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Abstract
Delta lenses are a kind of morphism between categories which are used to model bidirectional trans-

formations between systems. Classical state-based lenses, also known as very well-behaved lenses, are

both algebras for a monad and coalgebras for a comonad. Delta lenses generalise state-based lenses, and

while delta lenses have been characterised as certain algebras for a semi-monad, it is natural to ask if

they also arise as coalgebras.

This short paper establishes that delta lenses are coalgebras for a comonad, through showing that

the forgetful functor from the category of delta lenses over a base, to the category of cofunctors over

a base, is comonadic. The proof utilises a diagrammatic approach to delta lenses, and clarifies several

results in the literature concerning the relationship between delta lenses and cofunctors. Interestingly,

while this work does not generalise the corresponding result for state-based lenses, it does provide new

avenues for exploring lenses as coalgebras.
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1. Introduction

The goal of understanding various kinds of lenses as mathematical structures has been an

ongoing program in the study of bidirectional transformations. For example, very well-behaved
lenses [1], also known as state-based lenses [2], have been understood as both algebras for a

monad [3] and coalgebras for a comonad [4, 5]. A generalisation of state-based lenses called

category lenses [6] were also introduced as algebras for a monad, based on classical work in

2-category theory on split opfibrations [7]. Another kind of lens between categories called a

delta lens [8] was shown to be a certain algebra for a semi-monad [9], however it remained

open as to whether delta lenses could also be characterised as (co)algebras for a (co)monad.

The purpose of this short paper is to characterise delta lenses as coalgebras for a comonad

(Theorem 9). The proof of this simple result builds upon and clarifies several recent advances in

the theory of delta lenses.

In 2017, Ahman and Uustalu introduced update-update lenses [2] as morphisms of directed
containers [10], which are equivalent to certain morphisms called cofunctors between categories

[11]. In the same paper, they show explicitly how, using the notation of directed containers,

delta lenses may be understood as cofunctors with additional structure.

In earlier work [12] from 2016, Ahman and Uustalu also provide a construction on morphisms

of directed containers which yields a split pre-opcleavage for a functor; in other words, they
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show how cofunctors may be turned into delta lenses. We show that this construction is actually

a right adjoint to the forgetful functor from delta lenses to cofunctors (Lemma 8), and that the

coalgebras for the comonad generated from this adjunction are delta lenses (Theorem 9).

In 2020, a diagrammatic characterisation of delta lenses was introduced by the current author

[13], building upon an earlier characterisation of cofunctors as spans [14]. This diagrammatic

approach is utilised throughout this paper, and leads to another simple characterisation of delta

lenses (Proposition 6).

Overview of the paper and related work

This section provides an informal overview of the paper, together with further commentary

on the background, and references to related work. The goal is to provide a conceptual under-

standing of the results; later sections will be dedicated to the formal mathematics.

Section 2 contains the mathematical background required for the main results, which are

presented in Section 3. Consequences of the main result and concluding remarks are in Section 4.

Throughout the paper we make the assumption that a system, whatever that may be, can be

understood as a category. The objects of this category are the states of the system, while the

morphisms are the transitions (or deltas) between system states.

Delta lenses were introduced in [8, Definition 4] to model bidirectional transformations

between systems when they are understood as categories. The Get of a delta lens is a functor

𝑓 : 𝐴 → 𝐵 from the source category 𝐴 to the view category 𝐵, while the Put is a certain kind

of function (that this paper calls a lifting operation) satisfying axioms analogous to the classical

lens laws. A slightly modified definition of delta lens appeared in [9, Definition 1], however this

definition still seemed to be ad hoc, and made it difficult to prove deep results without checking

many details.

The definition of delta lens (Definition 4) given in this paper is based on a diagrammatic

characterisation which first appeared in [13, Corollary 20], by representing the Put in terms

of bijective-on-objects functors (Definition 1) and discrete opfibrations (Definition 2). This

diagrammatic approach provides a natural framework for studying delta lenses using category

theory, and has the benefit of allowing for very simple (albeit more abstract) proofs. This

approach will be utilised throughout this paper, although in many places we will also include

explicit descriptions of constructions using the traditional definition of a delta lens.

