
Recognai’s Working Notes for CANTEMIST-NER
Track
David Carreto Fidalgo, Daniel Vila-Suero and Francisco Aranda Montes

Abstract
These working notes describe the two Named Entity Recognition (NER) systems designed by Team

Recognai for the CANTEMIST (CANcer TExt Mining Shared Task – tumor named entity recognition)

NER track.

While the first system tries to maximise the performance with respect to the F1-score, the second

system tries to maximise its efficiency with respect to model size and speed while maintaining acceptable

performance.

1. Introduction

To better understand diseases and to improve clinical decision-making, Natural Language

Processing (NLP) can help to use the information from literature and digital health records. The

main objective of the CANTEMIST-NER track was to extract certain key entities like diseases,

treatments or symptoms from clinical documents.

Our contribution consists of two Named Entity Recognition (NER) systems that are based on

Deep Neural Network architectures.

While both systems display a big difference in model size and speed, conceptually they are

very similar:

• Both have an embedding layer that returns an encoded representation of each word;

• Both systems contextualize their embeddings by means of a Long Short-Term Memory

(LSTM) layer;

• Both systems pass on the hidden states of their LSTM layer to the token classification

head that decides if the word forms part of an entity.

The biggest difference between both systems lies in the respective embedding layer.

Both systems were designed and trained using our open source biome.text library
1
.

Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2020)
email: david@recogn.ai; daniel@recogn.ai; francisco@recogn.ai

url: https://www.recogn.ai

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:david@recogn.ai
mailto:daniel@recogn.ai
mailto:francisco@recogn.ai
https://www.recogn.ai
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


2. Data preprocessing

Our data preprocessing was minimal and consisted of two major steps:

1. As a first step we transformed the given brat annotations
2
of the train, dev1 and dev2

data sets to commonly used BILOU tags[1]. For this we used spaCy3
and a customised

tokenizer from spaCy’s "es" language model.

2. After the tokenization and the transformation to BILOU tags, we used spaCy’s sentence

splitter to divide the train, dev1 and dev2 data into sentences. Our two systems were

trained and evaluated based on sentences, hence the maximum context our models can

take into account is on a sentence level.

We used the same spaCy sentence splitter for splitting the test and background data into

sentences and feed them to our models to obtain the submitted predictions.

No data augmentation or external data was used for the training of our systems.

3. XLM-R System

The goal of this system was to maximise its performance with respect to the F1-score.

3.1. Architecture

To achieve the goal of maximal performance, we use a pretrained transformer-based masked

language model provided by the Huggingface Transformers library[2].

The XLM-RoBERTa[3] (XLM-R) model, trained on one hundred languages and outperforming

multilingual BERT on NER, seemed to be the most appropriate choice for our task. We opted

for its xlm-roberta-base implementation by Huggingface, after verifying that the bigger

xlm-roberta-large variant yielded no significant improvement.

We introduce this model in our embedding layer to obtain contextualized word embeddings.

Since XLM-R applies subword tokenization, we simply sum up the subword vectors when

necessary to end up with embeddings at word level.

To facilitate the model’s identification of words that are likely entities regardless their context

(like technical names of cancer types), we extend our embeddings with character features.

Another reason to add character features in general, is to make the model more robust against

typographical errors.

The character feature consists of the last hidden outputs of a bidirectional Gated Recurrent

Unit (GRU) that is fed with the characters of the respective word.

The stacked embeddings are then passed on to the bidirectional LSTM layer in which we

seek after a task specific contextualization of our embeddings.

The hidden states of the LSTM layer are finally fed into a token classification head. This head

consists of a linear transformation of the hidden dimension of the LSTM layer to the number of

1
https://www.recogn.ai/biome-text

2
http://brat.nlplab.org

3
https://spacy.io

353

https://www.recogn.ai/biome-text
http://brat.nlplab.org
https://spacy.io


Table 1
Summary of our XLM-R system. The size refers to the number of parameters of the component.

Component Size

Embedding layer

XLM-R feature
(pretrained transformer, output size 768) 280M

Char feature
(bidirectional GRU, output size 256) 160k

Encoder

Bidirectional LSTM
(1 layer, hidden size 2 × 128) 1M

Token classification head

Linear 1k
CRF 100

possible BILOU tags, and a subsequent Conditional Random Field (CRF) model that predicts the

sequence of BILOU tags for the input.

The single components of the system and there approximate sizes in terms of number of

parameters are summarised in Table 1.

3.2. Training

Experimenting and optimisation of some hyperparameters were done with the train and dev1

data set. We used the AdamW algorithm implemented in Pytorch for optimising all parameters

of our model with a learning rate of 10−5.
For an estimation of the model performance we used the train and dev1 data set as training

data and the dev2 set as validation data. For the final submitted predictions we trained our

model on the combined set of train, dev1 and dev2. We stopped the final training after 10 epochs,

a number estimated from previous training runs, to prevent overfitting.

4. FastText System

The goal of this system was to maximise the model’s efficiency with respect to the model size

and speed while maintaining acceptable performance.

4.1. Architecture

In contrast to our XLM-R system, we opted for a more light-weight solution regarding the

pretrained component. For this reason we chose the pretrained Spanish word vectors provided

by FastText[4]. These vectors encompass 2 million words that were trained on Common Crawl
4

4
https://commoncrawl.org/

354

https://commoncrawl.org/


Table 2
Summary of our Fasttext system. The size refers to the number of parameters of the component.

