronisation and conflict resolution as
an optimisation problem, we have decided to explore graph databases as an alternative infrastructure
for handling our runtime model operations. In this paper we present the consistency management tool
eMoflon::Neo as the latest addition to the eMoflon toolsuite, based on EMF for specification models, and
the graph database Neo4j for all runtime models.

Keywords
Consistency Management, Model Management, Graph Databases

1. Introduction and Motivation

Consistency management plays a central role in the context of Model-Driven Engineering (MDE)
and involves numerous operations including model transformation, (concurrent) synchronisa-
tion, and consistency checking. For consistency management tools to be of practical use, they
must provide an adequate level of automation of these operations.

Triple Graph Grammars (TGGs) [1] are a rule-based bidirectional transformation (bx) lan-
guage, well-suited for MDE as models are adequately handled as typed, attributed graphs. From
a specified set of declarative rules that formally defines a language of consistent model triples,
operational rules for different consistency management tasks are automatically derived. Al-
though the Eclipse Modelling Framework (EMF) provides a solid basis for developing modelling
tools, our experience from developing the eMoflon toolsuite [2] over the years is that EMF has
some drawbacks when it comes to implementing model management tools. Especially with our
recent focus on concurrent model synchronisation [3] and our hybrid approach of combining
graph pattern matching and constraint solving to address conflict resolution as an optimisa-
tion problem, we have identified the following limitations directly related to representing our
runtime models as EMF data structures.

Bx 2021: 9th International Workshop on Bidirectional Transformations, part of STAF, June 21, 2021
" nils.weidmann@upb.de (N. Weidmann); anthony.anjorin@iav.de (A. Anjorin)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:nils.weidmann@upb.de
mailto:anthony.anjorin@iav.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Scalability: EMF models must fit completely into the main memory for operating on them,
which limits the handling of very large models. While we are not necessarily interested
in extremely large models per se, we (i) represent traceability links and other bookkeeping
information such as various markers explicitly in models, (ii) generate multiple candidate
structures before using a constraint solver to pick the best result. Both points mean that we
have to handle effective model sizes factors larger than the actual input model sizes.
Flexibility: Although the relatively strict conformance relation between EMF models and

their metamodels certainly has its advantages, it is more often a hindrance that our algorithms
have to work around. There are mainly two reasons for this: (i) being able to enrich model
elements with markers and other extra information often simplifies analyses and bookkeeping
operations, and (ii) when collecting candidate structures for a final optimisation step, we need to
construct a “super model” that violates metamodel constraints such as multiplicities and single
containment relations. EMF, however, does not support attributes for edges, and temporarily
extending or relaxing metamodels of loaded models is non-trivial [4].

NoSQL databases in general, and graph databases in particular, have gained popularity in
recent years and have been successfully leveraged for developing MDE tools [5, 6]. Using a
graph database to represent runtime models can address both aforementioned issues: Firstly,
graph databases promise improved scalability via on-demand caching, indexing, and a native
respresentation of nodes and edges. Secondly, models and metamodels are (typically) both
represented as plain graphs with type edges and constraints representing the conformance
relation. This means that the relation can be (temporarily) violated and later reestablished as
required with the standard infrastructure.

In this paper, we present eMoflon::Neo [7], the latest addition to the eMoflon toolsuite sup-
porting bx based on the TGG formalism and using the graph database Neo4j [8] for handling all
runtime models and model operations. eMoflon::Neo provides a modelling language eMoflon
Specification Language (eMSL) that supports modelling, metamodelling, constraints as graph
patterns, graph transformation rules, and TGGs, all with a uniform textual concrete syntax and
a read-only visual concrete syntax based on PlantUML [9]. To investigate the strengths and
weaknesses of using graph databases for model management regarding runtime performance,
we compare our tool to eMoflon::IBeX [10], a comparable EMF-based TGG tool also from the
eMoflon toolsuite. We measure different consistency management operations for different
examples from the bx example repository [11], and for growing model sizes using both tools.

The remainder of the paper is organised as follows: Section 2 introduces the tool’s front-end
and its modelling languages with a uniform textual and visual concrete syntax. An overview
of the software architecture of eMoflon::Neo is provided in Sect. 3; its runtime performance is
analysed with an experimental evaluation in Sect. 4. Related approaches are discussed in Sect. 5,
while Sect. 6 concludes the paper.

