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Abstract
Named entity recognition is to recognize the mention of a certain thing or concept in a text in natural
language processing, and it is the basis of many natural language processing tasks such as relation
extraction, event extraction, knowledge graph, machine translation, and question answering systems.
This paper describes the solution of CANTEMIST’s named entity recognition subtask. The core idea
of the method is to process it as a sequence labeling task and uses a neural sequence model to solve it.
We use a pre-trained language model for semantic feature embedding, a recurrent neural network for
semantic inference, and a label-based attention mechanism to predict the output. In the final test, our
F1 score is 0.719.

Keywords
name entity recognition, clinic records, multi-head attention mechanism, deep learning

1. Introduction

At present, cancer has become one of the major diseases endangering human health. About
9 million people die of cancer every year in the world. It is very urgent to find an effective
treatment, but medical resources are difficult to meet the needs in the face of a large number
of patients. In a large number of individual clinical records of cancer patients, extracting
information and knowledge from them can provide help for curing cancer patients. However, in
the face of these free-text clinical records produced by professional doctors, efficient extraction
of information and knowledge is a very challenging task. Natural language processing(NLP)
technology is a very effective method to process individual clinical records. It can extract
information from unstructured or semi-structured data to form structured data for further
research.

The Cantemist [1] task provides a well-annotated data set in which experts annotated tumor-
related information in the unstructured clinical records of cancer patients. High-quality an-
notation data is very helpful for developing NLP systems. The task includes three types of
subtasks:

1. CANTEMIST-NER: finding mentions of tumor morphology in oncology cases.
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2. CANTEMIST-NORM: recognition and mapping to concept identifiers from ICD-O-3.
3. CANTEMIST-CODING: oncology clinical coding (multi-label classification) assigning

ICD-O-3 codes to clinical case documents.

Our team participates in the CANTEMIST-NER subtask. Named entity recognition(NER) is
the basis of NLP tasks such as relation extraction, event extraction, knowledge graph, machine
translation, and question answering systems. This subtask is aimed to identify related entity
in tumor morphology. A tumor refers to the growth or formation of new abnormal tissues.
The tissue and cell types that make up the morphology usually determine the expected growth
rate, the severity of the disease, and the recommended type of treatment. We deal with NER
using a neural sequence model that combines a pre-training language model with a multi-head
attention mechanism, and our model achieves good result in the final evaluation.

2. Related Work

NER of clinical text is a very popular research direction, and the categories of recognized named
entities are also very large, such as disease, patient, symptom, drug, body state, etc. At present,
there are four research methods: rule-based method, dictionary-based method, traditional
machine learning method, and deep learning method. The rule-based method [2] mainly relies
on the heuristic rules customized by experts. Its advantages are good effect and fast speed.
However, due to the limitations of various forms of rules and expert experience, it is impossible
to list all the rules. Therefore, the scope of application of the rule-based method is limited and
cannot be generalized. In the dictionary-based method [3], a medical dictionary database is
used to match entities in text, which is similar to the rule-based method. The disadvantage
is that the dictionary needs to be updated in time to ensure the recognition of new entities.
The traditional machine learning approach takes the NER task as a sequence labeling task and
finds the most reasonable label sequence by modeling the sentence sequence. Common models
of traditional machine learning are HHM [4]and CRF [5]. The performance of this method
depends very much on feature engineering.

Thanks to the growth of computing resources, deep learning becomes a competitive method
to solve NLP problems. The deep learning method also regards the NER task as a sequence
labeling task, which can avoid complex feature engineering compared with traditional machine
learning method. For biomedical NER tasks, various deep learning models have achieved a
pleasing performance. There are two main aspects worth paying attention to: The first aspect
is how to improve the reasoning ability of the model. For example, the Bi-LSTM-CRF [6, 7]
model can effectively learn the mutual constraints between tags by using CRF as the output
layer of the model, thereby improving model performance. The second aspect is to use the
large-scale corpus to train language models to obtain better semantic representation, to improve
their semantic expression ability. BioBert [8] is a domain-specific language representation
model trained on a large-scale biomedical corpus. It achieves state-of-the-art performance on
biomedical data sets. Our core idea also refers to these two aspects to build models.
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Figure 1: Architecture of the whole model. It consists of semantic representation module, semantic
inference module, and output module.

