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Abstract. Representing and reasoning with processes and plans is a
core problems in many areas, including AI Planning and Plan Recog-
nition, Business Process Modeling, Web Services, and Human Behavior
Recognition. Ontologies based on Description Logics have been repeat-
edly argued to help in all these areas, but they have almost never used
DLs in a way that supports full reasoning. We start to remedy this
problem by considering Process and Plan DLs, where concepts have as
instances sequences of action instances, and are built with a variety of
special constructors. Inspired by the clasp system, we consider families
of DLs based on combinations of regular-like expression constructors: se-
quence, disjunction, looping, conjunction, complement, and concurrency,
providing a rich variety of Plan DLs.
We present and extend results from the wide formal languages literature
with bearing on the complexity of standard DL reasoning tasks (concept
inconsistency, subsumption, and recognition), as well as on the important
issue of representation succinctness. This work hopefully opens up rich
new areas of research, where traditional questions can be investigated in
a new setting.

1 Introduction and Motivation

In modern applications one needs to represent not just static but also dynamic
aspects of a domain. For example, one may want to say that making tea consists
of putting hot water in a cup, repeatedly dunking a tea bag in it, and then
optionally adding sugar and/or milk to it in either order. Each of these may in
turn be described in further detail. When entering this information in ontologies,
one is normally drawn to ontology languages, such as OWL, which are based on
Description Logics (DLs). . In particular, in this paper we explore variations
on DL-like formalisms for describing concepts having as instances sequences of
(property-less) action instances1.

1 We do not consider here the representation of atomic actions in DLs, since these
have been more widely studied. There is nothing to prevent the actions from having
complex structure, such as parameters, pre-/post-conditions,... but the plan concepts
will not be able to access this structure.



The following is a list of some of the areas motivating this research, with
pointers to relevant literature, including use of ontologies.
Planning and Plan Recognition in Artificial Intelligence: In her review
paper [17], Gil elaborates on the following applications of DL reasoning about
plans, especially plan taxonomies: i) organization of plan classes; ii) retrieval of
plan types and instances with description-based queries; iii) validation of plans
based on descriptions of valid classes of plans; and iv) recognition of plan execu-
tions/instances. Weida [63] also lists many advantages for using DL formalisms
for the planning domain.
(Business) Process Modeling (BPM) and Workflow Management: BPM
represents the processes of an enterprise, aiming to analyze, improve, and auto-
mate them [37]. The latter is often accomplished through the use of workflow
management systems [46]. BPMN [45] is one widely known graphical notation,
which specifies, among others, control flow2 by connecting subprocesses with ar-
rows (representing simple sequence) and control-flow “gateways” (XOR, AND,
OR), which come in “split” and “join” variants. UML activity diagrams [55] are
another notation for similar purposes, widely-used in object-oriented modeling
and programming. There are numerous proposals of OWL DL ontologies for
capturing BPMN flow objects [43, 54, 29].
Web Service Description: Web service languages are used to describe the
functionality offered by a web service. Among important tasks are finding desired
services [32], and composing services to achieve some goal [36]. Though these
languages focus on describing the input/output behavior of operations, some
allow for the description of complex processes. OWL-S [47], and its predecessor
DAML-S, are the most ambitious, and include OWL DL ontologies for control
constructs for combining complex processes.
Human Behavior Recognition: Many areas, including life logging, ambient
intelligence, and recognizing activities of daily living, aim to detect what activ-
ities humans are engaged in based on reports from sensor networks [62, 64] or
other digital evidence [30, 20]. The natural reasoning task here is plan concept
instance recognition, once composite activities have been modeled as concepts.
There have been many proposals to use ontologies to support these tasks [53],
including an extensive examination of the utility of OWL 2 for helping describe
human activities [52].

In using DLs for the above kinds of tasks, many applications describe atomic
actions using ordinary DLs, and then use a separate kind of formalism, such as
planners or Hidden Markov Models to “reason” with them.