2. Overview of the Frontend

An overview of the front-end of eMoflon::Neo is provided in Fig. 1 using the bx example
CompanyToIT [12]. In this example, a simplified organisational structure of a Company is to be
kept consistent with a corresponding IT infrastructure. The top left of Fig. 1 depicts the textual

Figure 1: Overview of selected frontend components of eMoflon::Neo

specification of the source metamodel, i.e., the Company metamodel using eMSL, the eMoflon
Specification Language, a family of modelling languages with a uniform textual concrete syntax
supported by an Xtext-based editor. A Company consists of CEOs, Admins, and Employees,
all identified via their respective names. For each class of the metamodel, there is a (nested)
block containing attribute definitions and outgoing edges to other classes. The most important
UML language features for specifying associations, such as multiplicities, aggregation and
composition are supported. The corresponding read-only visualisation of the metamodel is
depicted in the bottom left of Fig. 1 in a visual concrete syntax based on PlantUML1, which

1https://plantuml.com

https://plantuml.com

has already been used for rule visualisation in eMoflon::IBeX. To complement the textual eMSL
editor, PlantUML diagrams are automatically generated for all eMSL entities including (meta-
)models, graph patterns, constraints and rules. The visualisation is dynamic in the sense that it
constantly adapts to the current selection in the textual editor. It is not only useful to obtain a
helpful overview, but can also be used for navigation as elements in the view can be hyperlinked
to locations in the corresponding textual eMSL files.

Consistency management with eMoflon::Neo is based on the TGG formalism [1]. The TGG
for defining consistent model triples for the CompanyToIT example consists of multiple rules,
one of which is depicted to the top right of Fig. 1 in a textual concrete syntax, and to the bottom
right in the corresponding visual concrete syntax. The rule AdminToRouterRule creates an
Admin in the company model and links it to a Router in the IT model. An existing company,
a corresponding it, and the ceo of the company are required as context in order to match the
rule in the source model. Context elements are coloured black in the visual syntax, whereas
created elements are green and have a ++ mark-up in the textual syntax.

The graph pattern AlreadyHasAnAdmin is attached to the rule as a negative application
condition, guaranteeing that no admin has been added to the company before. The pattern
consists of a Company, a CEO and another Admin. When attached to the rule, the company and
the ceo are matched to the same objects in both the pattern and the rule (indicated textually
by using the same names, and visually by connecting these variables). In a similar manner,
patterns can also be attached to metamodels as negative, positive, or implication constraints.
All basic constraint types can be further combined via logical connectors.2 Derived consistency
management operations must guarantee that all constraints hold for generated output models.

3. Architectural Overview

The software architecture of eMoflon::Neo is depicted in Fig. 2 as a component diagram. As
mentioned in Sect. 2, the eMSL language (file extension .msl) is used to uniformly specify all
involved model management artefacts. For Graph Transformation (GT) and TGG projects, both
metamodels and (triple) graph grammars are specified and stored in this format.

The back end of eMoflon::Neo can be subdivided into several components as depicted in Fig. 2.
At compile time, the Rule Compiler uses the TGG specification to generate GT operational
rules (also in eMSL) for all supported operations. The Generator, composed itself of several
modules, is used to perform all consistency management operations, which can be configured
via the generated operational rules and Java API code.

Finally, a Cypher Query Translator connects the back end to the Neo4j database, which
contains all runtime models. Cypher3 queries are generated to collect matches for operational
rules and apply them on the models. The results are returned as an array of IDs for nodes
and edges, which are either part of the match, or have been created by rule applications. Most
operations (FWD_OPT (forward transformation), BWD_OPT (backward transformation), CO
(check only), CC (correspondence creation) and CS (concurrent synchronisation)) are supported
by an Integer Linear Programming (ILP) solver to choose a subset of actual rule applications

2The interested reader is referred to Ehrig et al. [13] for further details on graph constraints.
3Cypher is the declarative pattern matching and transformation language for Neo4j.

eMoflon::Neo

Neo4j

TGG Tool

TGG ToolVICToRy

TGG ToolVICToRy

TGG ToolVICToRy

Front End
(Xtext-based Editor

and Plant UML
Visualisation)

Back End

Cypher Query Translator

Rule Compiler

ILP Solver

SAT4J Gurobi

GEN.java

FWD_OPT.java

BWD_OPT.

