
UH-MatCom at eHealth-KD Challenge 2020:
Deep-Learning and Ensemble Models for Knowledge
Discovery in Spanish Documents
Juan Pablo Consuegra-Ayalaa, Manuel Palomarb,c

aFaculty of Math and Computer Science, University of Habana, 10200 La Habana, Cuba
bUniversity Institute for Computing Research (IUII), University of Alicante, 03690 Alicante, Spain
cDepartment of Language and Computing Systems, University of Alicante, 03690 Alicante, Spain

Abstract
The eHealth-KD challenge hosted at IberLEF 2020 proposes a set of resources and evaluation scenarios
to encourage the development of systems for the automatic extraction of knowledge from unstructured
text. This paper describes the system presented by team UH-MatCom in the challenge. Several deep-
learning models are trained and ensembled to automatically extract relevant entities and relations from
plain text documents. State of the art techniques such as BERT, Bi-LSTM, and CRF are applied. The use
of external knowledge sources such as ConceptNet is explored. The system achieved average results in
the challenge, ranking fifth across all different evaluation scenarios. The ensemble method produced a
slight improvement in performance. Additional work needs to be done for the relation extraction task
to successfully benefit from external knowledge sources.

Keywords
eHealth, Knowledge Discovery, Natural Language Processing, Machine Learning, Entity Recognition,
Relation Extraction

1. Introduction

This paper describes the system presented by team UH-MatCom in the eHealth-KD challenge at
IberLEF 2020 [1]. The challenge proposes a set of evaluation scenarios and corpora to encourage
the development of systems for the automatic extraction of knowledge from unstructured text.
Both the relevant entities and the relations between them that occur in plain text documents
are asked to be identified. Though health-related documents are the main source of text, the
knowledge extracted is general-purpose, and non-health domain documents were also available
as additional evaluation collections.

Our system makes use of several models with different architectures, which were evalu-
ated across three different runs. Two of the runs submitted consist of deep learning-based
architectures, using state of the art NLP techniques for named entity recognition (NER) and
relation extraction. BERT [2], CRF [3], and Bi-LSTM [4] layers are the main components of these
models. The first architecture uses general domain knowledge extracted from ConceptNet [5]

Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2020)
email: jpconsuegra@matcom.uh.cu (J.P. Consuegra-Ayala); mpalomar@dlsi.ua.es (M. Palomar)
orcid: 0000-0003-2009-393X (J.P. Consuegra-Ayala)

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:jpconsuegra@matcom.uh.cu
mailto:mpalomar@dlsi.ua.es
https://orcid.org/0000-0003-2009-393X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

to enrich the information about entity pairs in the relation extraction task. The second one uses
additional syntactic features, such as dependency tree information instead of ConceptNet, to
encode the relation between entity pairs. The third run ensembles these two models and two
additional ones to produce an aggregated result. The ensembler parameters are automatically
tuned according to the training and development collection.

The remainder of the paper is organized as follows. Section 2 and 3 describe the different
architectures used by the system and the ensemble method applied. In Section 4, the official
results achieved in the challenge are presented. In Section 5, some insights found about the
quality of each strategy are shared. Finally, Section 6 presents the conclusions of the paper
along with some future work recommendations.

2. System Description

Our system makes use of two main architectures, from which several components are turned on
or off, to produce different variants. Both architectures are deep learning-based, and they will
be referenced onwards in this paper as BILUOV tagger and pairwise classifier. The distinction
between the two main architectures raises from the type of problem they solve. Each one is
used independently to solve the corresponding task of the challenge.

The BILUOV tagger solves a sequence tagging problem, in which each token from an input
sequence is assigned a label from the BILUOV [6] entity tagging scheme1. This model is used to
solve Task A of the challenge, oriented toward extracting the relevant entities mentioned in a
plain text sentence. The four types of entities proposed in the challenge (i.e., Concept, Action,
Predicate, and Reference) are handled independently. One BILUOV tagger instance is trained
for each entity type. These instances can optionally share intermediate layers during training, a
parameter that was explored and optimized during the challenge development phase.