A key idea presented in [2, 13] is that the Get and Put of a delta lens can be separated into

functors and cofunctors (Definition 3), respectively. Intuitively, a cofunctor can be understood

as a delta lens without any information on how the Get acts on morphisms; it is the minimum

amount of structure needed to specify a Put operation between categories. It was shown in the

paper [2] that delta lenses are cofunctors with additional structure. In this paper, we aim to

show that said structure arises coalgebraically via a comonad.

Both delta lenses and cofunctors are predominantly understood and studied as morphisms
between categories, however to prove that delta lenses are cofunctors equipped with coalgebraic

structure, it is necessary for them to be understood as objects. Therefore this paper introduces a

new category Cof(𝐵), whose objects are cofunctors into a fixed category 𝐵 (Definition 5). The

category Lens(𝐵), whose objects are delta lenses into a fixed category 𝐵, was previously studied

in [15, 16]. Surprisingly, we show that the category Lens(𝐵) can be defined (Definition 7) as



the slice category Cof(𝐵)/1𝐵 . Not only does this provide a new characterisation of delta lenses

in term of cofunctors (Proposition 6), but also provides the insight that the canonical forgetful

functor 𝐿 : Lens(𝐵) → Cof(𝐵), which takes a delta lens to its underlying Put cofunctor, is a

projection from a slice category.

Finally, proving that delta lenses are coalgebras for a comonad on Cof(𝐵) amounts to showing

that the forgetful functor 𝐿 : Lens(𝐵) → Cof(𝐵) is comonadic (Theorem 9). A necessary

condition is that 𝐿 has a right adjoint 𝑅 (Lemma 8), which constructs the cofree delta lens
from each cofunctor in Cof(𝐵). This construction first appeared explicitly in [12, Section 3.2],

however it was not obviously a right adjoint — or even a functor — and it was disconnected from

the context of cofunctors and delta lenses. Both Lemma 8 and Theorem 9 admit straightforward

proofs, with the benefit of the diagrammatic approach to cofunctors and delta lenses.

Notation and conventions

This section outlines some of the notation and conventions used in the paper. Given a category𝐴,

its underlying set (or discrete category) of objects is denoted 𝐴0. Given a functor 𝑓 : 𝐴 → 𝐵,

its underlying object assignment is denoted 𝑓0 : 𝐴0 → 𝐵0. Similarly, a cofunctor 𝜙 : 𝐴 ↛ 𝐵
will have an underlying object assignment 𝜙0 : 𝐴0 → 𝐵0. Thus the orientation of a cofunctor

agrees with the orientation of its underlying object assignment (this convention is chosen to

agree with the orientation of delta lenses, however this choice is not uniform in the literature

on cofunctors). The operation cod sends each morphism to its codomain or target object.

2. Prerequisites for the main result

We first recall two special classes of functors, which we will use as the building blocks for

defining cofunctors and delta lenses. New contributions in this section include the category

Cof(𝐵) whose objects are cofunctors (Definition 5), and the characterisation of delta lenses as

certain morphisms therein (Proposition 6).

Definition 1. A functor 𝑓 : 𝐴 → 𝐵 is bijective-on-objects if its underlying object assignment

𝑓0 : 𝐴0 → 𝐵0 is a bijection.

Definition 2. A functor 𝑓 : 𝐴 → 𝐵 is a discrete opfibration if for all pairs,

(𝑎 ∈ 𝐴, 𝑢 : 𝑓𝑎 → 𝑏 ∈ 𝐵)

there exists a unique morphism 𝑤 : 𝑎 → 𝑎′ in 𝐴 such that 𝑓𝑤 = 𝑢.

Definition 3. A cofunctor 𝜙 : 𝐴 ↛ 𝐵 between categories is a span of functors,

𝑋

𝐴 𝐵

𝜙 𝜙
(1)

where 𝜙 is a bijective-on-objects functor and 𝜙 is a discrete opfibration.



