
Preliminary results on the Modeling of System
Level Diagnosis problems with Abstract

Argumentation

Stefano Bistarelli1 and Antonio Caruso2

1 University of Perugia. stefano.bistarelli@unipg.it
2 University of Salento. antonio.caruso@unisalento.it

Abstract. System Level Diagnosis is a large subfield of fault-tolerance
in parallel and distributed systems. Each node in the system can be
’faulty’ or ’fault-free’ and is able to perform a diagnostic test of it’s
neighbouring nodes. The collection of test results is called the syndrome
of the system; the goal of the diagnosis is to provide algorithms and formal
techniques to identify all faulty nodes correctly under various fault model.
Abstract Argumentation is a framework used in AI to reason about belief
and valid conclusion among a network of conflicting arguments, it is
used by Intelligent Agents to take decisions. Subset of arguments can
be collectively accepted or refuted. In this paper, we study a connection
between the two models, and show that the diagnosis problem can be
represented using an argumentation system: arguments can be mapped
to set of units such that refuted arguments can be correctly diagnosed as
faulty.
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1 Introduction

Computer Science, as a research field, is so vast that it is not uncommon that ideas
and concepts developed in a subarea, could be rephrased or re-discovered, in a
different area, in some case without knowing the commonalities of the fundamental
ideas. In this paper we start reviewing two research topic: System Level Diagnosis,
a theory developed in the field of fault-tolerant systems to diagnose (permanent)
system faults in multiprocessor and distributed systems; and Argumentation
Systems a framework developed in the area of Artificial Intelligence to represent
formal reasoning of agents about abstract topic that can be mutually conflicting.
This two topics have also a different history, with System Level Diagnosis started
by Preparata et. al. [20] in the ’60 while the topic of argumentations has been
developed quite recently by Dung [16]. In this paper, we show that a common
model of system level diagnosis can be represented within an argumentation
framework: arguments can be mapped to set of units, such that, their fault or
fault-free status, is related to their acceptability in the argumentation system.
We study this connection and see what results can be translated to the field of
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argumentation from system diagnosis. The rest of the paper is organized as follows.
Section 2 review the field of System Level Diagnosis and the PMC model, in
Section 3 we reviews the framework of Abstract Argumentation and the different
semantics of acceptability of arguments. In Section 4 we present the main result
of this paper: a formal proof that there exist a mapping of the diagnosis problem
into an argumentation system. We show that under this mapping the subsets of
arguments that are refuted by the argumentation system can be mapped back
to subsets of units that can be diagnosed as faulty. We conclude the paper in
Section 5.

2 System Level Diagnosis

System-level diagnosis, which was introduced by Preparata, Metze and Chien in
[20] aims at diagnosing systems composed by units (usually processors) connected
by point-to-point, bidirectional links. A system S is represented by the system
graph G = (V, L), an undirected graph where nodes represent units and edges
represent interconnection links. The value of n = |V| is called the size of the
system.

System level diagnosis is based on a suitable set of tests between all adjacent
units. The set of tests utilized for the purpose of diagnosis are represented by
directed edges in the diagnostic graph DG = (V,E), where edge (u, v)3 from u to
v exists iff {u, v} ∈ L, and unit u tests unit v. Edges in E are labeled with the
binary test outcomes.

The system is characterized by an unknown set Vf ⊆ V of faulty units (called
the actual fault set). The set of all test outcomes is called a syndrome of the
system, we denote with Σ the set of all the possible syndromes which may result
from executing all tests corresponding to the edges of DG, and with σ any
syndrome in Σ. Formally a syndrome is any function σ : E→ {0, 1}. A test of v
performed by unit u with outcome δ ∈ {0, 1} is denoted by u δ−→v. The concise
notation u γ δ←→v, with γ, δ ∈ {0, 1}, denotes both the test of u performed by v
with outcome γ and the test of v performed by u with outcome δ; if γ = δ we use
the notation u γ←→v. Once a unit u has tested an adjacent unit v, the result of
this test must be interpreted according to a given fault model trying to capture
the behavior of faulty units.