3. Methodology

In this section, we describe the methods used in the task. Our model is a neural sequence labeling
model, which consists of a semantic representation module, semantic reasoning module, and
output module. As shown in Figure 1: the semantic embedding module of the model is a
pre-train language model similar to BERT [9]; the bidirectional GRU [10] is used for semantic
reasoning in the semantic reasoning module; the final output module is based on the attention
mechanism [11].
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3.1. Task and Dataset Description

The goal of the CANTEMIST-NER task is to automatically find tumor morphology mentions in
the clinical records of tumor patients. The specific form is to find the corresponding character
offsets of tumor morphology mentions in the given UTF-8 plain text medical document. The
entire corpus contains a total of 5982 medical documents, of which 1301 are annotated and
4681 are unannotated. Experts annotate some medical documents by referring to the labeling
guidelines that contain rules for annotating morphological tumors in Spanish tumor clinical
cases and map these annotations to CIEO-3. All entities associated with tumor morphology are
labeled MORBOLOGIA_NEOPLASI type, which include the tumor name, anatomical location,
histological morphology, and other information. The distribution of the corpus is shown in
Table 1.

Table 1
The distribution of datasets. The number of clinical records and sentences in each dataset are counted.

Train Development1 Development2 Test
Number of Documents 501 250 250 300
Number of Sentences 18628 9114 8349 10775
Number of Entities 6396 3341 2660 3633

Average Document Length 906.90 901.06 732.22 825
Average Sentence Length 20.54 20.80 18.22 19.17
Average Entity Length 2.30 2.27 2.30 2.25

3.2. Semantic Representation Module

Semantic representation plays a very important role in the NLP system. Good representational
engineering can effectively improve the performance of the system. We choose BETO [12], a
pre-trained language model based on Transformer architecture, as the semantic representation
module. BETO is a BERT model trained on large Spanish corpus. BETO is trained with the
Dynamic Masking technique [13] and Whole-word Masking technique and is an improvement
over BERT. And BETO has 12 encoder layers of the transformer with 16 attention-heads, using
1024 as hidden size, and 110M parameters in total. Given a word sequence {𝑤1, 𝑤2, … , 𝑤𝑛}, it
is embedded as a high-dimensional semantic vector after passing through the BETO model
{𝑥𝑤𝑖 , 𝑥𝑤2 , ..., 𝑥𝑤𝑛 }.

3.3. Semantic Reasoning Module

In the semantic reasoning module, we use a Recurrent Neural Networks (RNNs) to extract
more advanced semantic features. The advantage of RNNs is that it can capture longer distance
dependence when processing sequence information, compared with Convolutional Neural
Networks (CNNs) and Deep Neural Networks (DNNs). Gated Recurrent Neural Networks (GRU)
and Long Short-Term Memory (LSTM) are two variants of RNN, and both GRU and LSTM
are proposed to solve the problem of gradient disappearance or explosion in backpropagation.
However, compared with LSTM, GRU can reduce the amount of computation while achieving
the same effect.
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The multi-layer GRU stack is used to further extract semantic information from the se-
mantic representation module. For a sentence, the embedded semantic representation 𝑣 =
{𝑥𝑤𝑖 ; 𝑥𝑤2 ; ...; 𝑥𝑤𝑛 } of the sentence is obtained after the semantic representation module. Then the
embedded semantic representation is fed into the stacked bidirectional GRU layer to obtain a

sequence of forward hidden states {ℎ⃗1; ℎ⃗2; ...; ℎ⃗𝑛} and backward hidden states {
←
ℎ1;

←
ℎ2; ...;

←
ℎ𝑛}.

Finally, the two hidden states are concatenated as the final sentence representation.

ℎ𝑖 = [ℎ⃗𝑖 ,
←
ℎ𝑖]

𝐻 = {ℎ1; ℎ2; ...; ℎ𝑛}

3.4. Output Module

During the label decoding phase, we use a hierarchically-refined label attention network [14]
that explicitly utilizes label embedding and captures potential long-term label dependencies by
giving each word an incremental refinement of the label distribution. Label attention network
learns the interaction between semantic representation space and labels representation space
through multi-head attention mechanism [11].

Firstly, the given set of candidate labels 𝐿 = {𝑙1, 𝑙2, ..., 𝑙|𝐿|} are embedded in the label represen-
tation space. The embedding vector of each label 𝑙𝑖 is:

𝑥 𝑙𝑖 = 𝑓 (𝑙𝑖)

The representation space of the label is to randomly initialize the embedded vector of each label,
where 𝑓 is to map each label to the representation space by looking up the table.