Alternatively, a cofunctor 𝜙 : 𝐴 ↛ 𝐵 consists of a function 𝜙0 : 𝐴0 → 𝐵0, together with

a lifting operation 𝜙, which assigns each pair (𝑎 ∈ 𝐴, 𝑢 : 𝜙0𝑎 → 𝑏 ∈ 𝐵) to a morphism

𝜙(𝑎, 𝑢) : 𝑎 → 𝑎′ in 𝐴, such that the following axioms are satisfied:

(1) 𝜙0 cod
(︀
𝜙(𝑎, 𝑢)

)︀
= cod(𝑢);

(2) 𝜙(𝑎, 1𝜙0𝑎) = 1𝑎;

(3) 𝜙(𝑎, 𝑣 ∘ 𝑢) = 𝜙(𝑎′, 𝑣) ∘ 𝜙(𝑎, 𝑢), where 𝑎′ = cod
(︀
𝜙(𝑎, 𝑢)

)︀
.

Definition 4. A delta lens (𝑓, 𝜙) : 𝐴 ⇌ 𝐵 between categories is a commutative diagram of

functors,

𝑋

𝐴 𝐵

𝜙 𝜙

𝑓

(2)

where 𝜙 is a bijective-on-objects functor and 𝜙 is a discrete opfibration.

We can also describe a delta lens (𝑓, 𝜙) : 𝐴 ⇌ 𝐵 as consisting of a functor 𝑓 : 𝐴 → 𝐵
together with a lifting operation 𝜙, which assigns each pair (𝑎 ∈ 𝐴, 𝑢 : 𝑓𝑎 → 𝑏 ∈ 𝐵) to a

morphism 𝜙(𝑎, 𝑢) : 𝑎 → 𝑎′ in 𝐴, such that the following axioms are satisfied:

(1) 𝑓𝜙(𝑎, 𝑢) = 𝑢;

(2) 𝜙(𝑎, 1𝑓𝑎) = 1𝑎;

(3) 𝜙(𝑎, 𝑣 ∘ 𝑢) = 𝜙(𝑎′, 𝑣) ∘ 𝜙(𝑎, 𝑢), where 𝑎′ = cod
(︀
𝜙(𝑎, 𝑢)

)︀
.

Every delta lens (𝑓, 𝜙) : 𝐴 ⇌ 𝐵 has an underlying functor 𝑓 : 𝐴 → 𝐵 and an underlying

cofunctor 𝜙 : 𝐴 ↛ 𝐵, and their corresponding underlying object assignments are equal; that is,

𝑓0 = 𝜙0.

Definition 5. For each category 𝐵, there is a category Cof(𝐵) of cofunctors over the base 𝐵
whose objects are cofunctors with codomain𝐵, and whose morphisms are given by commutative

diagrams of functors of the form:

𝐴 𝐶

𝑋 𝑌

𝐵

ℎ

𝜙

ℎ

𝜙

𝛾

𝛾

(3)

Equivalently, a morphism in Cof(𝐵) from a cofunctor 𝜙 : 𝐴 ↛ 𝐵 to a cofunctor 𝛾 : 𝐶 ↛ 𝐵
consists of a functor ℎ : 𝐴 → 𝐶 such that 𝛾0ℎ𝑎 = 𝜙0𝑎 for all 𝑎 ∈ 𝐴, and ℎ𝜙(𝑎, 𝑢) = 𝛾(ℎ𝑎, 𝑢)
for all pairs (𝑎 ∈ 𝐴, 𝑢 : 𝜙0𝑎 → 𝑏 ∈ 𝐵). The functor ℎ : 𝑋 → 𝑌 is then uniquely induced from

this data. Intuitively, if 𝐴 and 𝐶 are understood as source categories with a fixed view category
𝐵, then the morphisms in Cof(𝐵) are functors between the source categories which preserve

the chosen lifts, given by the corresponding cofunctors, from the view category.



Proposition 6. Every delta lens (𝑓, 𝜙) : 𝐴 ⇌ 𝐵 is equivalent to a morphism in Cof(𝐵) whose
codomain is the trivial cofunctor on 𝐵.

