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Abstract. Motivated by some problems in the area of influence spread in social
networks, we introduce a new variation on the domination problem which we call
Threshold-Bounded Domination with Incentives. Let G = (V,E) be a graph with
an influence threshold t(v) for each node. An assignment of external incentives
to the nodes of G is a cost function c : V → N0, where c(v) is the incentive
given to v ∈ V . The effect of applying incentive c(v) to node v is to decrease
its threshold, i.e., to make v more susceptible to be dominated. A node is in
the Threshold-Bounded dominating set D if it receives an incentive equal to its
threshold, that is, c(v) = t(v). A node, which is not in D, is dominated if the
number of its neighbors in D plus the incentives it has received is at least equal
to the node threshold t(v). The goal is to minimize the total of the incentives
required to ensure that all the nodes are dominated. The problem is log-APX-
complete in general networks with unbounded degree. We prove that a greedy
strategy has approximation factor ln∆ + 2, where ∆ is the maximum degree of
a node. We also give exact linear time algorithms for some classes of graphs.
Keywords: Weighted domination, Vector domination, Approximation algorithms,
Recommending systems, Social networks, Incentives.

1 Introduction
Let G = (V,E) be a graph modeling a network. For any node v ∈ V , we denote by
N(v) = {w | (v, w) ∈ E} and by d(v) = |N(v)|, respectively, the neighborhood and
the degree of the node v in G. We denote by n = |V | and ∆ = maxv∈V d(v) the
number of nodes and the maximum degree of G respectively. Moreover, for each set
D ⊆ V , we denote by ND(v) = N(v) ∩D, the neighbors of v belonging to D and by
dD(v) = |ND(v)| its cardinality. A Dominating Set for G = (V,E) is a subset D ⊆ V
of nodes such that ND(v) ̸= ∅, for each v ∈ V −D.

The concept of domination in graphs has been intensively studied, under several
variations of dominating sets in graphs, because of its various applications in several
research areas [17, 18]. In this paper we introduce and study a novel domination prob-
lem which we call Threshold-Bounded Domination with Incentives.

1.1 The Problem

Let t : V → N = {1, 2, . . .} be a function assigning integer thresholds to the nodes
of G. An assignment of incentives to the nodes of a network G = (V,E) is a cost
function c : V → N0 = {0, 1, 2, . . .}, where c(v) is the incentive given to v ∈ V .
The effect of applying the incentive c(v) to node v is to decrease its threshold, i.e.,
to make v more susceptible to be dominated. A node is in the Threshold-Bounded
dominating set D if it receives an incentive equal to its threshold, that is, c(v) = t(v).
A node in V −D is dominated if the number of its neighbors in D plus the incentives
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it has received is at least equal to the node threshold t(v). We assume, w.l.o.g., that3

0 ≤ c(v) ≤ t(v) ≤ d(v).
(otherwise, we can set t(u)=d(u)+1 for every node u with threshold exceeding its

degree plus one without changing the problem
Given a set D ⊆ V , consider the incentive function c : V → N0 with

c(v) =

{
t(v) ifv ∈ D

max{t(v)− dD(v), 0} ifv ∈ V −D.

We say that D is a Threshold-Bounded (TB) dominating set with incentives of cost∑
v∈V c(v). We are interested in finding the TB dominating set of minimum cost. For-

mally, we study the following problem.
THRESHOLD-BOUNDED DOMINATING SET WITH INCENTIVES (TBDI).

Instance: A network G = (V,E) with thresholds t : V −→ N.
Problem: Find a set D ⊆ V of nodes which minimizes the following value.

c(D) =
∑
v∈D

t(v) +
∑

v∈V −D

t(v)>dD(v)

(t(v)− dD(v)). (1)

In the following we will refer to the set D ⊆ V that minimizes (1) as an optimal TB
dominating set in G.4

1.2 Related work

Domination in Graphs. Domination problems in graphs have been extensively studied
under various assumptions, both from structural and algorithmic points of view. We list
here some of them which are close to the one considered in this paper. We assume the
graph be G = (V,E).