CO.java

CC.java

CS.java

ILP

Optimal Solution

Node IDs,
Edge IDs

Cypher
Queries

TGG Project

TGG.mslMetamodel.msl

Model.msl

Generator

Startup Module Cleanup Module

Rule Scheduler Termination
Condition

Update Policy
Match

Reprocessor

Project

GT Project

contains contains

Rules.msl

Figure 2: Architecture of eMoflon::Neo

from a predetermined superset. This approach simplifies guaranteeing formal properties such
as correctness and completeness for all operations, as opposed to “greedy” strategies that apply
rules immediately [3]. eMoflon::Neo currently supports SAT4J [14] and Gurobi [15] as solvers;
adapters for other solvers can be added as required.

All consistency management operations follow a common work-flow, which we denote as the
“core cycle”, depicted in Fig. 3 as an activity diagram. Each activity is implemented as a module,
which can be reused and combined with other modules to configure an operation. The startup
module performs initialisation steps, such as setting temporary translation markers to their
default value. In a loop, matches for (potential) rule applications and other patterns (e.g. for
constraints) are collected: The rule scheduler selects rules for the subsequent pattern matching
step, for which a maximum number of matches can be set. This is especially helpful for model
generation (GEN), and can also be useful for other operations on very large models. For pattern
matching, the first costly step in the database, the scheduling request is translated into a cypher
query for the database. Based on the query results, matches are added to a match container.
If this container is non-empty, matches are selected from the match container to be applied
according to an update policy. While it is possible and greatly improves performance to select
multiple matches to be applied in parallel, the update policy must guarantee that these matches
are not in conflict with each other, i.e., make sure that only one of the potentially conflicting
matches are chosen to be applied. The selected matches are then applied in a subsequent step in
the database. Depending on the update policy, it is possible that there are still unused matches in
the match container at this stage. Match reprocessing denotes the strategy applied to determine
which matches can be safely used for the next iteration, and which have become invalid and
must thus be removed. In a final step of the main loop, a pre-defined termination condition is
checked. Such a condition could be, e.g., that no new matches were found in the last iteration.
If this condition does not yet hold, a new iteration of the main loop begins. Otherwise, the
clean-up module prepares the operation’s termination. Depending on the concrete operation, a

clean-up can entail removing all temporary markers, performing ILP solving to determine the
optimal result from a set of candidates, deleting all other sub-optimal candidates, etc. In this
step, it is also guaranteed that the produced result fulfils all posed constraints.

[condition
not reached]

[condition
reached]

matches?

> 0

= 0

Generator
Initialisation

Rule
Scheduling

Pattern
Matching

Match
Selection

Rule
Application

Match
Reprocessing

Termination
Check

Clean-Up

eMoflon

Neo4j

Startup
Module

Rule
Scheduler

Update Policy Match Reprocessor

Termination
Condition

Cleanup
Module

Figure 3: Core Cycle

4. Evaluation

To assess the scalability of eMoflon::Neo, we measured its runtime performance using examples
FamiliesToPersons [16], ClassDiagramToDatabaseSchema [17] and CompanyToIT [12] from the
bx example repository. We compared the runtime measurements to those for our previous
EMF-based tool eMoflon::IBeX [4] in a comparable setting, taking only operations with a similar
implementation in both tools into account. We investigate the following research questions:

(RQ1) How does the use of graph databases relate to runtime performance? Are differences for
growing (meta-)model sizes or an increasing number of rules observable?

(RQ2) Are there differences between the supported operations regarding runtime performance?
For which operations is the use of graph databases especially beneficial?

Setup: The three examples were tested for model sizes from 1,000 to 100,000 elements (nodes
and edges). We repeated each test run five times with a time-out of 20 minutes and took
the median to reduce the effect of outliers. The execution environment for the test runs was
a standard notebook with an Intel Core i7 (1.80 GHz), 16GB RAM, and Windows 10 64-bit.
eMoflon::Neo was installed based on an Eclipse IDE for Java and DSL Developers, version
2021-03 (4.19.0) with JDK version 13. 4GB RAM were allocated to the JVM running the tests,
while 8GB were allocated to Neo4j (version 3.5.8). Gurobi 8.1.1 was used as an ILP solver.