Key-value pairs are used to calculate the distribution of attention 𝛼 in the multi-head attention.
The sentences output by the semantic reasoning module represent ℎ𝑖 as the query vector, and
the key 𝑘𝑗 vector and value 𝑣𝑗 vector are label embedded vector 𝑥 𝑙𝑗 , namely 𝑘𝑗 = 𝑣𝑗 = 𝑥 𝑙𝑗 . The
matrix form of the standard attention mechanism is as follows:

𝐻 𝑙 = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝛼𝑉
𝛼 = 𝑠𝑜𝑓 𝑡 max(𝑄

𝑇𝐾√
𝑑 )

where 𝑄 ∈ ℝ𝑑×𝑛, 𝐾 ∈ ℝ𝑑×|𝐿|. And 𝑛 and ℎ are the sentence length and the hidden state size of
GRU respectively, and the embedding dimension of the label representation feature must equal
to ℎ. The |𝐿| is the total number of labels. Compared with the standard attention mechanism,
the interaction of the multi-head attention mechanism can effectively infer multiple potential
label distributions in parallel. The forward propagation of multi-head attention is as follows:

𝐻 𝑙 = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ...ℎ𝑒𝑎𝑑𝑘) + 𝐻𝑤

ℎ𝑒𝑎𝑑𝑖 = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑊 𝑄
𝑖 𝑄,𝑊 𝐾

𝑖 𝐾,𝑊 𝑉
𝑖 𝑉 )

where𝑊 𝑄
𝑖 ∈ ℝ

𝑑
𝑘 ×𝑑 ,𝑊 𝐾

𝑖 ∈ ℝ
𝑑
𝑘 ×𝑑 , and𝑊 𝑉

𝑖 ∈ ℝ
𝑑
𝑘 ×𝑑 are a parametric matrix of linear transformation

that can be learned in training. 𝑘 is the number of parallel heads.
If it is not the last layer of the label attention network, the hidden state of the GRU and the

output of attention are connected as the final output:

𝐻 = [𝐻𝑤 , 𝐻 𝑙]
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The last layer of label attention network directly outputs the weight matrix in the attention
mechanism as label prediction:

𝛼 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑦̂11...𝑦̂
|𝐿|
1

𝑦̂12...𝑦̂
|𝐿|
2

...
𝑦̂1𝑛...𝑦̂

|𝐿|
𝑛

⎤
⎥
⎥
⎥
⎥
⎦

𝑦̂ 𝑖 = argmax(𝑦̂1𝑖 , 𝑦̂
2
𝑖 , ..., 𝑦̂

|𝐿|
𝑖 )

where 𝑦̂ 𝑗𝑖 represents the probability that the 𝑖-𝑡ℎ word is the 𝑗-𝑡ℎ label, and 𝑦̂ 𝑖 represents the
predictive label of the 𝑖-𝑡ℎ word in the sentence.

4. Experiments

This section introduces the experimental of the model, mainly including data preprocessing,
experimental setting, and error analysis.

4.1. Data Preprocessing

In the data preprocessing stage, we divide the text according to the sentence level and word
level. Then, according to the annotation file, all the sentences are labeled in the format of
BIO. After getting the labeling sequence of each sentence, we clean the sentence. Specific
operations include deleting all punctuation marks and special characters; replacing numbers
with "Cifra"; deleting single-word sentences (mainly subtitles). As shown in Figure 2, the
sentence distribution after preprocessing is counted to provide a reference for the model’s
sentence length hyperparameter setting. As can be seen from Figure 2, most sentences are less
than 80 in length. Considering the Bert model, a masked language model is used for training. In
the masked language model, 15% of the words are divided into several unknown words, and
the unknown words are predicted by other words in the sentence. In the semantic embedding
module of our model, the hyperparameter of sentence length is set to 100 to reduce the noise
caused by excessive zero paddings.

This task is the same evaluation as most NER tasks, using the F1 score as an evaluation
metric. Because this task only defines one type of entity, there is no data imbalance problem.
The micro-average F1 score can be used to effectively evaluate the system performance. The
calculation formula is as follows:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙(𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝐹1) = 2
𝑃 × 𝑅
𝑃 + 𝑅
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Figure 2: Sentence length distribution of training set, development set, and test set. In all datasets,
97.3% of sentences are less than 80 in length.