Even when the DL ontologies contain composite processes [43, 54, 29, 47, 52,
53], they only model their syntactic structure, and are unable to reason about
composite actions by deducing, for example, that (i) placing a call, followed by
either talking or hanging up, is logically equivalent to (ii) placing a call followed
by talking, or placing a call followed by hanging up. As another example, in
[22] (where action recognition is performed using a probabilistic DL), a complex

2 There are many other aspects to BPMN, including exceptions, data flow, and mes-
sages, which are not considered here.



process is described by giving its immediate components as the values of one
role, such as hasSimpleActivity; but sequencing is specified using an ad-hoc
technique, by conjoining to components EL concepts indicating a number, such
as ∃hasOrder.{1}, ∃hasOrder.{2}, etc.

Our goal is to develop DLs for building ontologies and taxonomies which
“understand” the meaning of composite processes. In addition to supporting
standard DL reasoning tasks, we take the following to be a distinguishing feature
of standard Description Logics: the language is term-like, with concept and role
constructors that build composite concepts from simpler ones, bottoming out at
identifiers. For example, the familiar ∃parent.(Doctor u Tall) is infix notation
for the term some(parent,and(Doctor, Tall)).

This syntactic issue eliminates at first glance diagramatic notations such as
Petri nets, various business process and workflow notations, and even finite state
machines (but see Sections 3.3 and 4.1). It also rules out the vast majority of
process description languages, such as the π-calculus [42], and even terminologic
logics that use variables and quantifiers (e.g., [57]). Even languages that use DLs
to describe bits and pieces of actions (e.g., using ABoxes to describe updates [21])
do not qualify.

The remaining DL formalisms that qualify under our criteria include: clasp
[12, 10, 4], which is based on regular expressions; DLs based on variants of Propo-
sitional Dynamic Logic [56, 7, 8]; and DLs based on temporal logics that use
modal operators [38, 9]. This paper examines the use of extended regular expres-
sions as the basis of Plan DLs, and briefly mention the others in Section 5.

Contributions: We mine the extensive literature on formal languages to ob-
tain, and sometimes extend, results concerning the (i) expressive power, (ii)
complexity of standard DL reasoning tasks (concept consistency, subsumption
and membership), and especially (iii) descriptive complexity of Plan DLs based
on extended regular expressions. This includes plan concept constructors for se-
quencing, alternation/disjunction, looping/Kleene star, intersection/conjunction
and complement. Motivated by the desire to add concurrency to Plan DLs, we
study the addition of interleaving as a concept constructor, and its connection
to structured workflows [31].

One can also view plans/processes as forming a “concrete domain”, so that
plan concepts can be used for role restrictions in ordinary DLs. This motivates
the study of the restricted use of conjunction and complementation at the top-
level, since Baader and Hanshke [2] show that this is sufficient for the domain
to be “admissible”. This restriction is important since the complexity of rea-
soning with complement is non-elementary in the general case. We also consider
briefly the effect on complexity of two concept constructors in the original clasp:
counted iteration and named subplans (acyclic definitional TBoxes).

In addition, we show, using language equations, that it is actually possible
to view finite automata (FAs) as simple cyclic Plan DL TBoxes, using only se-
quencing and alternation as concept constructors. This means that such visually
compelling, and sometimes more succinct notations, can also be captured by the
family of Plan DL formalisms studied here.



2 The Framework of Regular Expression-based Plan DLs

The original clasp system [12, 10] was developed to help reason about large
telephonics software projects [11], and as such it had to handle information such
as the fact that a phone call consists of picking up the phone, getting a dial tone,
dialing, getting a ring tone, etc. For this purpose, clasp provided a language for
describing plan concepts whose instances are called scenarios, and algorithms
for computing subsumption between these, as well as recognizing scenarios as
concept instances. The representation was built on top of atomic actions, re-
sembling Strips-like operators, such as Ring, with add- and delete-lists, and
pre- and post-conditions, where specific states, such as phone1-is-ringing, were
instances of atomic concepts, such as PhoneRinging. All of the information
about states and actions was represented in the classic DL.