α-domination. Close related to our work is the concept of α-domination introduced in
[10] by Dunbar et al.. A set D ⊆ V is an α-dominating set of G, if dD(u) ≥ αd(u) for
all u ∈ V −D, i.e., for every node that does not belong to D at least an α-fraction of
its neighbors belong to D. The goal is to minimize the size of D.

Monopolies. A set M ⊆ V is called a self-ignoring r-monopoly if every v ∈ V −M
is dominated r times, that is, |NM (v)| ≥ r. The goal is to minimize the size of M .
Monopolies have been widely studied in the literature, see [24] for a survey.

Vector Domination/Threshold Ordinary Domination/f -Domination. Given a vec-
tor k = (kv|v ∈ V ) with kv ≤ d(v) for each v ∈ V , the vector domination problem
asks to find a vector dominating set (VDS) of minimum size, that is, a set S minimizing
|S| and such that |NS(v)| ≥ kv for all v ∈ V [16, 1]. This problem also appeared in the
literature under the name of threshold ordinary dominating sets [15] and f -domination
[26]; it also coincides with Threshold-Bounded Influence Dominating Set in [12].

3 Notice that in the case t(v) > d(v), we can set t(v) = d(v), while the exceeding value
t(v)− d(v) will be added to c(v).

4 Notice that the optimal set can always be chosen as a dominating set of the input graph; indeed
if D does not dominate a node v ∈ V , then applying (1) to the sets D and D′ = D∪{v}, one
gets c(D)− c(D′) =

∑
u∈N(v) max{0, dD(u)− t(u)} ≥ 0.
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Minimum-weighted dominating set. The Minimum-Weighted Dominating Set prob-
lem (MWDS) is a generalization of the Dominating Set, which asks to find a Dominat-
ing Set of a graph G of minimum total weight. Until now, the best known approximation
ratio for an MWDS in a general graph is O(log∆).

We stress that in all the above unweighted problems the focus is on the minimization
of the size of the dominating set attaining the desired property. In case of weighted
networks, the focus is on the minimization of the total weight of the set. However, the
solution of the TBDI problem can be quite different from the solutions of the weighted
Vector Dominating Set problem for a given network. As an example, consider a com-
plete graph K8 on 8 nodes all with threshold/weight 7. The optimal solution for the
weighted Vector Dominating Set problem consists of any subset of 7 nodes and its cost
is 7 × 7 = 49. The TBDI problem admits a different optimal solution where the set D
consists of 4 nodes and the remaining nodes need an incentive of value 3. The overall
cost of the incentives is therefore 7× 4 + 3× 4 = 40.

Social Networks. In addition to its theoretical interest, the study of the TBDI problem
is also relevant to the area of influence propagation in social networks.

The problem of identifying influential individuals in a social network received a lot
of attention, as it has applications in several areas, including viral marketing, disease
prevention, disease propagation, politics, etc., see [19] for a recent survey. For instance,
in the area of recommendation systems [11], companies wanting to promote products
might try initially to convince a few individuals (using discounts for instance) which,
exploiting social contagion, can trigger a cascade of influence in the network, leading
to an adoption of the products by a much larger number of individuals.

In this paper, we use the well-known threshold model to study the influence diffu-
sion process in social networks: For each node v ∈ V , the threshold value t(v) quanti-
fies how hard/easy it is to influence v [14]. Most of the existing approaches regard this
as a long-term diffusion process, where information cascading occurs in several rounds
[4, 5, 8]. Such models do not fit situations where time is an issue. In practice, time
constraints and spreading speed are always critical concerns of marketers since they
are closely related to profit and competition [21, 22]. The time problem in the spread-
ing process has been recently algorithmically addressed in [3, 2, 12]. In particular, one
round influence propagation has been recently studied in [12] as a building block for
the design of an effective recommendation system.

