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Abstract. The time complexity of 1-limited automata is investigated
from a descriptional complexity view point. Though the model recognizes
regular languages only, it may use quadratic time in the input length. We
show that, with a polynomial increase in size and preserving determinism,
each 1-limited automaton can be transformed into an halting linear-
time equivalent one. We also obtain polynomial transformations into
related models, including weight-reducing Hennie machines, and we show
exponential gaps for converse transformations in the deterministic case.

1 Introduction

One classical topic of computer science is the investigation of computational
models operating under restrictions. Finite automata or pushdown automata, for
instance, can be considered as particular Turing machines in which the access to
memory storage is limited. Other kinds of restrictions follow from �ner analysis
of the computational resources an abstract device requires to recognize certain
languages. For example, in the case of Turing machines, classical complexity
classes such as P, NP, LogSpace, etc. are de�ned by introducing a limit on the
amount of resources, namely time or space, at disposal of the model.

Usually, such limitations reduce the expressive power. For instance, it is well-
known that one-tape nondeterministic Turing machines operating within a space
bounded by the length of the input, namely linear bounded automata, capture
exactly the class of context-sensitive languages, e.g. [5]. Phenomena like this,
where limiting an abstract model reduces its expressiveness to the level of some
standard class, are of great interest, as they provide alternative characterizations
of standard classes. Another example of this kind has been observed by Hennie
in 1965. He indeed proved that deterministic one-tape Turing machines operating
in linear time (i.e., time O(m) over inputs of length m), which can be converted
into linear bounded automata operating in linear time, recognize exactly the
class of regular languages [3]. The result has then been extended to the nonde-
terministic case [14], see also [8] for further improvements.1 As a consequence,
each Hennie machine, namely nondeterministic linear bounded automata work-
ing in linear time, is equivalent to some �nite automaton. From the opposite

? This work is an extended abstract of the conference paper [2].
1 In nondeterministic linear-time devices each accepting computation has linear length.
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point of view, this means that providing two-way �nite automata (2nfas) with
the ability to overwrite the tape cells, does not extend the expressiveness of the
model, as long as the time is linearly bounded in the length of the input.

Unfortunately, Hennie proved that it is undecidable, given a deterministic
one-tape Turing machine, to check whether it works in linear time over all input
strings, namely, whether it is actually a Hennie machine. To avoid this drawback,
Pr·²a proposed a variant of Hennie machine, called weight-reducing Hennie ma-
chine, in which the time limitation is syntactic [12]. In this model, each visit of a
cell should overwrite its content with a symbol in a decreasing way, with respect
to some �xed order on the working alphabet. As a consequence, the number of
visits of a cell by the head is bounded by some constant (i.e., not depending on
the input length) whence the device works in linear time over every input string.

By contrast to Hennie machines, the d-limited automata (d-la) introduced
by Hibbard, restrict nondeterministic linear bounded automata by allowing over-
writing of each tape cell during its �rst d visits only, for some �xed d ≥ 0 [4].
Contrary to weight-reducing Hennie machines, the head is still allowed to visit
a cell after the d-th visit, but it cannot rewrite its content anymore. This allows
to use super-linear time, as shown in the following example.

Example 1. We consider the language

Ln = {x0x1 · · ·xk | k ∈ N, xi ∈ {a, b}n, #{i > 0 | xi = x0} is odd}.

A deterministic 1-la An may recognize Ln as follows. It �rst overwrites the
factor x0, replacing each input symbol with a marked copy. Then, An repeats a
subroutine which overwrites a factor xi with some �xed symbol ], while checking
in the meantime whether xi equals x0 or not. This can be achieved as follows.
Before overwriting the j-th symbol of xi, �rst, An, with the help of a counter
modulo n, moves the head leftward to the position j of x0 and stores the un-
marked scanned symbol σ in its �nite control; second, it moves the head right-
ward until reaching the position j of xi, namely, the leftmost position that has
not been overwritten so far. At this point, An compares the scanned symbol (i.e.,
the j-th symbol of xi) with σ (i.e., the j-th symbol of x0). By counting modulo 2
the number of factors equal to x0, and �nally checking that the input string has
length multiple of n, An can decide the membership of the input to Ln.