2.1 The PMC Model

The PMC Model [20], known also as the Symmetric invalidation model, assumes
permanent faults, perfect test coverage, and an invalidation rule shown in Table 1.
This rule state that tests performed by fault-free units are completely reliable,
while tests performed by faulty units are completely unreliable.

Given a system, its diagnostic graph DG = (V,E), the actual fault set Vf , a
syndrome σ resulting from Vf , we define:
3 We denote with (u, v) a directed edge from unit u to v, and with {u, v} and undirected
edge.
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Table 1. Invalidation rule in the PMC model

Testing unit Tested unit Test outcome
Faulty-Free Faulty-Free 0

Faulty-Free Faulty 1

Faulty Faulty-Free 0 or 1
Faulty Faulty 0 or 1

Definition 1. (Diagnosis): A diagnosis is a partition of V into subsets (F,K, S).
Units in F are declared as faulty, units in K are declared as fault-free and units
in S are declared as suspect, i.e., units whose status remains unidentified.

It is immediate from Table 1 that any given fault set may yield different
syndromes; conversely, any given syndrome may derive from different fault sets.
Given a syndrome, the goal of a diagnosis algorithm is to identify a consistent
fault set of minimum cardinality:

Definition 2. (see [18]) Given a syndrome σ, any subset F ⊆ V is a consistent
fault set (CFS) of σ if and only if ∀ (u, v) ∈ E

1. If u ∈ V − F and u 0−→v =⇒ v ∈ V − F .
2. If u ∈ V − F and u 1−→v =⇒ v ∈ F.

That is, F is a CFS for σ if and only if the assumption that the units of F are
faulty and the units in V−F are fault-free is consistent with σ and the fault model.
A system is said one-step t-diagnosable if it is possible to correctly diagnose all
the units using only a single syndrome, under the hypothesis that |Vf | < t. The
maximum value of t, in this case, is called the one-step diagnosability and is
limited above by minimum in-degree of nodes in DG (under the hypothesis of
reciprocal tests) [20,17].

To support a number of faults higher than one-step diagnosability, a weaker
notion of sequential diagnosis is introduced in [18]. The sequential diagnosis
consists of several diagnosis and repair phases, the goal of each phase is the
identification of at least one faulty unit. Once identified, faulty units are immedi-
ately repaired or replaced, thus reducing their number. The process is iterated
until all the faulty units have been removed. A diagnosis algorithm aimed at
correctly diagnosing a large fraction of units in a single phase have been proposed
in [8,11,12].

2.2 Formal properties of the PMC model

The properties stated in the following lemma are immediate from the invalidation
rule (Table 1) of the PMC model:

Lemma 1. (see [10]) For any two adjacent units u, v in set V the following
statements hold:
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(a) If u 1 0←→v, then u is faulty.
(b) If u 0−→v and u is fault-free, then v is also fault-free.
(c) If v 0−→u and u is faulty, then v is also faulty.
(d) If u 1 1←→v, then at least one unit between u and v is faulty.

For any given syndrome σ, we define DG0 = (V,E0) as the subgraph of DG
of edge set E0 ⊆ E where E0 is the set of edges labeled with test outcome 0; that
is, E0 = {(u, v) ∈ E | u 0←→v}. Consider the strongly connected components of
DG0 and let A1,A2, . . . ,Ar(r ≥ 1) be the vertex sets of such components. Since
every vertex belongs to exactly one (possibly trivial) component, the collection
of subsets {A1,A2, . . . ,Ar} is a partition of V. The following properties are
immediate from Lemma 1:

Lemma 2. (see [9]) Given syndrome σ, let A1,A2, . . . ,Ar be the vertex sets of
the strongly connected components of DG0 = (V,E0). For every i, 1 ≤ i ≤ r, in
the graph DG we have:

(A) All units in Ai are in the same (faulty or non-faulty) state.
(B) If there exist units u, v ∈ Ai with u

1−→v, then all units in Ai are faulty.
(C) If there exist units u ∈ Ai, v ∈ Aj with i 6= j and u 0−→v, then all units in Ai

are faulty.