The classical model, also adopted in [12], limits the optimizer to a binary choice
between zero or complete initial influence on each individual. This implies that the cost
of influencing a very popular (and therefore highly influential) node is the same as that
of influencing a lonely individual and only the number of nodes in the dominating set
is considered as a cost measure. Moreover, customized incentives (such as free copies,
discounts, rewards, . . .) that can be given to individual nodes could be more effective in
realistic scenarios [7, 9, 20, 23].

The proposed TBDI problem, in which the cost of totally influence a node is pro-
portional to the node threshold (that can in turn be proportional to the node influence
capability) and a partial external influence can be applied to each node, can then be used,
among the other possible applications, to model a recommendation system (cfr. [12])
with a realistic cost counting. The above issues have been considered in the recent paper
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[6] dealing with the use of external incentives in time-bounded influence spreading: Let
λ be a bound on the number of rounds available to complete the process of influencing
all nodes of the network, find incentives of minimum cost which result in all nodes be-
ing influenced in at most λ rounds. Formally, an influence process in G = (V,E), with
node thresholds t : V → N, starting with incentives in c : V −→ N0 is a sequence of
node subsets I0 = {v |c(v) = t(v)} and Iℓ = Iℓ−1 ∪

{
v
∣∣∣∣∣NIℓ−1

(v)
∣∣ ≥ t(v) − c(v)

}
,

for ℓ ≥ 1. The TIME-BOUNDED TARGETING WITH INCENTIVES problem studied
in [6] takes in input a network G = (V,E) with node thresholds t : V → N and a
time bound λ and asks for an incentive assignment c : V −→ N0 of minimum cost∑

v∈V c(v) such that Iλ = V.
It has been shown in [6] that the above problem, in general graphs, cannot approximated
to within a ratio of O(2log

1−ϵ n), for any fixed ϵ > 0, unless NP ⊆ DTIME(npolylog(n)),
while exact algorithms are given for paths, complete graphs and trees. Specifically, the
complexity of the presented algorithm is O(n) for paths, O(λn log n) for complete net-
works and O(λ2∆n) for trees.
The TBDI problem considered in this paper coincides with the case in which only
one round of influence can be assumed. Indeed our problem can be seen as to find
c : V −→ N0 of minimum cost

∑
v∈V c(v) such that D = I0 and I1 = V . In such a

case, we can get novel and stronger results as described in Section 1.3.

1.3 Our Results
Our main contributions are the following: In Section 2, we prove that a natural greedy
strategy has approximation factor ln∆ + 2. Unless P ≈ NP , the approximation ratio
of the greedy algorithm is optimal (up to lower order terms), since the TBDI problem is
not easier than the dominating set problem and, consequently, cannot be approximated
to within a ratio better than (1− o(1))× ln∆, unless NP ⊆ DTIME(npolylog(n)). In
Section 3, we give exact linear-time algorithms for complete and tree networks.

2 General Graphs
We show in this section that the TBDI problem can be optimally approximated within
a logarithmic factor.

We first notice that the TBDI problem defined in Section 1.1 includes the dominat-
ing set (DS) problem (in case each node has threshold 1). It was shown in [25] that
unless NP ⊆ DTIME(nO(log logn)), no polynomial-time algorithm can approximate
the DS problem better than (1− o(1))× ln∆.
Theorem 1. The TBDI problem cannot be approximated to within a ratio better than
(1− o(1))× ln∆, unless NP ⊆ DTIME(npolylog(n)).
We show now that the logarithmic factor approximation for the TBDI problem can be
attained by a greedy algorithm.

In the following, let D ⊆ V be a TB dominating set, we name black the nodes that
belong to the set D. Moreover, for each node v ∈ V −D we denote by

t′(v) = max{t(v)− dD(v), 0} (2)

the residual threshold of the node v, that is the amount of incentive that still is required
to dominate v using D as TB dominating set. Accordingly, we partition the non-black
nodes in V −D into two sets:
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Algorithm 1: Greedy-TBDI(G)
Input: A graph G = (V,E) with thresholds t : V −→ N.
Result: A TB dominating set D ⊆ V of minimum cost c(D).