It is possible to implement An with a number of states linear in n and #Σ+1
working symbols. Since for each position of a factor xi, i > 0, the head has to
move back to the factor x0, we observe that An works in quadratic time in the
length of the input string.

For each d ≥ 2, Hibbard proved that d-la recognize exactly the class of
context-free languages. He furthermore showed the existence of an in�nite hier-
archy of deterministic d-la, whose �rst level (i.e., corresponding to deterministic
2-la) has been later proved to coincide with the class of deterministic context-free
languages [10]. (See [7] and references therein for further connections between
limited automata and context-free languages.)

Clearly, 0-limited automata are no more than two-way �nite automata. Hence,
they characterize the class of regular languages. Wagner and Wechsung extended
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this result to the case d = 1: 1-la recognize exactly the class of regular lan-
guages [15]. From that point, the question of the cost of their simulation by
classical �nite automata has been studied by Pighizzini and Pisoni in [9], where
a tight doubly-exponential simulation by deterministic one-way �nite automata
is proved. This cost reduces to a single exponential when starting from a de-
terministic 1-la. Also, an exponential lower bound, using a single-letter input
alphabet, has been obtained in [11], for the simulation of deterministic 1-la
by 2nfa.

Like d-limited automata, 1-limited automata can operate in super-linear time
(cf., Example 1). This contrasts with Hennie machines which operate in linear
time by de�nition. The question we address in this paper is whether this ability
of 1-limited automata with respect to Hennie machines yields a gap between the
two models in terms of the size of their representations.

2 Results

We show that, with a polynomial increase in size, each 1-limited automaton can
be transformed into an halting linear-time 1-limited automaton. This is achieved
by augmenting the exponential cost simulation of 1-la by 2nfa given in [9]
(which in turn augments Shepherdson's classic conversion of 2dfas to 1dfas [13])
with a method for storing and accessing a carefully chosen subcollection of the
many �Shepherdson tables� that a 1nfa would need to remember in its states:
the simulating automaton can both store the tables (despite the 1-limitation)
and access them e�ciently (in both size and time).

Theorem 1. For each 1-la A, there exists an equivalent 1-la A′ satisfying:

1. A′ has polynomial size with respect to A;
2. in every computation of A′, each tape cell is visited a number of times which

is bounded by some polynomial in the size of A;
3. A′ works in linear time: on every input string w, it halts within O(|w|) steps;
4. if A is deterministic, then so is A′.

Linear-time 1-las are particular cases of Hennie machines, hence, it follows
from the above result that any 1-la can be transformed into a Hennie machine of
size polynomial in the size of the 1-la. Using Item 2 we can actually strengthen
the result: each 1-la can be transformed into a weight-reducing Hennie machine
of polynomial size.

Corollary 1. For each 1-la A, there exists an equivalent weight-reducing Hen-
nie machine A′ of size polynomial in the size of A. Furthermore, if A is deter-
ministic, then so is A′.

We also observe that the 1-limited automaton resulting from the construction
of Theorem 1 can be easily transformed into an equivalent one whose behavior
can be divided into two phases: (1) an initial phase consisting in a left-to-right
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Fig. 1. Relationships between the main models studied in the paper. Here, lt and wr

mean linear-time and weight-reducing, while d1-la and (d)hm stand for deterministic
1-la and (deterministic) Hennie machine, respectively. Dotted arrows indicate trivial
connections while thick arrows indicate our results.