Fig. 1. Components of DG that can be declared unconditionally faulty

An example of an aggregate that satify Lemma 2 point (B) and of two
aggregates that satify point (C) are in Fig. 1. Define F′ as the union of all nodes
inside the aggregates that can diagnosed as faulty using Lemma 2(B)(C). If
F′ 6= ∅ then an incomplete, unconditionally correct diagnosis is trivially available,
and the goal of sequential diagnosis is achieved since at least one faulty unit has
been diagnosed. However, F′ can be empty in general (and in the worst case). For
this reason in the rest of the paper we assume that no faulty units are identified
using rules (B) and (C) of Lemma 2, that is, F′ = ∅. To emphasize property
(A) of Lemma 2, we call the aggregates that do not satify properties (B),(C) as
Z-aggregates, note that for any pair of Z-aggregates Ai, Aj , they are said to be
adjacent if there exist units u ∈ Ai, v ∈ Aj such that u←→v; it is immediate that
in this case the tests outcomes must be u 1 1←→v.
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2.3 Diagnosis algorithm

Since all units in a Z-aggregates are in the same state, a diagnosis of the system
consists in a (valid) labelling of the Z-aggregates as faulty, fault-free or undi-
agnosed. Letting α be the maximum cardinality of the Z-aggregates, that is,
|Ai| ≤ α for i = 1, . . . , r, we consider a diagnosis algorithm [12] that labels as
fault-free all the Z-aggregates of cardinality α (at least one exists) and that labels
as faulty all the Z-aggregates adjacent to some fault-free Z-aggregate.

The fault-free core K is defined as the union of all the Z-aggregates of car-
dinality α, the set of faulty units F is defined as the union of all Z-aggregates
labeled as faulty, and the suspect set S is defined as the union of all the remaining
Z-aggregates.

The algorithm also outputs a syndrome-dependent bound tσ = α− 1. In the
hypothesis that the actual number of faults in the system is not above tσ, i.e.,
|Vf | ≤ tσ the diagnosis is correct. In fact, under this hypothesis all Z-aggregates
of cardinality α must be fault-free. The bound tσ depends on the syndrome, it is
possible to define a measure of diagnosablity that is syndrome-independent [9],
such a bound can be expressed as a function T (n) of the size of the system and
is strictly related to the topology of the diagnostic graph.

3 Abstract Argumentation

In artificial intelligence and related fields, an argumentation framework, or ar-
gumentation system, is a way to deal with conflicting information and draw
conclusions from it. In an abstract argumentation framework, entry-level infor-
mation is a set of abstract arguments that, for instance, represent data or a
proposition.

Conflicts between arguments are represented by a binary relation on the set
of arguments. In concrete terms, you represent an argumentation framework with
a directed graph such that the nodes are the arguments, and the arrows represent
the attack relation.

The goal of each argumentation framework is at the end to propose a semantic
for the acceptability of arguments, i.e. which subset of arguments are together
maximally consistent from the point of view of an agent. We start with this basic
definition:

Definition 3. A Dung’s style Abstract Argument System[16] is a pair D =
〈X ,A〉 where X = {a1, . . . , ak} is a finite set of arguments, and A ⊆ X × X is
a binary attack relation on X .

To solve an argumentation system, we needs a notion of acceptability of
arguments, and in particular which arguments are mutually compatible in the
system. We start to define the following subset of arguments:

Definition 4. initial, acceptable, conflict-free, admissible arguments:
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Initial arguments: A subset of arguments I ⊆ X is called initial if @u ∈ X
such that ∃v ∈ I with (u, v) ∈ A. I.e. initial arguments do not have any other
arguments that are in conflict with them. We denote with initial(〈X ,A〉) the
(unique) maximal such set.