Results: The runtime measurements for the three examples are depicted in Fig. 4a - 6b for
IBeX and Neo. Note that a logarithmic scale is used on both axes to show results for small and
large models in the same diagram. For FamiliesToPersons (Fig. 4), IBeX and Neo perform equally
well for FWD_OPT, whereas Neo shows better scalability for all other operations. The ratio
converges to 1 as IBeX reached the time-out for BWD_OPT and CC for 10,000 elements and Neo

[#nodes + #edges]

[s
]

1

10

100

1000

1000 5000 10000 50000

BWD_OPT CC CO FWD_OPT

(a) eMoflon::IBeX

[#nodes + #edges]

[s
]

1

10

100

1000

1000 5000 10000 50000

BWD_OPT CC CO FWD_OPT

(b) eMoflon::Neo

Figure 4: Runtime Measurements: FamiliesToPersons

for 20,000 elements. IBeX appears to scale better for ClassDiagramToDatabaseSchema (Fig. 5)
with the exception of CC on large models. We assume that the linear, hierarchical metamodel
structures of this example are advantageous for the pattern matcher of IBeX. For CompanyToIT

[#nodes + #edges]

[s
]

0,5
1

5
10

50

1000 5000 10000 50000

BWD_OPT CC CO FWD_OPT

(a) eMoflon::IBeX

[#nodes + #edges]

[s
]

0,5

5

50

1000 5000 10000 50000

BWD_OPT CC CO FWD_OPT

(b) eMoflon::Neo

Figure 5: Runtime Measurements: ClassDiagramToDatabaseSchema

(Fig. 6), the runtime differences are substantial for all operations except BWD_OPT. The ratio
decrease for FWD_OPT and CC is again caused by IBeX reaching the timeout earlier than Neo
(50,000 and 5,000 elements). Compared to the other examples, CompanyToIT has slightly larger
rules and metamodels, and generally a more complex pattern structure.
Summary: The results indicate that eMoflon::Neo scales better than eMoflon::IBeX with

increasing rule and metamodel complexity, whereas IBeX might show a better performance for
simpler TGGs (RQ1). The gain in performance, however, depends more on the nature of the
concrete example than on the particular operation (RQ2).
Threats to validity: As a baseline for our comparison, we used measurements for the mid

2019 version of IBeX, which might not completely reflect the current state of the tool. We
restricted the comparison to similarly implemented operations, not involving strategies such as
(concurrent) model synchronisation, which is implemented very differently in both tools. As we
have shown that the results strongly depend on the concrete examples, it would be important
to test with further realistic (industrial) examples to gain more insights on scalability.

[#nodes + #edges]

[s
]

1

10

100

1000

1000 5000 10000 50000

BWD_OPT CC CO FWD_OPT

(a) eMoflon::IBeX

[#nodes + #edges]

[s
]

1

10

100

1000

1000 5000 10000 50000

BWD_OPT CC CO FWD_OPT

(b) eMoflon::Neo

Figure 6: Runtime Measurements: CompanyToIT

5. Related Work

There are several EMF-based TGG tools, including MoTE [18], EMorF [19], Henshin-TGG [20],
and the TGG-Interpreter [21], each supporting different consistency management operations. As
a successor of eMoflon::Tie [22], the EMF-based components of eMoflon::IBeX [23, 10] are similar
to the corresponding components in eMoflon::Neo. For this reason, we chose eMoflon::IBeX for
the runtime performance assessment in Sect. 4 in order to investigate the effect of switching
from EMF to Neo4j for TGG-based consistency management. Our evaluation indicates that the
combination of EMF and incremental pattern matching can be a bottleneck for larger model
sizes in combination with more complex rules and metamodels. Concerning general tooling
improvements, eMoflon::Neo covers all modelling tasks with eMSL, providing a uniform textual
and visual concrete syntax. We have found this to be beneficial especially for teaching as
students only have to learn how to use one tool and one consistent family of languages.