Component Size

Embedding layer

Word feature
(pretrained vectors from FastText, output size 300) 4M

Char feature
(bidirectional GRU, output size 256) 160k

Encoder

Bidirectional LSTM
(1 layer, hidden size 2 × 512) 4M

Token classification head

Linear 5k
CRF 100

and Wikipedia with an embedding dimension of 300.

To assure a well generalised word vocabulary, we only add words to it that appear at least 2

times in our training data set.

Furthermore we add character features to our embeddings to make our model more robust

against typos. The character feature consists of the last hidden outputs of a bidirectional GRU

that is fed with the characters of the respective word.

The stacked embeddings are then passed on to the bidirectional LSTM layer in which we

seek after the contextualization of our embeddings.

The hidden states of the LSTM layer are finally fed into a token classification head. This head

consists of a linear transformation of the hidden dimension of the LSTM layer to the number of

possible BILOU tags, and a subsequent CRF model that predicts the sequence of BILOU tags for

the input.

The single components of the system and there approximate sizes in terms of number of

parameters are summarised in Table 2.

4.2. Training

Experimenting and optimisation of hyperparameters were done with the train and dev1 data set

and performing Hyperparameter Optimization of both architecture parameters (e.g., encoder

hidden sizes) and training hyperparameters (e.g., learning rate). For hyperparameter optimiza-

tion, we used the integration of biome.text with the Ray Tune library[5] to perform random

hyperparameter search with the ASHA trial scheduler[6]. We used the AdamW [7] algorithm

implemented in Pytorch for optimising all parameters of our model with a learning rate of

3.9 × 10−3.
For an estimation of the model performance we used the train and dev1 data set as training

data and the dev2 set as validation data. For the final submitted predictions we trained our

355



Table 3
Evaluation results by system for the CANTEMIST-NER track. The prediction time refers to the real
time spent on predicting the entire test data set with an i7-9750H CPU with 6 cores.

Precision Recall F-Measure Prediction time
XLM-R System 0,85 0,84 0,845 3 h
FastText System 0,846 0,844 0,845 0.3 h

model on the combined set of train, dev1 and dev2. We stopped the final training after 4 epochs,

a number estimated from previous training runs, to prevent overfitting.

5. Results

Table 3 presents the results provided by the CANTEMIST organizers for both systems on the test

set. It seems the XLMR model was not able to take advantage of the pretrained language model

together with its additional parameters compared to the FastText model. We suspect that the

unusual language used in medical reports makes the pretrained language model unsuitable for

this data set. A possible solution, which was not pursued due to time and resource constraints,

could be to fine tune the language model first on the entire train and test set, and then to fine

tune the NER system. Finally, another potential improvement to the current approach would be

including other features such as gazetteers or linguistic features (e.g., part of speech tags) into

the end-to-end neural network model.

Acknowledgments

This work was supported by the Spanish Ministerio de Ciencia, Inonvacion y Universidades
through its Ayuda para contratos Torres Quevedo 2018 program with the reference number

PTQ2018-009909.

References

[1] L. Ratinov, D. Roth, Design challenges and misconceptions in named entity recognition, in:

Proceedings of the Thirteenth Conference on Computational Natural Language Learning

(CoNLL-2009), Association for Computational Linguistics, Boulder, Colorado, 2009, pp.

147–155. URL: https://www.aclweb.org/anthology/W09-1119.

[2] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,

M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao,

S. Gugger, M. Drame, Q. Lhoest, A. M. Rush, HuggingFace’s Transformers: State-of-the-art

Natural Language Processing, arXiv e-prints (2019) arXiv:1910.03771. arXiv:1910.03771.

[3] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E. Grave,

M. Ott, L. Zettlemoyer, V. Stoyanov, Unsupervised Cross-lingual Representation Learning

at Scale, arXiv e-prints (2019) arXiv:1911.02116. arXiv:1911.02116.

356

https://www.aclweb.org/anthology/W09-1119
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1911.02116


[4] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, T. Mikolov, Learning Word Vectors for 157

Languages, arXiv e-prints (2018) arXiv:1802.06893. arXiv:1802.06893.

[5] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, I. Stoica, Tune: A Research Platform

for Distributed Model Selection and Training, arXiv e-prints (2018) arXiv:1807.05118.

arXiv:1807.05118.

[6] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, M. Hardt, B. Recht, A. Talwalkar, A System

for Massively Parallel Hyperparameter Tuning, arXiv e-prints (2018) arXiv:1810.05934.

arXiv:1810.05934.

[7] I. Loshchilov, F. Hutter, Decoupled Weight Decay Regularization, arXiv e-prints (2017)

arXiv:1711.05101. arXiv:1711.05101.

A. Online Resources

A GitHub repository was created at https://github.com/recognai/cantemist-ner that contains

the data sets as well as the data preparation, training and evaluation notebooks.

357

http://arxiv.org/abs/1802.06893
http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1810.05934
http://arxiv.org/abs/1711.05101
https://github.com/recognai/cantemist-ner

	1 Introduction
	2 Data preprocessing
	3 XLM-R System
	3.1 Architecture
	3.2 Training

	4 FastText System
	4.1 Architecture
	4.2 Training

	5 Results
	A Online Resources