Conflict-free arguments: a set of arguments E ⊆ X is conflict-free if there is
no attack between its arguments, i.e.: ∀a, b ∈ E, (a, b) 6∈ A.

Acceptable arguments: an argument a ∈ X is acceptable with respect to
E ⊆ A if and only if E defends a, that is ∀b ∈ X such that (b, a) ∈ A,∃c ∈ E
such that (c, b) ∈ A.

Admissible arguments: a set of arguments E is admissible if and only if it is
conflict-free and all its arguments are acceptable with respect to E.

Given an instance of an argumentation framework, the main problem is clearly
to determine the justification state (also called the defeat status) of arguments,
in particular: what arguments emerge undefeated from the various conflict, i.e.
are acceptable? To decide if an argument can be accepted or not, or if several
arguments can be accepted together, Dung defines several semantics of acceptance
that allow, given an argumentation system, to compute sets of arguments, called
extensions. For instance, given S = 〈X ,A〉 we define a set E of arguments as:

Definition 5. complete, preferred, stable and grounded extensions:
complete extension of S only if it is an admissible set and every acceptable

argument with respect to E belongs to E,
preferred extension of S only if it is a maximal element (with respect to ⊆)

among the admissible sets with respect to S,
stable extension of S only if it is a conflict-free set that attacks every argument

that does not belong in E (formally, ∀a ∈ X\E,∃b ∈ S such that (b, a) ∈ E)
(unique) grounded extension of S only if it is the smallest element (with

respect to ⊆) among the complete extensions of S.

There exists some inclusions between the sets of extensions built with these
semantics: Every stable extension is preferred, every preferred extension is com-
plete, the grounded extension is complete, and if the system is well-founded all
these semantics coincide, i.e. only one extension is grounded, stable, preferred,
and complete. Given an acceptability semantics θ : 2X → {>,⊥}, we denote with
Eθ(〈X ,A〉) = {S ⊆ X | θ(S)} the set of subsets accepted by θ.

Arguments can be also accepted or refuted with respect to the a given
semantic, i.e. for example we consider the two notions of credulous or sceptical
acceptability: α ∈ X is credulous accepted if it is contained in at least an extension:
∃ S ∈ Eθ(〈X ,A〉), α ∈ S; and sceptical if it is contained in all extensions, i.e.
∀ S ∈ Eθ(〈X ,A〉), α ∈ S.

3.1 Labellings

Labellings [7] are a more expressive way than extensions to express the acceptance
of the arguments. Concretely, a labelling is a mapping that associates every argu-
ment with a label in,out,undec respectively for arguments accepted, rejected
and undefined. One can also note a labelling as a set of pairs (argument,label).
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Such a mapping does not make sense without additional constraint. The
notion of reinstatement labelling guarantees the sense of the mapping. L is a
reinstatement labelling on the system S = 〈X ,A〉 if and only if:

Definition 6. Reinstatement labelling:

1. ∀u ∈ X , L(u) = in if and only if ∀v ∈ X such that (v, u) ∈ A, L(v) = out
2. ∀u ∈ X , L(u) = out if and only if ∃v ∈ X such that (v, u) ∈ A and L(v) = in
3. ∀u ∈ X , L(u) = undec if and only if L(u) 6= in and L(u) 6= out

One can convert every extension into a reinstatement labelling: the arguments
of the extension are in, those attacked by an argument of the extension are
out, and the others are undec. Conversely, one can build an extension from a
reinstatement labelling just by keeping the arguments in. Caminada [7] proved
that the reinstatement labellings and the complete extensions can be mapped in
a bijective way.

Reinstatement labellings distinguish arguments not accepted because they
are attacked by accepted arguments from undefined arguments — that is, those
that are not defended cannot defend themselves. An argument is undec if it is
attacked by at least another undec. If it is attacked only by arguments out, it
must be in, and if it is attacked some in argument, then it is out.