one-way traversal of the input, during which each input symbol is nondeter-
ministically overwritten; (2) a second phase consisting in a read-only two-way
computation. Similar behaviors have been considered in the context of regular
transductions (i.e., transductions computed by, for instance, two-way transduc-
ers), because of their correspondence with global existential quanti�cation in
monadic second order logic, see, e.g. [1]. Using terminology from [1], we de�ne
the model of two-way automaton with common guess (2nfa+cg) in order to cap-
ture these particular behaviors of 1-limited automata. Formally, such machines
are not 1-limited automata, but the composition of an initial common guess
(i.e., a nondeterministic marking of the input symbols using symbols from a �-
nite alphabet, computed, for instance, by a 1-state letter-to-letter nondetermin-
istic one-way transducer) with a two-way automaton working on the enriched
alphabet. Notice that a deterministic two-way automaton with common guess
(2dfa+cg), is not a deterministic device, since it initially performs a common
guess which is nondeterministic by de�nition. We also point out that 2dfa+cgs
correspond to synchronous two-way deterministic �nite veri�ers [6].

Corollary 2. For each 1-la (resp., deterministic 1-la), there exists an equiva-
lent halting 2nfa+cg (resp., 2dfa+cg) of polynomial size.

A direct consequence of this last result, is that reversing a 1-limited automa-
ton, i.e., transforming it into another one recognizing the reverse of its accepted
language, has polynomial cost. This fails in the deterministic case, for which
we exhibit an exponential lower bound. As a consequence, we obtain exponen-
tial lower bounds for the simulation of deterministic weight-reducing Hennie
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machines or deterministic two-way automata with common guess by determin-
istic 1-limited automata.

Theorem 2. Let Ln be the language of Example 1. Hence

Ln
r = {xkxk−1 · · ·x0 | k > 0, xi ∈ {a, b}n, #{i > 0 | xi = x0} is odd}.

Then,
1. Ln

r is accepted by a 2dfa+cg, a linear-time nondeterministic 1-la, or a
deterministic weight-reducing Hennie machine of size polynomial in n;

2. any 1dfa recognizing Ln
r requires 22

n

states;
3. any deterministic 1-la recognizing Ln

r requires O(2n) states.

The results are summarized in Figure 1.

Acknowledgement. We are very indebted to Giovanni Pighizzini for suggesting
the problem and for many stimulating conversations.

References

1. Boja«czyk, M., Daviaud, L., Guillon, B., Penelle, V.: Which classes of origin graphs
are generated by transducers. In: ICALP 2017. LIPIcs, vol. 80, pp. 114:1�13 (2017)

2. Guillon, B., Prigioniero, L.: Linear-time limited automata. In: DCFS 2018. LNCS,
vol. 10952. Springer (2018), to appear.

3. Hennie, F.C.: One-tape, o�-line Turing machine computations. Information and
Control 8(6), 553�578 (1965)

4. Hibbard, T.N.: A generalization of context-free determinism. Information and Con-
trol 11(1/2), 196�238 (1967)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

6. Kapoutsis, C.A.: Predicate Characterizations in the Polynomial-Size Hierarchy. In:
Conference on Computability in Europe. pp. 234�244. Springer (2014)

7. Kutrib, M., Pighizzini, G., Wendlandt, M.: Descriptional complexity of limited
automata. Inf. Comput. 259(2), 259�276 (2018)

8. Pighizzini, G.: Nondeterministic one-tape o�-line Turing machines. Journal of Au-
tomata, Languages and Combinatorics 14(1), 107�124 (2009)

9. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. International
Journal of Foundations of Computer Science 25(07), 897�916 (2014)

10. Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Funda-
menta Informaticae 136(1-2), 157�176 (2015)

11. Pighizzini, G., Prigioniero, L.: Limited automata and unary languages. In: DLT
2017. LNCS, vol. 10396, pp. 308�319 (2017)

12. Pr·²a, D.: Weight-reducing Hennie machines and their descriptional complexity.
In: LATA 2014. LNCS, vol. 8370, pp. 553�564 (2014)

13. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198�200 (1959)

14. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing
machines. Theor. Comput. Sci. 411(1), 22�43 (2010)

15. Wagner, K.W., Wechsung, G.: Computational Complexity. D. Reidel Publishing
Company, Dordrecht (1986)


	Linear-Time Limited Automata