1 D = ∅, W = V
2 forall the v ∈ V do t′(v) = t(v)
3 while ∃u ∈ V −D such that t(u) < w(u) do // Select v with largest w(v)/t(v).

4 v = argmaxu∈V −D

(
w(u)
t(u)

)
5 D = D ∪ {v}
6 W = W − {v}
7 forall the u ∈ NW (v) do
8 t′(u) = t′(u)− 1
9 if t′(u) = 0 then W = W − {u}

10 return D

• the set W of white nodes, which contains non-dominated nodes (t′(v) > 0);
• the set of gray nodes, which contains dominated nodes (t′(v) = 0).

Finally, we denote by w(v) the span of the node v, which corresponds to the number of
white neighbours plus the residual threshold (w(v) = dW (v) + t′(v)).

Algorithm 1 greedily selects the node with the largest value w(v)/t(v) until there is
a node having threshold smaller that its span. It is possible to see that the algorithm can
be implemented in such a way to run in O(|E| log |V |) time. Indeed we need to process
the nodes v ∈ V according to the metric w(v)/t(v), and the updates that follow each
processed node v ∈ V involve at most the d(v) neighbors of v.
Theorem 2. Algorithm 1 is a (ln∆+ 2)-approximation for the TBDI problem.

Proof. (Sketch)
We first show that the TBDI problem is a special case of the following WTVD

problem5:

WEIGHTED TARGETED VECTOR DOMINATION (WTVD).
Input: A graph G = (V,E), thresholds t : V −→ N, and a target set U ⊆ V .
Question: Find a set D ⊆ V of minimum cost

∑
v∈D t(v) such that dD(u) ≥

t(u), for each node u ∈ U −D.

It is possible to see the existence of a reduction from TBDI to WTVD as follows. Let
G = (V,E) with thresholds t : V −→ N be an instance of the TBDI problem. For
each node v having threshold t(v), we add to the network a set {v1, v2, . . . , vt(v)} of
t(v) nodes having threshold 1, connected to the node v and we obtain an new graph
H = (V (H), E(H)) with thresholds tH : V (H) −→ N (see Fig. 1) where:

- V (H) = U ∪ U ′, where U = V and U ′ =
∪

v∈V {v1, v2, . . . , vt(v)},
- E(H) = E ∪ E′, where E′ =

∪
v∈V {(v, vi), for i = 1, 2, . . . , t(v)},

- tH(v) =

{
t(v) v ∈ U ;

1 otherwise.

5 To the best of our knowledge, this is a novel domination problem which can be of interest on
its own.
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Fig. 1. The graph H (right) obtained starting from the graph G (left). The integers inside circles
are the node thresholds. The dashed roundbox represents the gadget associated to the node v1.

Claim 1 There exists a TB dominating set D ⊆ V in G such that c(D) ≤ k iff there
exists a set DH ⊆ V (H) in H such that

∑
v∈DH

tH(v) ≤ k and dDH
(u) ≥ tH(u), for

each u ∈ U −DH .

Algorithm 2 provides a solution DH for the WTVD problem having the same cost
of the solution for the TBDI problem. Indeed, the solution for the TBDI problem can be
obtained as D = DH ∩ V . It is worth observing that, since the nodes in V − U are set
as gray at the beginning of the Algorithm 2 (see line 3), both Algorithms 1 and 2 select
the same nodes from the set V = U as long as there exists a node u ∈ V − D such
that t(u) < w(u) (each node v ∈ U ′ has t(v) = 1 and w(v) ≤ 1). Then Algorithm 1
ends with the set D, while Algorithm 2 continues selecting some nodes in U ′ in order
to dominate all the white nodes. As observed above, the cost of the nodes selected in
the set U ′ corresponds to the incentives applied to v for the TBDI problem.