Proof. Consider the morphism in Cof(𝐵) given by the commutative diagram of functors:

𝐴 𝐵

𝑋 𝐵

𝐵

𝑓

𝜙

𝜙

𝜙

1𝐵

1𝐵

(4)

The upper commutative square describes a delta lens as given in Definition 4. Conversely, every

delta lens may be depicted as a morphism in Cof(𝐵) in this way.

We can unpack (4) using the explicit characterisation of morphisms in Cof(𝐵) to obtain the

precise difference between cofunctors and delta lenses, in terms of objects and morphisms.

Namely, the diagram (4) states that a delta lens corresponds to a cofunctor 𝜙 : 𝐴 ↛ 𝐵 together

with a functor 𝑓 : 𝐴 → 𝐵 such that 𝑓𝑎 = 𝜙0𝑎 for all 𝑎 ∈ 𝐴, and 𝑓𝜙(𝑎, 𝑢) = 𝑢 for all pairs

(𝑎 ∈ 𝐴, 𝑢 : 𝑓𝑎 → 𝑏 ∈ 𝐵).

Definition 7. For each category 𝐵, we define the category of delta lenses over the base 𝐵 to be

the slice category Lens(𝐵) := Cof(𝐵) / 1𝐵 , where 1𝐵 is the trivial cofunctor on 𝐵.

By Proposition 6, the objects of Lens(𝐵) are delta lenses with codomain 𝐵, represented as a

morphism into the trivial cofunctor as shown in (4). The morphisms in Lens(𝐵) are given by

morphisms (3) in Cof(𝐵) such that the following pasting condition holds:

𝐴 𝐶 𝐵

𝑋 𝑌 𝐵

𝐵

ℎ 𝑔

𝜙

ℎ

𝜙

𝛾

𝛾

𝛾

1𝐵

1𝐵

=

𝐴 𝐵

𝑋 𝐵

𝐵

𝑓

𝜙

𝜙

𝜙

1𝐵

1𝐵

(5)

In other words, the only additional requirement on a morphism ℎ : 𝐴 → 𝐶 between delta lenses

over 𝐵, compared to a morphism between cofunctors over 𝐵, is that 𝑔 ∘ ℎ = 𝑓 . This is opposed

to just requiring 𝛾0ℎ𝑎 = 𝜙0𝑎 on objects (where recall for delta lenses, the underlying object

assignments for the functor and cofunctor are equal, that is, 𝑔0 = 𝛾0 and 𝑓0 = 𝜙0).

There is a canonical forgetful functor,

𝐿 : Lens(𝐵) −→ Cof(𝐵)

which assigns every delta lens to its underlying cofunctor. This forgetful functor is the focus of

the main result in the following section.



3. Main result

While not every cofunctor may be given the structure of a delta lens, Ahman and Uustalu [12]

developed a method which constructs a delta lens from any cofunctor. To understand their

construction, first recall that the underlying objects functor (−)0 : Cat → Set has a right adjoint

(̂︀−) : Set → Cat which takes each set 𝑋 to the codiscrete category ̂︀𝑋 .

Given a cofunctor 𝜙 : 𝐴 ↛ 𝐵 with underlying object assignment 𝜙0 : 𝐴0 → 𝐵0, we may

construct the following pullback in Cat:

𝑃

𝐴 𝐵

̂︀𝐵0

𝜋𝐴 𝜋𝐵⌟

̂︀𝜙0 ∘ 𝜂𝐴 𝜂𝐵

(6)

Here 𝜂𝐵 : 𝐵 → ̂︀𝐵0 is the component of the unit for the adjunction at 𝐵, and ̂︀𝜙0 ∘ 𝜂𝐴 the

component of the unit at 𝐴 followed by image of 𝜙0 under the right adjoint. Using the universal

property of the pullback, we have the following:

𝑋

𝑃

𝐴 𝐵

̂︀𝐵0

𝜙 𝜙⟨𝜙,𝜙⟩

𝜋𝐴 𝜋𝐵⌟

̂︀𝜙0 ∘ 𝜂𝐴 𝜂𝐵

(7)

Since 𝜂𝐵 is bijective-on-objects, the projection functor 𝜋𝐴 is also bijective-on-objects which,

together with the functor 𝜙, implies that ⟨𝜙,𝜙⟩ : 𝑋 → 𝑃 is bijective-on-objects, due to the

properties of bijections at the level of objects. Thus, the upper right triangle in (7) defines a

delta lens 𝑃 ⇌ 𝐵.