The pairwise classifier solves a multi-class classification problem, in which a sequence of
tokens is processed and then assigned a single label. This model is used to solve Task B of the
challenge, oriented toward identifying the relevant relations (if any) between the previously
extracted entities. A single instance of this model is trained to handle all types of relations.
This model can optionally reuse some of the previously trained layers of the BILUOV tagger,
depending on whether the entity extraction models shared those layers or not.

2.1. Input Handling

Both models work in the most general case on sequences of tokens. The BILUOV tagger receives
the sentences tokenized as it is, and produces an output for each token in the input sequence. The
pairwise tagger receives the path of tokens in the dependency tree of the sentence between each
pair of entities occurring in the sentence (or between their Lowest Common Ancestor (LCA) in
the case of multi-word entities). Additionally, the two sequences of tokens that make the source
and head entities, respectively, are also provided to the pairwise tagger with their corresponding
previously assigned entity type. Figures 1 and 2 show the way inputs are transformed by each
architecture.

1https://devopedia.org/named-entity-recognition (Accessed 2020-05-01).

113

https://devopedia.org/named-entity-recognition

2.1.1. Common to Both Tasks

Each plain text sentence is tokenized at the word level. The following features are extracted for
each token. Figure 1 illustrates how these are directly used in the BILUOV tagger.

• Character Representation, that consists of assigning an integer value to each character
of the token according to its index in a predefined vocabulary. The selected vocabulary
was one of all ASCII letters, digits, and punctuation symbols. Padding is added at the end
to ensure that all tokens have the same number of characters.

• Word Embedding, that consists of a vector representation of the token in a continuous
semantic space. Classical pretrained word embeddings or contextual ones, such as BERT,
were considered.

• POS Tag Representation, that consists of a one-hot encoding of the Part-of-speech tag
of the token.

2.1.2. Task B specifics

On top of the previous features, some additional features are included to each token for the
pairwise classifier. Figure 2 illustrates how these are directly used in the pairwise-classifier.

• Dependency Tree Representation, that consists of a one-hot encoding of the depen-
dency label of the token on the sentence’s tree.

• Entity Type Representation, that consists of a one-hot encoding of the entity type of
the token according to the label it was assigned in the previously finished entity extraction
task. Some tokens do not belong to any entity so they are assigned an extra Not An Entity
(NaE) label. No special consideration was taken into account for tokens belonging to
multiple entities, but instead, an arbitrary label was selected from the candidates.

The dependency tree representation is only used for the tokens that form the path between
the source and head entities of the relation. Similarly, the entity type representation is not
provided for the sequence of source and head tokens, but instead, it is given as an additional
feature for the whole sequence.

2.1.3. ConceptNet

Finally, external knowledge from ConceptNet about the source and head entities of the relation
is optionally provided to the pairwise classifier. The information is captured in 36 ConceptNet
relations [5] divided across three different matching ranges.

The direct match range stands for relations found between the exact entities (possibly multi-
word) in ConceptNet or their lemmatized versions.

The related match range stands for relations found between the exact entities, their lemmas,
or words belonging to the same equivalence class that them according to ConceptNet’s
SimilarTo, Synonym, RelatedTo, and EtymologicallyDerivedFrom relations. The use of this

114

kind of match allows to check inter-language relations, which is crucial to make full use
of the knowledge contained in ConceptNet since some relations only exist between their
English equivalents.

The partial match range stands for direct and related matches found between the individual
words that make up the entities.

This information is encoded in a k-hot vector whose active components (i.e., set to 1) are the
ones corresponding to the relations for which a match was found. Only the subset of relations
occurring between Spanish and/or English terms was preprocessed due to computational
resource constraints. Nonetheless, this information is enough in the context of the challenge
since all documents are written in Spanish, and the English subset allows to capture the most
relevant relations between Spanish terms through equivalence relations.

2.2. Entity Recognition Model

To solve the entity recognition task, the BILUOV tagger architecture is used. Figure 1 summarizes
the architecture shared by these models.