Table 1 shows an example of the execution of the Algorithms 1 and 2 on the graph
G and H in Fig. 1. For each iteration the set D (TB dominating set), the set W (white
nodes) and for each node u, the metric w(u)/t(u) are provided. The Algorithm 1 ends
after 2 iterations while the Algorithm 2 needs 3 iterations. We are now going to show
that the cost of the solution DH provided by Algorithm 2 is a (ln∆+2)-approximation
compared to the cost of an optimal solution D∗ that is∑

v∈DH
t(v)∑

v∈D∗ t(v)
≤ ln∆+ 2. (3)

Each time, the Algorithm 2 selects a new node v of the dominating set (each greedy
step), we have cost t(v). Instead of letting this node pay the whole cost, we distribute

step D DH W w(u)/t(u) v D∪{v} DH∪{v}
V = U U ′

v1 v2 v3 v4 v5 v6 . . .
1 ∅ ∅ {v1, v2, v3, v4, v5} 5/2 7/3 5/2 5/2 5/2 1 . . . v1 {v1} {v1}
2 {v1} {v1} {v2, v3, v4, v5} – 5/3 3/2 5/2 3/2 1 . . . v4 {v1, v4} {v1, v4}
3 – {v1, v4} {v2} – 1/3 1/2 – 1/2 1 . . . v6 – {v1, v4, v6}

Table 1. The execution of the Algorithms 1 and 2 on the graph G and H depicted in Fig. 1.
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Algorithm 2: Greedy-WTVD(G)
Input: A graph G = (V,E) with thresholds t : V −→ N and a set U ⊆ V .
Result: A set DH ⊆ V of minimum cost

∑
v∈DH

t(v) s.t. ∀v ∈ U−DH , dDH (v)≥t(v).
1 DH = ∅, W = U // At the beginning, nodes in U are white.
2 forall the v ∈ U do t′(v) = t(v)
3 forall the v ∈ V−U do t′(v) = 0 // At the beginning, nodes in V−U are gray.
4 while ∃u ∈ W do // Select the node with the largest value w(v)/t(v).

5 v = argmaxu∈V −DH

(
w(u)
t(u)

)
6 DH = DH ∪ {v}
7 W = W − {v}
8 forall the u ∈ NW (v) do
9 t′(u) = t′(u)− 1

10 if t′(u) = 0 then W = W − {u}

11 return DH

Fig. 2. The stars associated to the solution D∗ = {v1, v4, v6} for the graph H depicted in Fig. 1.

the cost to all the nodes affected by this choice, plus the node v itself (when t′(v) > 0)
according to the portion of the span w(v) covered by each node. For instance consider
the node v1 in Fig. 1 having initial threshold t(v1) = 2 :
- Assume that v1, is selected in line 5 of the Algorithm 2 when its residual threshold
is t′(v1) = 2 (i.e., as a white node) and it has three white neighbors. In this case, the
span of the node v1 is w(v1) = dW (v1) + t′(v1) = 5 and each of its white neighbors
gets charged t(v1)/w(v1) = 2/5, while v1 is charged (t(v1) × t′(v1))/w(v1) = 4/5.
Overall the charge is (t(v1)× dW (v1))/w(v1) + (t(v1)× t′(v1))/w(v1) = 2 = t(v1).
- On the other hand, if v1 is selected as a gray node (t′(v1) = 0), while it has two white
neighbors, only the neighbors get charged (they all get t(v1)/w(v1) = 2/2 = 1) and
again the overall charge is t(v1).