We are not interested here in the process of planning itself, and hence we
will treat atomic action individuals as propertyless individuals. Following the
“rational reconstruction” of clasp in [4], we will use term-constructor act to
identify atomic action concepts, and constructors seq, or and loop to represent
sequencing, alternation and looping in composite plans. Using these, one might
then describe the concept MakingAPhoneCall as

seq(act(Dial), loop(act(Ring)),or(act(Talk),act(HangUp)))

A clasp instance scenario of this plan might be

[1234dials1212at6am, 1212ringsAt6am, 1212ringsAt6:01am, 1234hangsUpAt6:02am] .

clasp’s implementation of plan reasoning is based on the observation that
{seq, or, loop} correspond to regular expression (RE) constructors { ◦ , ∪, ∗},
when the set Actions of action concept names is viewed as the alphabet Σ used
in REs. For example, in order to check the subsumption P1 v P2, Devanbu and
Litman [10] construct a product automaton from the deterministic automata
for P1 and the complement of P2 (with a potential single exponential explosion
when eliminating non-determinism), and then check it for emptiness.

2.1 Syntax and Semantics of RE-based Plan DLs

As in the above example, a scenario is a sequence/string of instances of action
concepts from some finite set (the action terminology Actions). Since in this
paper we are not interested in information about individual actions other than
their type, we will not distinguish different instances of the same action concept,
and assume that each action class a has a single instance, "a". By abuse of
notation,we will usually drop the quotes on strings, and use a to represent both
the action class and its instance. We assume for now that action concepts are
either disjoint or related by subsumption, that the set of action concepts in
Actions covers the set of all possible individual actions, and even ignore action
subsumption.

To describe classes of scenarios we therefore start with a finite set, Actions,
of atomic concept names for actions, a disjoint set of identifiers N for plan con-
cepts, and plan constructors act, for single action plans, and constructors seq,



or and loop. We add to this some useful constants, and plan constructors for
intersection and complementation. The semantics of plan concepts is provided
by an interpretation I = (ActionsI , ·I), where ActionsI is, in our simplified
case, just a finite set isomorphic to Actions, and ·I maps plan names to sub-
sets of the set of strings/sequences over ActionsI , written here, for clarity, as
Sequences(ActionsI). I is then extended in the natural way to some constants
and the constructors in the manner shown in Figure 1.

name of constructor Syntax Term notation Semantics

atomic action a
a ∈ Actions

a act(a) {"a"}

plan concept name A
A ∈ N

A subplan(A) AI ⊆ Sequences(ActionsI)

no-action plan Null Null {λ}
bottom concept ⊥ Bottom ∅
top-plan concept >P TopPlan Sequences(ActionsI)
any one action Actions Actions ActionsI
sequence P1 ◦P2 seq(P1, P2) {uw |u ∈ P I1 , w ∈ P I2 }
alternation P1 tP2 or(P1,P2) P I1 ∪ P I2
repetition (base) P 0 repeat(0,P) NullI

repetition (ind’n) P k+1 repeat(k+1,P) P I ◦ (P k)I

loop P∗ loop(P)
⋃

i≥0 (P i)I

conjunction P1 uP2 and(P1,P2) P I1 ∩ P I2
complement ¬P not(P) Sequences(ActionsI) − P I

Fig. 1. Syntax and Semantics of a RE-based Plan DL

In the absence of Plan DL TBoxes, which introduce defined names for Plan
DL concepts, we will drop the act constructor, since all names refer to action
concepts.

2.2 Issues of Interest

Based on the application of Plan DLs, and the history of DL research, we will
consider the following problems.

Expressive power: We can adapt Baader’s notion of expressive power [1],
intended for logics with Tarskian semantics, with the only difference being that
interpretations now assign sets of strings to plan concepts. Interestingly, the
results coincide with the notion of grammatical formalisms being more or equally
expressive in terms of the formal languages they can describe.