At first instance, a character encoding layer is used to transform the character representation
of each token into a single vector that captures morphological dependencies on the token. This
technique has been proven effective in dealing with words out of vocabulary that share some
similarities with previously seen words. The character encoding layer consists of an embedding
layer (A) (a lookup table) followed by a Bi-LSTM layer (B). The Bi-LSTM consumes the sequence
of embedded characters and produces the concatenation of the internal LSTM’s outputs.

The previously computed character level representation, the word embedding, and the POS-
tag representation are concatenated for each token in the input sequence. These vectors are
processed by a list of stacked Bi-LSTM layers (C) to produce a sequence of vectors that encode
the tokens in the input sentence. The number of stacked layers is a parameter to be optimized,
but during the challenge, all evaluations were made with a single layer.

Finally, a linear dense layer and CRF (D) are applied to transform each token vector into the
corresponding most probable tag in the BILUOV tagging scheme.

2.2.1. Task A

Four independent instances with this architecture are trained, each one corresponding to an
entity type. Doing so has two major benefits. First, this simplifies the entity encoding and
decoding in the sentence since there is no need to differentiate the BILUOV tags between entities
types in the same sentences. Second, it allows to model overlapping between entities with
different types without additional considerations. On the other hand, splitting the task into four
subproblems has the disadvantage of reducing the relevant training data for each model (i.e.,
the number of blank annotations per sentence increase), and the errors while predicting with
each model are accumulated and propagated.

To mitigate the previous drawbacks, the character encoding layer is optionally shared across
models and jointly trained. This allows benefiting from additional training examples for certain
components of the models while continuing to model different hypothesis spaces in each model.

115

Word Level

BERT Embedding

cáncer

POS-tag

cáncer

Dense (CRF)

O EB M

El cáncer de piel

…

Character Level

c á n c e r

(B) Bi-LSTM

(A) Embedding

(C) Stacked
Bi-LSTMs

(D) Fully
Connected

+ CRF

Figure 1: Summary of the BILUOV tagger architecture. An example sentence (“El cáncer de piel”) is
processed by the BILUOV tagger that was created for the Concept entity type. The model outputs a
sequence of tags (O-B-M-E), which is then decoded to obtain the mentioned Concepts (only “cáncer de
piel” in this example).

The option to share layers is a parameter of the system, but in the context of the challenge, all
tested models were jointly trained due to an empirically observed improvement on performance.
Dropout layers are optionally added during training between each set pair of contiguous layers.

2.3. Relation Extraction Model

To solve the relation extraction task, the pairwise classifier architecture is used. Figure 2
summarizes the architecture used by this model. The architecture is divided in three stages:
encoding of the source and head entities (Figure 2a), encoding of the path between the entities
(Figure 2b), and representation combination and prediction (Figure 2c).

Similar to the BILUOV tagger, the pairwise classifier uses a character encoder layer (A) to
transform the character representation of a token into a single vector. In case the four entity
recognition models were trained sharing this layer, the previously computed weights are frozen

116

Word Level

BERT Embedding

cáncer

POS-tag

cáncer

Character Level

c á n c e r

(A) Character
Encoder

cáncer de piel

cáncer de piel

(B) Bi-LSTM

radiación solar

Word Level POS-tag

Character Level

radiación solar

(C) Source (C) Head

Entity Type

concept
Entity Type

concept

Source Representation Head Representation

(a) Fragment of the pairwise classifier responsible of computing the source and head entities representa-
tions.

causa

radiación

solar

cáncer

de

piel

causaradiación cáncer

Word Level POS-tag

Character Level Dependency Tag

Entity Type

PathRepresentation

(D) Bi-LSTM

(E) Bi-LSTM

(b) Fragment of the pairwise classifier respon-
sible of encoding the path between the
source and head entities.

PathRepresentation

Source Representation
Head Representation

Dense (Linear)

ConceptNet
Representation

Dense (Softmax)

(F) Reduction

0 00 01… …

causes

(G) Fully
Connected

(c) Fragment of the pairwise classifier responsible of
combining all representations to finally predict the
most probable relation mentioned about the source
and head entities.