Assume now that we know a dominating set D∗ of minimum cost
∑

v∗∈D∗ t(v∗).
By the definition of the WTVD, each node v, which is not in U −D∗ has at least t(v)
neighbor from D∗. Hence we can associate to each node v ∈ U−D∗, t(v) nodes in D∗.
Then for each node v∗ ∈ D∗ we build a star, centered in v∗, which contains as leaves,
the nodes in U − D∗ that have been associated to it. Hence we have |D∗| stars, each
having a dominator (v∗ ∈ D∗) as center and non-dominators as leaves. An example is
presented in Fig. 2. Notice that each node v ∈ U −D∗ appears in t(v) stars (that is we
have t(v) copies of the node v). Clearly, the contribution of the star centered in v∗ to
the overall cost of an optimal solution is t(v∗).

It is possible to show that the amortized cost (distributed costs) of the Algorithm 2
is at most t(v∗)(ln∆+ 2) for each star. This suffices to prove (3). ⊓⊔
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3 Efficient algorithms for the TBDI problem
In this section we show that the TBDI problem can be efficiently solved when the graph
G is a complete graph or a tree. Our results improve on those in [6] where polynomial
time exact algorithm were presented for the Time-Bounded Targeting with Incentives
problem within a fixed number λ ≥ 1 of rounds. For the TBDI problem we show the
existence of linear time algorithms.

3.1 Complete graphs
Let Kn = (V,E) be the complete graph with node set V = {v1, v2, . . . , vn}. We will
prove the following theorem.
Theorem 3. For any complete network Kn = (V,E), threshold function t : V −→ N,
the TBDI problem can be solved in linear time.

The following lemma, proved in [6], gives us a tool to design our efficient algorithm.

Lemma 1. [6] Given thresholds t(v1) ≤ t(v2) ≤ . . . ≤ t(vn), if there exists an optimal
TB dominating set D∗ in Kn such that |D∗| = j then also D = {v1, . . . , vj} is an
optimal TB dominating set in Kn.

In the following, we assume t(v1) ≤ t(v2) ≤ . . . ≤ t(vn). Notice that the sorting can
be done in O(n) time using counting sort because 1 ≤ t(v) ≤ n − 1 = d(v) for all
v ∈ V .

If the TB dominating set of Kn has j nodes, for some 1 ≤ j ≤ n, then they
are v1, v2, . . . , vj by Lemma 1; furthermore, each of the n − j remaining nodes in V
has j neighbors (i.e., v1, v2, . . . , vj) in the TB dominating set. For such a remaining
node v either t(v) ≤ j or v has incentive c(v) = t(v) − j. Hence, if we denote by
Dj = {v1, v2, . . . , vj}, it follows that the optimal TB dominating set of Kn is

D = argmin
1≤j≤n

c(Dj) = argmin
1≤j≤n

 j∑
i=1

t(vi) +
n∑

i=j+1

max{t(vi)− j, 0}

 . (4)

We show now that D can be computed in time O(n). To this aim, we can pre-compute
an auxiliary vector s where, for j = 1, . . . , n, s[j] contains the smallest index i ≥ j
such that t(vi) > j if it exists, otherwise s[j] = n+1. Clearly, s[1] ≤ s[2] ≤ . . . ≤ s[n].
The vector s can be precomputed in O(n) time once the nodes are sorted by non-
decreasing threshold value. Noticing that

c(D1) = t(v1) +
n∑

i=s[1]

(t(vi)− 1), and for j = 2, . . . , n

c(Dj) =

j∑
i=1

t(vi) +
n∑

i=s[j]

(t(vi)− j)

=

j∑
i=1

t(vi) +
n∑

i=s[j−1]

(t(vi)− j + 1− 1)−
s[j]−1∑

i=s[j−1]

t(vi)− j

= c(Dj−1) +

t(vj)− (n− s[j − 1] + 1)−
s[j]−1∑

i=s[j−1]

t(vi)− j
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we obtain that O(n) total time suffices to compute all the c(Dj), for j = 1, . . . , n.