4.2. Results

According to Section 3.4, if the label attention network has only one layer, it is equivalent to
using the Softmax layer. So we compare the performance of the label attention network with
different layers. When the number of layers of the label attention network is set to 1, 2, 3, 4,
and the results on the development set are shown in Table 2. We find that the performance
of the development set can be improved, as the number of layers of the tag attention network
increases. However, when the number of layers is increased to 4, the result is not improved.
Besides, the embedded dimension of the label or the hidden state size of the GRU also affects
the performance of the model.

To compare the effect of the label attention network, we conduct experiments with BERT’s
token classification model as a comparison. BertForTokenClassification1 is a fine-tuning method
of the BERT model in downstream tasks, and it has obtained an F1 score of 0.924 on the CoNLL-
2003 named entity recognition data set. It uses BERT as the semantic embedding and then uses
the fully connected layer as the output model. We replace the semantic embedding module
as the semantic embedding of BertForTokenClassification, to keep the semantic embedding

1https://huggingface.co/transformers/model_doc/bert.html#bertfortokenclassification
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Table 2
The results of the development set. The "Number of layers" refers to the number of layers embedded
in the label attention network. The "Size" is the dimension of the label embedding vector of and the
hidden state size of GRU.

Number of Layers Size F1 P R
1 200 0.708 0.737 0.682
1 400 0.711 0.728 0.694
2 200 0.713 0.733 0.694
2 400 0.713 0.735 0.691
3 200 0.72 0.727 0.714
3 400 0.713 0.739 0.69
4 200 0.714 0.732 0.697

the same. The comparison between the results our model and of BertForTokenClassification is
shown in Table 3.

Table 3
Comparative experiment results with Baseline and BertForTokenClassification.

Precision Recall F1
Baseline 0.181 0.737 0.291

BertForTokenClassification 0.721 0.685 0.703
Our_Moudel 0.716 0.721 0.719

We also fine-tune the other hyperparameters of the model, and Table 4 shows all the hy-
perparameters of the model submitted to the final evaluation results. And the F1 score of the
result on the test set is 0.719. Our experimental implementation is based on the PyTorch [15]
framework and the transformers package [16] is used to get the pre-trained language model. In
the data preprocessing stage, the Spacy [17] is used for tokenization and tagging.

Table 4
Hyperparameters settings of the final model.

Hyperparameters Value
Max Length of Sentence 100
The Dimension of Label Embedding 200
The Hidden State Size of GRU 200
The Number of Head 5
The Number of Attention Layer 3
Dropout Rate 0.5
Learn Rate 0.0001
Batch Size 16
Epochs 15
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4.3. Error Analysis

We analyze the error of the final submission result, and there are two main errors: the wrong
recognition of the entity boundary and the missed recognition of the entity. For the first type of
error, as shown in Figure 3, the true annotation is "infiltración de médula ósea", but the model
recognizes two sub-parts "infiltración de" and "ósea". We believe that the model may not be able
to learn the semantic dependency information of long entities because the average entity length
in the training set is 2.30. Therefore, when recognizing such long entities, the model tends to
recognize them as multiple short entities, resulting in the precision of 0.716. Regarding the
second error, we believe that the model’s ability to model sentence semantics is insufficient and
cannot fully recognize entities. This also results in a low recall, with a final recall of 0.721.

Figure 3: A case of wrong identification of entity boundary.

5. Conclusion

We develop an automated system based on the Cantimist dataset to effectively identify cancer
entities in clinical texts. The system consists of three parts: the semantic embedding module,
the semantic reasoning module, and the output module. In the semantic embedding module,
BEOT, a BERT model trained in Spanish, embeds the text information into a high-dimensional
semantic space and obtains the semantic representation of the text. In the semantic reasoning
module, a bidirectional GRU that can capture long-distance dependencies is used to model
sentences in the forward and backward directions. In the output module, a label-based multi-
head attention mechanism is used to infer the constraint relationship between labels. We select
the best hyperparameters through tuning experiments and obtain good results compared with
the baseline in the final evaluation.

However, our model still has a lot of room for improvement. There are some defects in the
model’s ability to model sentence semantics, such as some entities missing and entity boundary
error. Our future work is mainly to solve the problem of model modeling of sentence semantics.
It may be that this data set is a professional text about tumor morphology and BEOT is trained
on ordinary corpus. The model we proposed is not able to model sentence semantics well. In
the next work, we will try to use graph neural networks to model text semantics to have better
results in the recognition of long entities.
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