Figure 2: Summary of the pairwise classifier architecture.

117

and reused here. In other case, a new character encoder layer is created and trained.
This architecture makes use of three Bi-LSTM layers to encode the tokens and produce

intermediate representations that capture dependencies between pairs of entities. The first
Bi-LSTM (B) consumes the sequence of tokens that made up the source entity (and head entity)
to produce a compact representation for the entity. The entity type representation of the source
and head entities are concatenated to the previously obtained vectors (C). The second Bi-LSTM
(D) processes the tokens in the path between the source and head tokens (i.e., the LCA of
their respective entity’s tokens) over the dependency tree, and transform them into a hidden
representation. Afterward, the third Bi-LSTM (E) consumes the hidden representations to
produce a vector that encodes the whole path.

The encoded representation of the head and source entities and the path between them are
concatenated. An optional linear dense layer (F) is included afterward, to make the concatenated
vector match three times the size of the ConceptNet representation (if provided). This dimension
reduction was applied in some instances looking for the ConceptNet representation to be
considered as much as other features. The resulting vector is processed by a final linear dense
layer (G), that produces the logits for the most probable type of relation (if any) between the
pair in question.

2.3.1. Task B

A single model with this architecture is trained to solve the task. All pairs of entities occurring
in the same sentence are tested. The computation of the dependency path can optionally be
skipped to consider only the information of the source and head entities. Since computing the
path is an expensive task to perform, the run in the challenge that considers this information
was unable to complete in time for the first and fourth evaluation scenario, and the baseline
solution was used in that case.

The lack of relations between a pair of entities is modeled with an additional relation type.
This label is the most representative in the whole training collection since just a few entities
are related in comparison to all the possible pairs. To mitigate the unbalance of the obtained
dataset, we optionally employed a class-oriented weighting scheme during the training phase.
This way, the model gets to “pay more attention” to samples from an under-represented class.

2.4. Output Handling

The BILUOV tagger outputs a sequence of BILUOV tags. These tags stand for: Begin, to mark the
start of an entity; Inner, to mark its continuation; Last, to mark its end; Unit, to represent single
token entities; and Other, to represent tokens that do not belong to any entity. Additionally,
the oVerlapping tag is used to deal with tokens that belong to multiples entities. For example,
in the sentence “El cáncer de estómago y de esófago causan problemas”, the model that detects
Concepts must output: O-V-I-L-O-I-L-O-U, resulting in the detection of “cáncer de estómago”,
“cáncer de esófago”, and “problemas”.

The decoding process is handled in two phases, based on the methodology described by
team UH-MAJA-KD in the previous edition of the challenge [7]. First, discontinuous entities

118

Table 1
Summary of low-level parameters used to train the concrete models’ variations that were used in the
challenge. The four variations use the same set of parameters.

Common params

char_vocab_size 96
char_embedding_dim 100
padding_idx 0
char_repr_dim 200
word_repr_dim 768
postag_repr_dim 19
token_repr_dim 300

BILUOV tagger

num_labels 6
dropout 0.0
stacked_layers 1

Pairwise classifier

num_labels 14
dep_repr_dim 29
entity_repr_dim 5
subtree_repr_dim 300
token_repr_dim 300

Table 2
Summary of the high-level parameters of the four models that were trained and used in the challenge.

Model jointly weight cnet path reduce

cnet x x x
deptree x x x
cnet-deptree x x x x
only-bert x x x x

matching either one of following regular expression are extracted.

(𝑉𝑂∗)+((𝐼 |𝑂)∗𝐿)+ ⟸ || ⟹ (𝐵(𝐼 |𝑂)∗)+(𝑂∗𝑉)+

Afterward, all remaining entities are considered to be continuous sequences of tokens. The
encoding and decoding process was tested to measure the error caused by simply changing the
representation. This resulted in an 𝐹1 of 0.997, a recall of 0.998, and a precision of 0.995, in the
training collection.