4 Diagnosis and Argumentations

In the previous Sections we have presented the formal models of System Level
Diagnosis and Abstract Argumentation, at this point, the reader could already
see wide similarities between the two, and in particular the common use of a
graph based theoretical model.

In this Section we formally study these similarities, starting from a mapping
of System Diagnosis into a proper Argumentation Framework. The idea is to
start with a diagnostic graph DG = (V,E), an unknow fault-set Vf ⊆ V and a
syndrome σ, and construct an argumentation system D = 〈X ,A〉 such that, its
solutions (acceptable arguments with respect to a give semantic) can be used to
produce a diagnosis that is correct with respect to σ, and maybe also complete.

In other words, given a reinstatement labelling of D the arguments labelled
as in can be mapped to units diagnosed as fault-free, the arguments labelled
as out to units diagnosed as faulty, and finally arguments labelled as undec
to undiagnosed units. If the resulting diagnosis is correct (and/or complete),
we denote the labelling with the same name, i.e. a correct (and/or complete)
reinstatement labelling wrt the syndrome.

Note that the simplest (most intuitive) mapping consider units of S as
arguments (so X = V) and given a syndrome σ maps all diagnostic test with
output 1 as conflicts, i.e. ∀u, v ∈ V such that u 1−→v create a conflict (u, v) ∈ A
between the arguments u, v. It is easy to see that such a mapping do not respect
the above requirements since by definition 4 all initial arguments are labelled
as in in all standard semantic for argumentation, but a diagnosis that consider
them as fault-free is not correct.
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Theorem 1. There exist an actual fault set Vf , and a syndrome σ ∈ Σ, such
that, if we consider the above mapping to an argumentation system D=〈X ,A〉,
any reinstatement labelling where L(initial(〈X ,A〉) = in are not correct.

Proof. A simple counter-example is provided by a faulty-unit surrounded by
other faulty-units, that collectivelly declare each other as fault-free.

Formally, consider a syndrome σ ∈ Σ such that ∃u ∈ Vf that tests and is
tested only with outcome 0, i.e. if N(u) are the neighbours of u, ∀v ∈ N(u), v

0 0←→u.
Note that by Lemma 1 units that tests each other with 0 must be in the same
state, both faulty or fault-free, and since u ∈ Vf we are considering the first case.

Such a unit is mapped to an isolated argument in the argumentation graph, and
by definition it is initial. Any semantic of acceptance includes the initial arguments
in the set of admissible arguments, and accordingly, in any reinstatement labelling
such arguments will be labelled as in. Therefore, unit u is uncorrectly diagnosed
as fault-free. ut

The above problem can be solved using two different approaches. The first
approach consider a preprocessing that transform the input of the diagnosis
problem into a contracted graph that simplify the problem, removing all tests
with outcome 0 from the syndrome. The second approach, use directly the
syndrome but maps it to an extension of the Dung’s Framework with bipolar
relations [13]. This extension offer the opportunity to include the information
provided in the syndrome by tests with outcome 0 into a support relation aside
to the conflict ones. In this paper we explore the first approach, and leave the
latter as future work.

4.1 The Contracted Graph

We define the contracted graph of a diagnostic graph DG under syndrome σ,
denoted CGσ = (V′, L′) as the undirected, vertex-weighted graph obtained by
contracting all the units of a Z-aggregate Ai (defined after Lemma 2) into a
single vertex ai ∈ V′. Vertices in V′ are in a one-to-one correspondence with Z-
aggregates. Edge {ai, aj} ∈ L′ iff Z-aggregates Ai and Aj are adjacent. Remember
that we assume that the set F′ of units belonging to aggregates that satisfy
Lemma 2(B)(C) is empty (or we can simply remove them from the system) (see
page 5) this implies that all edges in L′ can be considered as labelled with 1.
Each vertex ai is weighted with αi = |Ai|.