Computational complexity: We will consider the complexity of the stan-
dard questions usually associated with DLs: concept inconsistency (correspond-
ing to language emptiness), subsumption (language containment), and member-
ship. Sometimes we will report the complexity of a problem in terms of its
complement (e.g., notEmpty rather than inconsistent), because these are more
easily checked non-deterministically, and one therefore avoids having to use “co-
C” complexity classes; also, these are reported in this way in the literature.



Although the formal languages literature does address the question of (in)con-
sistency, and membership, it usually does not address directly the question of
subsumption. Instead, the problem considered is “weaker”: the inequality of two
languages. Although complexity results for this provide lower bounds for the
subsumption problem, one cannot automatically assume that subsumption is in
the same complexity class. Deterministic Context Free Languages provide an
extreme example: equality of these is decidable [58], but containment is unde-
cidable [14].

Succinctness/Descriptive Complexity: Especially in cases of Plan DLs with
equal expressive power, it is interesting to see when one allows for more succinct
descriptions than another. For example, Non-deterministic Finite Automata
(NFAs) are well-known to be sometimes exponentially more succinct than Deter-
ministic Finite Automata (DFAs), because one can exhibit a family of languages
Ln accepted by NFAs having O(n) states, but for which every DFA requires
O(2n) states.

3 Plan DLs based on Regular-Like Expressions

In this section we consider plan concept constructors for building ordinary REs,
as well as conjunction/intersection (and/u ) and negation/complement (not/¬ ).

The utility of u arises in situations where one uses plan concepts as role
restrictions in ordinary DLs. For example, if we want to relate a person to the
sequences of steps they took for making phone calls, we could use for this pur-
pose an ordinary role, callsMade, and include in the definition of ALE-concept
Persons the role restriction
∀ callsMade.(Dial ◦Ring∗ ◦ (TalktNull) ◦HangUp)

If we now wanted to consider people who talked in at least one case before hang-
ing up, we would conjoin to Person the restriction
∃ callsMade.(Actions∗ ◦Talk ◦Actions∗)

This will require reasoning with
(Actions∗ ◦Talk ◦Actions∗)u (Dial ◦Ring∗ ◦ (TalktNull) ◦HangUp)

In a different direction, suppose one used “sensing actions”, such as IsOnHook?
to partially simulate conditional execution, as in IsOnHook? ◦LiftReceiver.
In such situations one would want to avoid “illegitimate” sequences, such as
IsOnHook? immediately followed by its opposite IsNotOnHook?. The absence
of such plans could be detected by intersection with the concept
¬ ( (Actions)∗ ◦ (IsOnHook? ◦ IsNotOnHook?) ◦ (Actions)∗ ).

In discussing the variants of regular expressions, we will use the notation
RegExp({S}) to refer to the set of all regular-like expressions (over an implicit
alphabet Σ) built using constructors in S. Thus RegExp({ ◦ , t , ∗}) refers to
ordinary standard REs, while RegExp({ ◦ , t , ∗, u}) adds and.

A complete discussion of the individual complexity results for all the variants
would take too much space, but is available in [5]. Instead, we summarize the
results obtained by others and us at the top of Table 1 . The lines without



references at the end indicate that we provided the proofs. However, in our
opinion these are not sufficiently deep to merit inclusion as separate theorems.

An interesting observation is that using unrestricted negation leads to very
high complexity, even in the absence of looping. Define the (non-elementary)
tower function tow recursively as tow(0, j) = j, tow(k + 1, j) = 2tow(k,j); it was
proved in [59] that every problem in NSPACE(tow(dlogb(n)e, 0)) can be polyno-
mially reduced to one in notTopP lan({t , ◦ ,¬}), while notTopP lan({t , ◦ ,¬})
is itself not in NSPACE(tow(dlogb(n)e, 0)).

Because regular languages are closed under intersection and complementa-
tion, these constructors do not increase expressive power. The situation with
succinctness is very different, since eliminating u or ¬ can lead to double ex-
ponential blow up [16]. More precisely, (a) For every integer n, there is rn in
RegExp({ ◦ , t , ∗, u ,¬}) of size O(n) such that any ordinary RE defining ¬ rn
is of size at least 22

n

; (b) for every integer n, there are REs r1, ..., rm, with
m = 2n + 1, of size O(n) such that any RE defining

⋂
i≤m ri is of size at least

22
n

.