To solve Task A, the four BILUOV taggers are asked to produce the BILUOV sequence for each
sentence. Each output sequence is decoded independently to obtain a set of entities. Afterward,
all entities are merged into a single collection and reported as output.

To solve Task B, all pairs of entities that belong to the same sentence are built. Afterward,
the pairwise classifier is asked to predict the most probable relation between each pair. All
non-empty relations are collected and reported as output.

2.5. System Training

Four concrete variations of the previously described architectures were trained and pipelined.
All of them share the parameters shown in Table 1. The difference between them is given by
the selection of optional decisions. Table 2 summarizes the high-level configuration of each one
of them.

The cnet model ignores the path between the source and head entities in the pairwise classifier
and disables the reduction layer. The deptree model does not use the ConceptNet information

119

and disable the reduction layer. The cnet-deptree model combines both strategies.
The only-bert model uses a simplified version of the pairwise classifier in which only the

ConceptNet information and the BERT embedding vector of the source and head tokens are
used. The path between them, their character embedding, POS-tag representation, and entity
type representation are ignored. The already discussed reduction layer of the pairwise classifier
is applied in this case.

Only the training collection provided in the challenge was used to train the models. The
development collection was used during training as validation collection to avoid overfitting in
the training collection. The collection of additional sentences was not used at all. For scenario
4, no particular considerations were taken into account (beyond what was done in the other
scenarios). The use of ConceptNet as an external source of knowledge was motivated by the idea
of achieving a better performance in unseen terms during training, and therefore, in non-health
domains.

Sentences were tokenized and parsed using the python library spaCy2 (v2.2.4). Both the
dependency tree, lemmatization, and POS-tag information were extracted from there, using
the es_core_news_md pretrained model. A pretrained BERT multilingual model3 was used
to precompute the embedding vectors for each token in the sentence. No fine-tuning process
was applied. A single spacy token translates to multiple BERT tokens (BERT uses WordPiece
tokenization [8]). The embedding vectors obtained from BERT were mapped to spacy’s token
by choosing the first BERT token that derives from the token of spacy. Averaging the vectors,
instead of choosing the first one, produced a slightly worst performance.

All models were trained for 100 epochs at most, but in practice, they converged to their
final accuracy in around 10 or 20 epochs. Models were implemented using the python library
PyTorch4 (v1.4.0). Experiments were run in a machine with the following stats: 8 core Intel Core
i9-9900K (-MT-MCP-) CPU, speed/max: 3651/5000 MHz, cache: 16384 KB, and RAM: 64 GB.

3. Ensemble

An ensemble system is made of several low bias models whose predictions are combined to
produce a more robust final prediction. Multiple considerations have to be applied when ensem-
bling information extraction models. For example, the system must decide which annotations
are being voted by a common set of models and which ones are not. In case of conflicting anno-
tations, the prevalent one(s) must be selected. Afterwards, the system must also decide which
voted annotations are good enough to be included. All of these decisions have an important
role in producing the final output.

According to this, we defined a set of handcrafted rules that were pipelined to built an
ensembling system as follows:

1. Given the collection of annotations per model, build the union set of all annotations while
keeping track of which models voted for each annotation, i.e., the model included the
annotation.

2https://spacy.io/
3https://github.com/google-research/bert (bert-base-multilingual-cased)
4https://pytorch.org/

120

https://spacy.io/
https://github.com/google-research/bert
https://pytorch.org/

2. Weight the votes given by each model to each annotation.
3. Compute an aggregated score of the quality of each annotation according to its votes.
4. Decide whether to keep the annotation or not and, in case of conflicting annotation,

decide which ones to keep.

A classical voting system might assign a uniform weight to each voting model. Only the
annotations that exceed a predefined count are reported and in case of conflict, only those
that achieve the majority of votes. An expert system can be implemented by precomputing
the importance per annotation type of each model and using it to weigh the votes. The votes
emitted by the corresponding best model are weighted accordingly, and others valued as zero.
Only the annotations with a non-zero vote are reported and in case of conflict, only those that
achieved the best score.