Neo4j has been used as an underlying graph database for the GT tool GRAPE [5]. An
embedded Domain-Specific Language (DSL) in Closure is used to define rules, from which
Cypher statements are generated to query the database. GRAPE uses a textual concrete syntax
together with a visualisation, and supports graph transformations on untyped graphs.

Alqahtani and Heckel use Neo4j for TGG-based model transformations [24]. TGG rules are
translated into Gremlin code, which is an alternative query language for Neo4j. In an experi-
mental performance comparison with eMoflon::IBeX, their approach shows better scalability
results. Their implementation, however, only supports forward and backward transformations
without completeness guarantees, whereas eMoflon::Neo covers numerous other TGG opera-
tions. Daniel et al. [6] use Gremlin for ATL-based graph transformations in a similar fashion.
Besides Neo4j, adapters for other NoSQL databases exist, such as OrientDB and MongoDB.

NeoEMF [25, 26] was recently proposed as a seamless EMF-compatible layer over Neo4j and
other NoSQL databases. The advantages of graph databases with respect to scalability and the
well-known EMF resource handling are synergetically combined, which makes it possible to
attach NeoEMF to EMF-based bx tools. Model transformations are supported, but take place in
main memory and have to be replicated in the database. Furthermore, using this intermediate
layer restricts the control over how, e.g., types are mapped to Neo4j, and prevents leveraging all
advantages of the particular database, such as attributed edges for bookkeeping operations.

6. Conclusion and Future Work

In this paper we presented eMoflon::Neo as a novel addition to the eMoflon toolsuite. eMoflon::Neo
leverages Neo4j as a graph database for all runtime models and TGG-based consistency op-
erations. Our comparison with a similar EMF-based TGG tool indicates that this allows for
improved scalability, especially for more complex examples and for growing model size. Con-
cerning usability of the tool, especially for teaching, eMoflon::Neo provides a novel specification
language eMSL that uniformly supports modelling, metamodelling, patterns, constraints, rules
and TGGs. As future work we plan to improve the interoperability with EMF-based tools
regarding model and metamodel exchange. As our evaluation was restricted to a comparison
with respect to runtime performance, we plan to investigate on the benefits regarding flexibility
and potential drawbacks of storing (meta-)models in an external graph database. We also plan to
further optimise the current set of TGG-based operations, using industrial examples of realistic
size and complexity.

Acknowledgements

This work was partially supported by the North Rhine Westphalian Ministry of Economic
Affairs, Innovation, Digitalisation and Energy (MWIDE) through the Pro-LowCode project (005-
2011-0022). We would like to thank Deekshitha Veeraraje Urs, Jannik Hinz, Maximilian Schmidt,
and Mario Treiber (Paderborn University) for their valuable contributions to developing the
tool.

References

[1] A. Schürr, Specification of Graph Translators with Triple Graph Grammars, in: E. W.
Mayr, G. Schmidt, G. Tinhofer (Eds.), Graph-Theoretic Concepts in Computer Science, 20th
International Workshop, WG ’94, Herrsching, Germany, June 16-18, 1994, Proceedings,
volume 903 of Lecture Notes in Computer Science, Springer, 1994, pp. 151–163. doi:10.
1007/3-540-59071-4_45.

[2] eMoflon Developer Team, eMoflon, https://emoflon.org, 2021.
[3] N. Weidmann, L. Fritsche, A. Anjorin, A search-based and fault-tolerant approach to

concurrent model synchronisation, in: R. Lämmel, L. Tratt, J. de Lara (Eds.), Proceedings
of the 13th ACM SIGPLAN International Conference on Software Language Engineering,
SLE 2020, Virtual Event, USA, November 16-17, 2020, ACM, 2020, pp. 56–71. doi:10.1145/
3426425.3426932.

[4] N. Weidmann, A. Anjorin, E. Leblebici, A. Schürr, Consistency management via a combi-
nation of triple graph grammars and linear programming, in: O. Nierstrasz, J. Gray, B. C.
d. S. Oliveira (Eds.), Proceedings of the 12th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2019, Athens, Greece, October 20-22, 2019, ACM,
2019, pp. 29–41. doi:10.1145/3357766.3359544.