Problem Reduction Complexity [Ref.]

(ordinary) RE-based Plan DL: { t , ◦ ,∗}
notEmpty log-lin complete NLOGSPACE [27] (citing [28])
containment log complete PSPACE [60]
containment log-lin complete NLINSPACE
member log complete NLOGSPACE [28]

RE Plan DL + Conjuction: {t , ◦ ,∗,u}
notEmpty complete PSPACE [50] (citing [33])
nonEqual complete EXPSPACE [15]
containment hard for EXPSPACE [15]
member log-lin complete LOGCFL [50]

RE Plan DL + Complement: {t , ◦ ,∗,¬ }
notEmpty not bded by Elementary Fn [59]
nonEqual in NSPACE(tow(n, 0)) [59]
nonEqual poly-lin hard NSPACE(tow(logb(n), 0)) [59]
member log complete P [24] (citing [49])

RE Plan DL + top-level conjunction: {t , ◦ ,∗,top-level u}
notEmpty log complete PSPACE [33]
containment complete EXPSPACE
member log-lin in LOGCFL

RE Plan DL + complement nesting depth 1

notTopPlan poly-lin complete NSPACE(
⋃

d 2d×n) [24]

RE Plan DL + conjunction of possibly negated REs
containment log-complete EXPSPACE

Table 1. Complexity Results for Extended RE-based Plan DLs



3.1 Plan Concepts as Concrete Domains

If we are interested in using RE-based plan concepts as universal/existential
role restrictions in ordinary DLs with tableaux reasoners, then, following the
work of Baader and Hanschke [2], this means that we can consider such plan
concepts as unary predicates for a “concrete domain”. They have shown that
for tableaux reasoning, in such cases it is sufficient that there be support for
reasoning with the conjunction of these (possibly negated) predicates (so called
“admissible domains”). This means that we are interested in the restricted use
of u and ¬ : a conjunction of possibly negated REs. By analyzing and extending
some of the proofs for the cases of arbitrary intersection and complement, we
obtain additional complexity results at the bottom of Table 1.

3.2 Counted Iteration, Subplans and Action Hierarchies

The original paper on clasp [10] proposed a constructor repeat, which can be
used as in the plan concept repeat(5, DialOneDigit). There is a widely stud-
ied formal language construct called “squaring”, where the extended regular
expression (R)2 is simply a short form for R ◦R; it can be simulated by the pro-
portional size repeat(2,R). Hence the complexity results in Table 2 concerning
(·)2 provide hardness results for repeat.

It is also very convenient to break down the description of complex plans and
processes into smaller, component plans. For example, Dial itself, in MakeA-
PhoneCall, could have been defined as

Dial
.
= seq(PickUpReceiver, ListenForTone, repeat(10, DialOneNumber))

This can be viewed as allowing acyclic definitional TBoxes. The squaring oper-
ator for regular expressions can be immediately obtained by writing axioms like
DoubleS

.
= S ◦ S, and the complexity results for squaring then provide lower

bounds for the complexity of reasoning with acyclic TBoxes in RE-based Plan
DLs. Finally, in most applications, ontologies of plans or processes bottom out

in taxonomies of primitive actions. To accommodate this, all that is needed is
to replace action name b in a RE-based Plan DL expression by (bt c1t c2...),
where c1, ... are all the subclasses of b.

3.3 Adding Concurrency

Modeling concurrent execution of subprocesses or plans is key in certain situation
(e.g., making a phone call while cooking). With sequences, we model conveniently
the interleaving of primitive actions into traces (trace semantics/equivalence),
rather than more refined notions of process equivalence/true parallelism (see [61,
26], say). The formal foundation is the notion of interleaving/shuffle:

Definition 1 Given alphabet Σ, symbols a, b ∈ Σ, and sequences x, y ∈ Σ∗, the
shuffle/interleaving x and y, written as x# y, is defined recursively as follows:

a#λ = λ# a = a
(a ◦ s) # (b ◦ t) = a ◦ (s# b ◦ t)t b ◦ (a ◦ s# ) for s, t ∈ Σ∗



Shuffle is extended to languages as L1 #L2= {u#w |u ∈ L1, w ∈ L2}.