Example 1. Let K8 = (V,E) be a complete graph having 8 nodes V = {v1, v2, v3, v4,
v5, v6, v7, v8} having thresholds 1, 2, 3, 3, 5, 5, 5, 5 respectively. Using the above strat-
egy, we have that an optimal TB dominating set is D∗ = {v1, v2, v3, v4}. Hence, the
optimal incentive function is c(v) = t(v), for each v ∈ D∗, while, for each v /∈ D∗,
c(v)=5−|D∗|=1 and c(D∗) =

∑
v∈D∗ t(v) +

∑
v/∈D∗ c(v) = 9 + 4 = 13.

3.2 Trees
Let T = (V,E) be a tree having n nodes. In the following, we will assume that T is
rooted at some node r and for any node v, we denote by Tv the subtree rooted at v, by
C(v) the set of children of v and, whenever v is not the root r, by p(v) the parent of v.
Furthermore, for any incentive function c and any node v, we will denote by c(Tv) the
sum of the incentives c assigns to the nodes in Tv .

We give a dynamic programming algorithm that proves Theorem 4.

Theorem 4. For any tree T = (V,E), threshold function t : V −→ N, the TBDI
problem can be solved in linear time.

The algorithm performs a post-order visit of T — so that each node is considered after
all of its children have been processed — and for each node v, it solves three different
TBDI problems on the subtree Tv, according to some conditions on v regarding the fact
that it and its parent belong or not in the TB dominating set.

Definition 1. Let D be a TB dominating set in T . For each v ∈ V , we define:
• Y [v] as the minimum cost for TB dominating all the nodes in Tv, in case v ∈ D.
• N [v] as the minimum cost for TB dominating all the nodes in Tv , assuming that both
v ̸∈ D and p(v) /∈ D.
• R[v], if v ̸= r, as the minimum cost for TB dominating all the nodes in Tv , assuming
that v ̸∈ D and p(v) ∈ D.

Notice that if p(v) ∈ D then the threshold of node v in Tv is t(v)− 1 since p(v) is one
of the neighbors of v in D.

We set the above values equal to infinity when their constraints are not satisfiable.
For instance for a leaf node v if v /∈ D and p(v) /∈ D then v can not be dominated and
consequently N [v] = ∞.

The minimum cost of the TB dominating set in T can then be obtained by computing

min{Y [r], N [r]}. (5)

We proceed in a post-order fashion, so that the computations of the values Y [v], N [v]
and R[v] for a node v are done after all of the values for v’s children are known.

Consider a leaf v (with threshold t(v) = 1) and the one-node subtree Tv . Either v is
in the TB dominating set or its parent p(v) is in the dominating set (i.e., the threshold
of v in Tv is t(v)− 1 = 0), we have that for each leaf node v holds

Y [v] = t(v) = 1 N [v] = ∞ R[v] = t(v)− 1 = 0 (6)

Let v be any internal node. In order to compute the value Y [v], consider that we
assume that v is in the TB dominating set and then the incentive of v is exactly its
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Fig. 3. An example of three with 6 nodes. The value inside the circle denotes the node threshold.
Gray nodes represents the nodes in the optimal TB dominating set. For each node v, the values
Y [v], N [v] and R[v] are presented in the table.

threshold t(v); furthermore, the minimum cost for TB dominating all the nodes in the
subtree rooted at any children u ∈ C(v) is the minimum between Y [u] (that reflects the
case that u belong to the TB dominating set), and R[u] (that reflects the fact that u is
not in the TB dominating set while v (the parent of u) is in the TB dominating set and
then the threshold of u is t(u) − 1). It follows that Y [v]can be computed in O(d(v))
time as

Y [v] = t(v) +
∑

u∈C(v)

min{Y [u], R[u]}. (7)

Now, we derive the value N [v]. Recalling that in this case v and its parent are
not in the TB dominating set we have that its threshold is t(v) and the threshold of
each children u ∈ C(v) is t(u). In this case at least one of its children should be in
the TB dominating set. Let S be a subset of j ≥ 1 children of v that are in the TB
dominating set. Hence, t(v) − j is the incentive of v. Furthermore, the minimum cost
for TB dominating all the nodes in each subtree Tu with u ∈ S is Y [u], while the
minimum cost for TB dominating all the nodes in each subtree Tu with u ∈ C(u)−S
is N [u]. It follows that