On top of the handcrafted rules, a set of machine learning algorithms can be trained to
ensemble all systems votes. The machine learning model predicts the probability of a labeled
annotation to be correct, i.e., the probability that it belongs to a gold annotated collection,
according to the votes each system gave to it. Two key aspects can be configured here: first,
how each annotation is transformed into a feature vector and which model will handle it, and
second, which concrete model architecture will be used.

In the context of the challenge, a probabilistic evolutionary search was performed to explore
the ensemble configuration space. The search starts with a random sampling strategy, but as it
evaluates more pipelines, it modifies an probabilistic sampling model so that pipelines similar
to the best ones found are more commonly sampled. The fitness function is set to directly
maximize the 𝐹1 score of the resulting ensemble according to the reference collection. The
reference collection was set to scenario 1 of training collection.

The configurations explored will not be covered in this paper. The four models shown in
Table 2 were ensembled. The best found ensembling pipeline for scenario 2 and scenario 3
was to use a different Support Vector Machine (SVM) binary classifier for each different type
of entity and relation. Only two models (cnet and only-bert) were ensembled for scenarios 1
and 4 due to not having the corresponding submissions of the remaining models (deptree and
cnet-deptree) in these scenarios (due to time limitations). The best found ensembling pipeline
was to use a single Logistic Regression classifier for all the entity types and relations.

4. Results

Two of the four trained models were submitted to the challenge: the cnet and deptree models.
Additionally, the ensemble method described in Section 3 was applied to produce a third run.
Table 3 shows the results obtained by the three runs in the challenge. Due to time issues, some
scenarios were not submitted for some runs and instead the baseline implementation was used
(highlighted with a “𝑏” in the table). There was also an issue with the ensemble method in
scenario 3 (Task B), which resulted in an ill-formed submission. The ensemble run obtained the
best results out of the three runs, except for the incorrectly submitted scenario.

Table 4 summarizes the overall results obtained by the team’s system in the challenge. It
ranked fifth in all evaluation scenarios, with a tie for fourth place in the main evaluation scenario.
The most promising results of the system were achieved in scenario 2 (Task A).

121

Table 3
Summary of the performance (𝐹1) achieved by the system across the three runs. The best score achieved
in each scenario of the challenge is included for comparison purposes. Also, the baseline implementa-
tion provided by the challenge organizers is included. Runs that use the baseline solution are marked
with “𝑏”.

System 1-main 2-taskA 3-taskB 4-transfer

top performance 𝟎.𝟔𝟔𝟔 𝟎.𝟖𝟐𝟓 𝟎.𝟔𝟑𝟑 𝟎.𝟓𝟖𝟒

run 1: cnet 0.552 0.792 0.306 0.367
run 2: deptree 0.395𝑏 𝟎.𝟕𝟗𝟓 𝟎.𝟓𝟒𝟓 0.138𝑏
run 3: ensemble 𝟎.𝟓𝟓𝟕 𝟎.𝟕𝟗𝟓 0.005 𝟎.𝟑𝟕𝟑

baseline 0.395𝑏 0.542𝑏 0.131𝑏 0.138𝑏

Table 4
Summary of the performance (𝐹1) achieved by each participant in the challenge. Teams are sorted
according to their performance in scenario 1.

Team 1-main 2-taskA 3-taskB 4-transfer

Vicomtech 𝟎.𝟔𝟔𝟔 0.821 0.583 0.563
Talp-UPC 0.627 0.816 0.575 𝟎.𝟓𝟖𝟒
UH-MAJA-KD 0.625 0.814 0.599 0.548
IXA-NER-RE 0.557 0.692 𝟎.𝟔𝟑𝟑 0.479

UH-MatCom 0.557 0.795 0.545 0.373

SINAI 0.421 𝟎.𝟖𝟐𝟓 0.462 0.281
HAPLAP 0.395 0.542 0.316 0.138
baseline 0.395 0.542 0.131 0.138
ExSim 0.246 0.314 0.131 0.122

5. Discussion

Several models were trained and tested in the development collection though they were not
run in the test collection and therefore not used in the ensemble run. Using BERT to embed
the words caused the biggest improvement in performance in Task A. In fact, by simply using
the BERT representation and a linear dense layer, competitive results are achieved in the
development collection. This is not enough for Task B, in which only using the concatenated
BERT representation of the source and head tokens and a linear dense layer results in very low
performance.