We should point out that RegExp({ ◦ , t , ∗, # }) corresponds to structured
workflows/Petri nets [51, 31] and OWL-S[47], which have single entry/single exist
components. In fact, the process trees in [35] are generalized to have arbitrary
block-structured operators, thus fully resembling extended REs. Although less
expressive than their full counterparts [31], such models are frequent in practice,
and are advocated as having “better style” [6].

Let us consider the properties of this extension to RE-based Plan DLs. Ex-
pressiveness: Regular languages are easily shown to be closed under shuffle,
so it does not increase expressive power. Complexity of Reasoning: Some
known results for various reasoning tasks are summarized in the bottom half
of Table 2. Succinctness: Gruber and Holzer [19] show that any ordinary
regular expression defining the language (a1 ◦ b1)∗# (a2 ◦ b2)∗# . . . # (an ◦ bn)∗

must be of size at least double exponential in n.

4 Formalisms based on Finite State Machines

Finite state formalism have the advantage of being visually more perspicacious
because of their graphical representation, which abounds in the process speci-
fication literature as illustrated by notations such as BPMN, Petri nets, UML
activity diagrams, and Harel state charts. However, FAs are normally presented
using transition matrixes, and the definition of “language accepted” is not in
the usual Tarskian/compositional style. How can we present syntactically FAs
as DLs with natural plan concept constructors? We could convert the FA to an
RE, and then use the approach above in Sections 2 and 3. However, although
there is a simple polynomial conversion from REs to FAs, the converse is not
true. Ehrenfeucht and Zeiger [13] were the first to exhibit a simple family of FAs
An whose corresponding REs grow exponentially in size: take a complete graph
over states {1, ..., n}, including self-loops, with distinct symbols labeling every
edge (hence an alphabet of size n2); pick 1 and n as start and final states. They
then show that An requires a regular expression of size at least 2n−1 to describe
the same language, though the size of An is O(n2).

Problem Constructors Reduction Complexity

Effect of adding squaring
nonEqual {t , ◦ ,2} log-lin complete NEXPTIME [41]
nonEqual {t , ◦ , ∗, 2} log-lin complete EXPSPACE [41]
member {t , ◦ ,u ,2} log-lin complete LOGCFL [50]
member {t , ◦ ,¬ ,2} log complete P [24] (citing [49])

Effect of adding concurrency
notEmpty {t , ◦ ,∗, # } in P, based on [3]
nonEqual {t , ◦ , # } complete Σp

2 [39]
containment {t ,t ,∗, # } complete EXPSPACE [40]
member {t , # } {∗, # } complete NP [39]

Table 2. Complexity Results for RE-based Plan DLs with 2 and #



4.1 Representing FAs directly as DLs

We show by example how to convert an FA into a cyclic TBox, with only seq
and or as plan concept constructors3. One starts by converting NFAs to Type
3 grammars, in the usual way [25]. For example, the FA

S1	 S2	

a	 b	

b	
S3	

is translated to grammar (a) in Figure 2.
After conversion to EBNF notation, this can be viewed as a set of language
equations [18, 34] (Figure 2(b)), where nonterminals are viewed as set-valued
variables. By definition, the solutions of this set of equations are 3-tuples of
languages (L1,L2,L3), which when substituted for (S1,S2,S3), make the equations
be true. In turn these can be viewed as a Plan DL TBox using (Figure 2(c)),
where, as usual, interpretations assign sets of strings to concept names (which
are non-terminals here), and S1 is the concept denoting the language of the FA.
Note that we only need plan constructors seq and or, but not loop.