The category 𝑃 has the same objects as 𝐴, but morphisms 𝑎 → 𝑎′ in 𝑃 are given by pairs

of the form (𝑤 : 𝑎 → 𝑎′ ∈ 𝐴, 𝑢 : 𝜙0𝑎 → 𝜙0𝑎
′ ∈ 𝐵). The functor 𝜋𝐵 : 𝑃 → 𝐵 projects to

the second arrow in this pair. The lifting operation which makes this functor into a delta lens

is induced by the lifting operation of the original cofunctor; it takes an object 𝑎 ∈ 𝑃 and a

morphism 𝑢 : 𝜙0𝑎 → 𝑏 ∈ 𝐵 to the morphism

(︀
𝜙(𝑎, 𝑢) : 𝑎 → 𝑎′, 𝑢 : 𝜙0𝑎 → 𝑏

)︀
in 𝑃 .

We now show that this construction due to Ahman and Uustalu is universal, in the sense

that it provides a right adjoint to the functor taking a delta lens to its underlying cofunctor.

Lemma 8. The forgetful functor 𝐿 : Lens(𝐵) → Cof(𝐵) has a right adjoint.

Proof. Using the construction in (7), define the functor 𝑅 : Cof(𝐵) → Lens(𝐵) by the assign-

ment:

𝑋

𝐴 𝐵

𝜙 𝜙 ↦−→
𝑋

𝑃 𝐵

⟨𝜙,𝜙⟩ 𝜙

𝜋𝐵

(8)



We describe the components of the unit and counit for the adjunction 𝐿 ⊣ 𝑅 and omit the

detailed checks that the triangle identities hold.

Given a cofunctor 𝜙 : 𝐴 ↛ 𝐵 the component of the counit is given by:

𝑃 𝐴

𝑋 𝑋

𝐵

𝜋𝐴

⟨𝜙,𝜙⟩

𝜙

𝜙

𝜙

(9)

Given a delta lens (𝑓, 𝜙) : 𝐴 ⇌ 𝐵 the component of the unit is given by:

𝐴 𝑃 𝐵

𝑋 𝑋 𝐵

𝐵

⟨1𝐴,𝑓⟩ 𝜋𝐵

𝜙

𝜙

⟨𝜙,𝜙⟩

𝜙

𝜙

1𝐵

1𝐵

=

𝐴 𝐵

𝑋 𝐵

𝐵

𝑓

𝜙

𝜙

𝜙

1𝐵

1𝐵

(10)

The above diagrams show that the pasting condition required in (5) is satisfied.

Theorem 9. The forgetful functor 𝐿 : Lens(𝐵) → Cof(𝐵) is comonadic.

Proof. By Lemma 8, the functor 𝐿 has a right adjoint 𝑅. To prove that 𝐿 is comonadic, it remains

to show that the category of coalgebras for the induced comonad 𝐿𝑅 on Cof(𝐵) is equivalent

to Lens(𝐵).
Given a cofunctor 𝜙 : 𝐴 ↛ 𝐵, a coalgebra structure map is given by a morphism in Cof(𝐵)

of the form:

𝐴 𝑃

𝑋 𝑋

𝐵

ℎ

𝜙

ℎ

𝜙

⟨𝜙,𝜙⟩

𝜙

(11)

However compatibility with the counit forces ℎ = 1𝑋 and ℎ = ⟨1𝐴, 𝑓⟩, where 𝑓 : 𝐴 → 𝐵 is a

functor such that 𝑓 ∘ 𝜙 = 𝜙. Compatibility with the comultiplication doesn’t add any further

conditions. Therefore, a coalgebra for the comonad 𝐿𝑅 on Cof(𝐵) is equivalent to a delta lens

(𝑓, 𝜙) : 𝐴 ⇌ 𝐵.