N [v] = min
1≤j≤t(v)

min
S⊆C(v)
|S|=j

t(v)− j +
∑
u∈S

Y [u] +
∑

u∈C(v)−S

min{Y [u], N [u]}

 (8)

The value R(v) can be derived following the same arguments used to have N [v]
excepting for the fact that the threshold of v is t(v) − 1 and so the parent of v is a
neighbor of v in the TB dominating set. This implies that if S is a subset of j children
of v that are in the TB dominating set, it holds 0 ≤ j ≤ t(v)− 1. It follows that

R[v]= min
0≤j≤t(v)−1

min
S⊆C(v)
|S|=j

t(v)−1−j+
∑
u∈S

Y [u]+
∑

u∈C(v)−S

min{Y [u], N [u]}

 (9)

Example 2. Let T = (V,E) be the three in Fig 3. Using the above strategy, one can
easily fill the table in the figure. The minimum cost of the TB dominating set in T
corresponds to N [v6] = 4. Indeed an optimal TB dominating set is D∗ = {v4, v5}.

The time complexity of the computation of N [v] and R[v] can be strongly reduced
by using a particular ordering of the children of v. Assume to have sorted the d =
d(v) − 1 children of v, let say v1, v2, . . . , vd, according to the non-decreasing order of
the differences between Y [vi] and N [vi] for each i = 1, · · · , d, i.e.,

Y [v1]−N [v1] ≤ Y [v2]−N [v2] ≤ · · · ≤ Y [vd]−N [vd]. (10)
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In the following we prove that

−2∆ ≤ Y [vi]−N [vi] ≤ ∆ (11)

and then the sorting (10) can be done using counting sort in O(∆) time. To have (11),
we make two simple considerations:
– Take the incentives assigned to the nodes in Tvi to have N [vi] and increase the
incentive assigned to vi so that it becomes t(vi). This gives a new solution for TB
dominating all the nodes in Tvi with vi in the TB dominating set; hence, we have
Y [vi] ≤ t(vi) +N [vi] and so Y [vi]−N [vi] ≤ t(vi) ≤ d(vi) ≤ ∆.
– On the other hand, take the incentives assigned to the nodes in Tvi to have Y [vi]
and, decrease by 1 the incentive assigned to vi, increase the incentive assigned to some
u ∈ C(vi) so that it becomes t(u) ≤ d(u) ≤ ∆, and finally increase by 1 the incentive
assigned to each of the remaining d(vi) − 1 children of vi. This gives a new solution
for TB dominating all the nodes in Tvi in which vi is not in the TB dominating set and
whose cost is at most Y [vi]−1+d(vi)−1+∆ ≤ Y [vi]+2∆ and so Y [vi]+2∆ ≥ N [vi].

Lemma 2. If there exists an optimal dominating set D∗ in Tv such that v ̸∈ D∗ and
j ≥ 1 children of v are in D∗ then there exists an optimal dominating set D′ in Tv such
that v ̸∈ D′ and v1, v2, · · · , vj ∈ D′.

By using the ordering (10) and Lemma 2, the recurrence (8) can be simplified as follows.

N [v] = min
1≤j≤t(v)

t(v)− j +

j∑
i=1

Y [vi] +

t(v)∑
i=j+1

min{Y [vi], N [vi]}


Hence, (8) can be computed in time O(t). Similarly,

R[v] = min
0≤j≤t(v)−1

t(v)− 1− j +

j∑
i=1

Y [vi] +

t(v)∑
i=j+1

min{Y [vi], N [vi]}


can be computed in time O(t).

In conclusion, the value in (5) can be computed in time∑
v∈V

O(t(v)) ≤
∑
v∈V

O(d(v)) = O(n).

Standard backtracking techniques can be used to compute an optimal TB dominat-
ing set in the same O(n) time.
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