[5] J. H. Weber, GRAPE - A graph rewriting and persistence engine, in: J. de Lara, D. Plump
(Eds.), Graph Transformation - 10th International Conference, ICGT 2017, Marburg, Ger-

http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/3-540-59071-4_45
https://emoflon.org
http://dx.doi.org/10.1145/3426425.3426932
http://dx.doi.org/10.1145/3426425.3426932
http://dx.doi.org/10.1145/3357766.3359544

many, July 18-19, 2017, Proceedings, volume 10373 of Lecture Notes in Computer Science,
Springer, 2017, pp. 209–220. doi:10.1007/978-3-319-61470-0_13.

[6] G. Daniel, F. Jouault, G. Sunyé, J. Cabot, Gremlin-ATL: a scalable model transformation
framework, in: G. Rosu, M. D. Penta, T. N. Nguyen (Eds.), Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, ASE 2017,
Urbana, IL, USA, October 30 - November 03, 2017, IEEE Computer Society, 2017, pp.
462–472. doi:10.1109/ASE.2017.8115658.

[7] eMoflon Developer Team, eMoflon-Neo. A Neo4j-based implementation of eMoflon, https:
//github.com/eMoflon/emoflon-neo, 2021.

[8] Neo4j, Inc., Neo4j, https://neo4j.com/, 2021.
[9] PlantUML, PlantUML in a nutshell, https://plantuml.com, 2021.

[10] N. Weidmann, A. Anjorin, L. Fritsche, G. Varró, A. Schürr, E. Leblebici, Incremental
bidirectional model transformation with emoflon: : Ibex, in: J. Cheney, H. Ko (Eds.),
Proceedings of the 8th International Workshop on Bidirectional Transformations co-
located with the Philadelphia Logic Week, Bx@PLW 2019, Philadelphia, PA, USA, June 4,
2019, volume 2355 of CEUR Workshop Proceedings, CEUR-WS.org, 2019, pp. 45–55. URL:
http://ceur-ws.org/Vol-2355/paper4.pdf.

[11] The BX Community, The Bx Examples Repository, http://bx-community.wikidot.com/
examples:home, 2021.

[12] The BX Community, CompanyToIT, http://bx-community.wikidot.com/examples:
companytoit, 2021.

[13] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic Graph Transfor-
mation, Monographs in Theoretical Computer Science. An EATCS Series, Springer, 2006.
doi:10.1007/3-540-31188-2.

[14] Artois University, CNRS, Sat4j the boolean satisfaction and optimization library in Java,
https://www.sat4j.org/, 2021.

[15] Gurobi Optimization, LLC., Gurobi Optimization. The Fastest Solver, https://www.gurobi.
com/, 2021.

[16] The BX Community, FamiliesToPersons, http://bx-community.wikidot.com/examples:
familytopersons, 2021.

[17] The BX Community, ClassDiagramToDatabaseSchema, http://bx-community.wikidot.com/
examples:classdiagramstodatabaseschemas, 2021.

[18] H. Giese, L. Lambers, B. Becker, S. Hildebrandt, S. Neumann, T. Vogel, S. Wätzoldt,
Graph transformations for MDE, adaptation, and models at runtime, in: M. Bernardo,
V. Cortellessa, A. Pierantonio (Eds.), Formal Methods for Model-Driven Engineering -
12th International School on Formal Methods for the Design of Computer, Communi-
cation, and Software Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012. Advanced
Lectures, volume 7320 of Lecture Notes in Computer Science, Springer, 2012, pp. 137–191.
doi:10.1007/978-3-642-30982-3_5.

[19] L. Klassen, R. Wagner, EMorF - A Tool for Model Transformations, ECEASST 54 (2012).
doi:10.14279/tuj.eceasst.54.768.