This theorem establishes the result stated in the title of the paper, that delta lenses (2) are

coalgebras (11) for a comonad.



4. Concluding remarks

In this paper, the category Lens(𝐵) of delta lenses over the base 𝐵 was characterised as the

category of coalgebras for a comonad on the categoryCof(𝐵) of cofunctors over the base𝐵. This

brings together recent results in the study of delta lenses and cofunctors. In particular, we have

shown that the extra structure on cofunctors given in Ahman and Uustalu’s [2] characterisation

of delta lenses is coalgebraic, and that their construction of a delta lens from cofunctor in the

paper [12] is precisely the cofree delta lens on a cofunctor. Throughout we have also shown

how the abstract diagrammatic approach to delta lenses, first introduced in [13], has led to

concise proofs of these results, and offers a clear perspective on the relationship between these

ideas.

Aside from clarification and development of theory, the results presented in this paper have

several other mathematical consequences. For example, the functor 𝐿 : Lens(𝐵) → Cof(𝐵)
creates all colimits which exist in Cof(𝐵). Thus we can take the coproduct of a pair of cofunctors

in Cof(𝐵), and automatically know how to construct the coproduct of the corresponding delta

lenses in Lens(𝐵).
Another consequence from the unit (10) of the adjunction between Cof(𝐵) and Lens(𝐵) is

that every delta lens factorises into a bijective-on-objects functor followed by a cofree lens.

Intuitively, this allows us to first pair every transition in the source category 𝐴 with a transition

in the view category 𝐵 via the functor part 𝑓 : 𝐴 → 𝐵 of the delta lens,

𝑤 : 𝑎 → 𝑎′ ∈ 𝐴 ↦−→ (𝑤 : 𝑎 → 𝑎′ ∈ 𝐴, 𝑓𝑤 : 𝑓𝑎 → 𝑓𝑎′ ∈ 𝐵)

then consider the update propagation determined by the cofunctor part 𝜙 : 𝐴 ↛ 𝐵 of the

delta lens. The cofree delta lens on a cofunctor behaves much like an analogue of constant
complement state-based lenses, except that the complement is with respect to morphisms rather

than objects.

While the main contributions of this paper are mathematical, it is hoped that these results

also prompt new ways of understanding delta lenses. For example, previously state-based lenses

have been considered from a “Put-based” perspective [17, 18], however this approach could

also be adapted to the setting of delta lenses. Rather than starting with a Get functor between

systems and then asking how we might construct a delta lens, we might instead start with a

Put cofunctor and then ask for ways in which this can be given the structure of a delta lens.

This shift of focus is subtle but important, especially in the context of the ideas in [2], as it

is arguably the Put structure (rather than the Get structure) which is central to the study of

bidirectional transformations and lenses.

On an separate note, it is worth remarking on the similarity between the main result of

this paper and the classical result stating that very well-behaved lenses are coalgebras for a

comonad [4, 5]. Despite the clear analogy between them, and the inspiration that this paper

derives from the classical result, it seems that they are unrelated at a mathematical level. The

classical result relies on Set being a cartesian closed category, and arises from the adjunction

(−)×𝐵 ⊣ [𝐵,−], whereas the results in this paper arise from a different adjunction, and don’t

require any aspect of cartesian closure.

There are many questions to be explored in future work. For instance, it is natural to ask if

Lens(𝐵) is comonadic over other categories (such as Cat as was suggested by an anonymous



reviewer), or if split opfibrations (also known as c-lenses [6]) are also comonadic over Cof(𝐵).
In recent work by the current author, it has been demonstrated that delta lenses arise as algebras

for a monad on Cat/𝐵, providing a dual to the main result of this paper and strengthening the

previous work of Johnson and Rosebrugh [9]. Finally, given the importance of the category

Lens(𝐵) in the study of symmetric lenses [15, 16], it is also hoped that the coalgebraic perspective

provides new insights into this area, and this will be the subject of further investigation.
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