Another big improvement in the performance of the system was observed when using class
weighting to train the pairwise classifier. Penalizing the most represented classes (the lack of
relation in this context) helped to avoid ill-trained models that maximize the training accuracy
but without relating to the 𝐹1 metric. Alternative training procedures need to be explored, such
as solving a multi-label classification problem with threshold selection to avoid the inclusion

122

of the lack of relation class. Directly optimizing the 𝐹1 metric during the training process is
another alternative to be explored.

The addition of ConceptNet information did not have the positive impact we expected. This
might have been caused by limitations in representation (zero-one vector) and the way it was
introduced in the model. However, we think that the use of this kind of information can be
really valuable in tasks like this one, in which few reference examples are available. Future
work needs to be done in this respect.

6. Conclusions

This paper describes the system presented by team UH-MatCom in the eHealth-KD challenge
at IberLEF 2020. Several deep-learning models were trained and ensembled to automatically
extract relevant entities and relations from plain text documents. The system achieved average
results in the challenge, ranking fifth across all different evaluation scenarios. Due to resource
issues, some promising strategies were not fully tested. Future work will be done to solve those
limitations.

Both syntactic and semantic information was used. The use of external knowledge bases to
boots the relation extraction task and transfer learning scenario did not performed as expected.
More work needs to be done in this sense, to improve the performance in future editions of the
challenge.

Acknowledgments

Funding: This research has been partially funded by the University of Alicante and the Univer-
sity of Havana, the Generalitat Valenciana (Conselleria d’Educació, Investigació, Cultura i Esport)
and the Spanish Government through the projects LIVING-LANG (RTI2018-094653-B-C22) and
SIIA (PROMETEO/2018/089, PROMETEU/2018/089).

References

[1] A. Piad-Morffis, Y. Gutiérrez, H. Cañizares-Diaz, S. Estevez-Velarde, Y. Almeida-Cruz,
R. Muñoz, A. Montoyo, Overview of the eHealth Knowledge Discovery Challenge at
IberLEF 2020, in: Proceedings of the Iberian Languages Evaluation Forum co-located with
36th Conference of the Spanish Society for Natural Language Processing, IberLEF@SEPLN
2020, 2020.

[2] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).

[3] J. Lafferty, A. McCallum, F. C. Pereira, Conditional random fields: Probabilistic models for
segmenting and labeling sequence data (2001).

[4] A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional lstm and
other neural network architectures, Neural networks 18 (2005) 602–610.

[5] R. Speer, J. Chin, C. Havasi, Conceptnet 5.5: An open multilingual graph of general knowl-
edge, 2017. URL: http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972.

123

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972

[6] L. Ratinov, D. Roth, Design challenges and misconceptions in named entity recognition, in:
Proceedings of the Thirteenth Conference on Computational Natural Language Learning
(CoNLL-2009), 2009, pp. 147–155.

[7] J. M. Alvarado, E. Q. Caballero, A. Rodrıguez, Uh-maja-kd at ehealth-kd challenge 2019
(2019).

[8] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, et al., Google’s neural machine translation system: Bridging the gap between
human and machine translation, arXiv preprint arXiv:1609.08144 (2016).

124

	1 Introduction
	2 System Description
	2.1 Input Handling
	2.1.1 Common to Both Tasks
	2.1.2 Task B specifics
	2.1.3 ConceptNet

	2.2 Entity Recognition Model
	2.2.1 Task A

	2.3 Relation Extraction Model
	2.3.1 Task B

	2.4 Output Handling
	2.5 System Training

	3 Ensemble
	4 Results
	5 Discussion
	6 Conclusions