[20] C. Ermel, F. Hermann, J. Gall, D. Binanzer, Visual Modeling and Analysis of EMF Model
Transformations Based on Triple Graph Grammars, ECEASST 54 (2012). doi:10.14279/
tuj.eceasst.54.771.

http://dx.doi.org/10.1007/978-3-319-61470-0_13
http://dx.doi.org/10.1109/ASE.2017.8115658
https://github.com/eMoflon/emoflon-neo
https://github.com/eMoflon/emoflon-neo
https://neo4j.com/
https://plantuml.com
http://ceur-ws.org/Vol-2355/paper4.pdf
http://bx-community.wikidot.com/examples:home
http://bx-community.wikidot.com/examples:home
http://bx-community.wikidot.com/examples:companytoit
http://bx-community.wikidot.com/examples:companytoit
http://dx.doi.org/10.1007/3-540-31188-2
https://www.sat4j.org/
https://www.gurobi.com/
https://www.gurobi.com/
http://bx-community.wikidot.com/examples:familytopersons
http://bx-community.wikidot.com/examples:familytopersons
http://bx-community.wikidot.com/examples:classdiagramstodatabaseschemas
http://bx-community.wikidot.com/examples:classdiagramstodatabaseschemas
http://dx.doi.org/10.1007/978-3-642-30982-3_5
http://dx.doi.org/10.14279/tuj.eceasst.54.768
http://dx.doi.org/10.14279/tuj.eceasst.54.771
http://dx.doi.org/10.14279/tuj.eceasst.54.771

[21] J. Greenyer, E. Kindler, Comparing Relational Model Transformation Technologies: Imple-
menting Query/View/Transformation with Triple Graph Grammars, Software and System
Modeling 9 (2010) 21–46. doi:10.1007/s10270-009-0121-8.

[22] E. Leblebici, A. Anjorin, A. Schürr, Developing eMoflon with eMoflon, in: D. D. Rus-
cio, D. Varró (Eds.), Theory and Practice of Model Transformations - 7th International
Conference, ICMT 2014, Held as Part of STAF 2014, York, UK, July 21-22, 2014. Pro-
ceedings, volume 8568 of Lecture Notes in Computer Science, Springer, 2014, pp. 138–145.
doi:10.1007/978-3-319-08789-4_10.

[23] N. Weidmann, A. Anjorin, P. Robrecht, G. Varró, Incremental (unidirectional) model
transformation with emoflon: : Ibex, in: E. Guerra, F. Orejas (Eds.), Graph Transformation
- 12th International Conference, ICGT 2019, Held as Part of STAF 2019, Eindhoven, The
Netherlands, July 15-16, 2019, Proceedings, volume 11629 of Lecture Notes in Computer
Science, Springer, 2019, pp. 131–140. doi:10.1007/978-3-030-23611-3_8.

[24] A. Alqahtani, R. Heckel, Model based development of data integration in graph databases
using triple graph grammars, in: M. Mazzara, I. Ober, G. Salaün (Eds.), Software Technolo-
gies: Applications and Foundations - STAF 2018 Collocated Workshops, Toulouse, France,
June 25-29, 2018, Revised Selected Papers, volume 11176 of Lecture Notes in Computer
Science, Springer, 2018, pp. 399–414. doi:10.1007/978-3-030-04771-9_29.

[25] G. Daniel, G. Sunyé, A. Benelallam, M. Tisi, Y. Vernageau, A. Gómez, J. Cabot, NeoEMF:
A multi-database model persistence framework for very large models, in: J. de Lara, P. J.
Clarke, M. Sabetzadeh (Eds.), Proceedings of the MoDELS 2016 Demo and Poster Sessions
co-located with ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2016), Saint-Malo, France, October 2-7, 2016, volume
1725 of CEUR Workshop Proceedings, CEUR-WS.org, 2016, pp. 1–7.

[26] G. Daniel, G. Sunyé, A. Benelallam, M. Tisi, Y. Vernageau, A. Gómez, J. Cabot, NeoEMF: A
multi-database model persistence framework for very large models, Sci. Comput. Program.
149 (2017) 9–14. doi:10.1016/j.scico.2017.08.002.

http://dx.doi.org/10.1007/s10270-009-0121-8
http://dx.doi.org/10.1007/978-3-319-08789-4_10
http://dx.doi.org/10.1007/978-3-030-23611-3_8
http://dx.doi.org/10.1007/978-3-030-04771-9_29
http://dx.doi.org/10.1016/j.scico.2017.08.002

	1 Introduction and Motivation
	2 Overview of the Frontend
	3 Architectural Overview
	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work