S1 ::= a S2
S2 ::= b S3
S3 ::= b S2
S3 ::= λ

S1 = a · S2
S2 = b · S3
S3 = b · S2 ∪ λ

S1
.
= seq(a , S2)

S2
.
= seq(b , S3)

S3
.
= or(seq(b , S2), Null)

(a) (b) (c)

Fig. 2. From automaton to TBox: an example

However, our TBox is cyclic so we have to consider the issue of possible al-
ternative solutions, which relates to fixed point semantics. Grammar (and hence
FA) languages have been shown to correspond to least fixed points [18]. There-
fore we will adopt the same semantics. Incidentally, results by Okhotin [44] show
that for the above kinds of equations the least, greatest and descriptive fixpoint
semantics are identical.

4.2 Reasoning with Finite Automata

We briefly consider the standard decision problems for Plan DLs, assuming they
are specified as TBoxes derived from right linear grammars/finite automata.
Note that we can reconstruct the FA immediately from the TBox. One reason
to re-consider these issues is because of the NFA vs DFA distinction, which does
not arise naturally for REs. The following results are from [23].
Emptiness: The non-emptiness problem for DFAs and NFAs is log-lin complete
in NLOGSPACE.
Subsumption: The language containment problem for DFAs is NLOGSPACE-
complete, and for NFAs it is log-lin complete for PSPACE.

3 We emphasize from the beginning that we propose to recover the standard FA in
order to implement algorithms. Our point is only that this seems like an elegant
presentation of FAs as DLs with TBoxes.



Membership: The (general) membership problem for NFAs is complete for
NLOGSPACE, but only LOGSPACE-complete for DFAs with respect to con-
stant depth reducibilities.

5 Summary, Related and Future Work

The paper motivated the utility of Plan DLs for the use of plan/process on-
tologies in planning and plan recognition, the description of business processes
and workflows, and the recognition of plan/process instances in many situa-
tions, including sensor-equipped environments and digital life-logging. We viewed
plan concepts as denoting scenarios: sequences of property-less atomic activities.
Starting from the work on the clasp system, this led us to an obvious connec-
tion to regular-like expressions, which denote sets of strings, and a large family
of Plan DLs, based on subsets of the considerable variety of RE-like constructors
studied in the formal language literature. The corresponding collection of formal
results about them, can be translated or improved into complexity results con-
cerning RE-based Plan DL concept reasoning, and descriptive complexity results
about their relative succinctness. We view part of the contribution of this paper
the exposure of the rich literature which the DL community can tap into to
obtain interesting results in the search for complexity-expressiveness trade-offs,
for example.

We also studied the use of Plan DLs as ”admissible concrete domains”, and
showed a way to view Finite Automata as DLs described by cyclic TBoxes, via
language equations.

Some obvious problems left for future work are filling in holes in the com-
plexity tables, considering data complexity for recognition, and using ABoxes to
describe partially completed scenarios.

As mentioned earlier, two other strands of work in Description Logics fall un-
der the category of having term constructors for process concepts. Propositional
Dynamic Logics (PDL) allow programs to be described in a manner very simi-
lar to RE-based Plan DLs, with program constructors {′;′ ,∪, ∗} corresponding
to { ◦ , t , ∗} for example. The work in [56, 7, 8] uses these as role construc-
tors. PDLs are clearly more expressive since they combine action descriptions
with state descriptions into formulas. However, this can lead to problems: while
reasoning with conjunctions of RE-based Plan DLs was shown to be decidable
in this paper, adding role conjunction to the set of role constructors leads to
undecidability of the corresponding PDL-based DL. Other relevant recent work
concerns Linear Dynamic Logic [9], and Declarative Business Process Models
(e.g., [48]), also based on linear temporal logic (LTL).

LTL also plays a role in recent proposals for temporal DLs with modal oper-
ators [38] which avoid using variables. For example, �(EUcandidate U EUmember

has a clear term-like expression eventually(until(EUcandidate, EUmember)).

The exact relationships of these to RE-based Plan DLs is the subject of
ongoing research.
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