In Figure 2 the contracted graph of a system with toroidal grid interconnections
is shown. This example has been obtained by randomly distributing 40 faulty
units into a 10×10 toroidal grid that determine a partition of the grid into 13
aggregates.4

The fault/fault-free status of a node in the contracted graph correspond
directly to the fault/fault-free status of the nodes inside each Z-aggregate. Thus,
any CFS of the contracted graph is in a one-to-one correspondence with a CFS

4 Z-Aggregates 1, 2, 4 wrap-around the edges of the toroidal grid
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Fig. 2. Example of a toroidal grid partitioned by 40 faults into 13 Z-Aggregates and
the associated contracted graph.

of the diagnostic graph. Moreover, the properties of the diagnostic model remain
valid, in particular Lemma 1 can be applied to the contracted graph by considering
the vertices of the contracted graph as single units. Let Γ (A) is the set of nodes
in a graph adjacent to some nodes in set A. We use an important property that
relate, consistent fault sets of σ and independent sets5 of the contracted graph:

Theorem 2 (Independence). Given a system graph G, and a syndrome σ. Let
CGσ = (V′, L′) be the contracted graph of G under syndrome σ. All subsets X ⊆ V′

of nodes declared fault free are independent, and the set Γ (X) is a consistent fault
set with respect to σ.

Proof. By definition, for any pair ai, aj of adjacent nodes of CGσ, the outcomes
of the mutual tests between units in Ai and units in Aj are 1. If we assume that
ai is fault-free, from properties (d) of Lemma 1 every aj adjacent to ai in CGσ
must be faulty. This means that fault-free nodes cannot be mutually adjacent
(so they are independent). For the same reason, the set of nodes U = Γ (X) is a
consistent fault set of σ.

At this point a mapping from the contracted graph to an argumentation
system is straightforward:

Definition 7. Mapping Given a contracted graph CGσ = (V′, L′) from the
syndrome σ, we map it to the argumentation system D = 〈X ,A〉 with X = V′

(nodes of the graph represent arguments) and (u, v), (v, u) ∈ A for each (u, v) ∈ L′

(test with outcome 1, represent conflicts).

5 A subset I of nodes is independent iff ∀u, v ∈ I u, v are not connected.
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With this mapping, the terms: argument, node in the contracted graph or
Z-aggregate (or the set of units it represent) are all equivalent, since we can map
directly one concept to the others. The main result of the paper, presented in the
following Theorem, shows that refuted arguments are directly related to consistent
fault set of a syndrome, i.e. set of units that collectivelly can be diagnosed as
faulty.

Theorem 3. Given a diagnostic graph DG, a syndrome σ, and the derived
contracted graph CGσ. Consider an argumentation system D = 〈X ,A〉 produced
from CGσ with the above mapping. In any reinstatement labelling L of D (from
an preferred extension of D) the set of refuted arguments can be mapped back to
a Consistent Fault Set of σ.

Proof. Given σ and CGσ, consider D = 〈X ,A〉 built from the above mapping.
Solve D, i.e. consider a reinstatement labelling L of D produced using a preferred
extension. Refuted arguments are labelled as out if they are in conflict with
arguments labelled in by L. The latter belong to a maximal admissible extension
of D, a set of arguments K that satisfy two conditions:

∀u, v ∈ K, (u, v) 6∈ A conflict-free (1)

∀u ∈ K,∀v ∈ X with (v, u) ∈ A,∃w ∈ K, with (w, v) ∈ A admissible (2)

First we note that (2) is redundant if the argumentation graph is symmetric. In
fact, if ∀u ∈ K and any (v, u) ∈ A (by simmetry of the conflict relation) we have
(u, v) ∈ A and (2) is always true (with trivial w = u). So, K is a conflict-free set
in D iff all its members are pairwise disjoint, but this is just the definition of
an independent set. Moreover, since the obtaimned AF is symmetric, preferred
extensions coincide with stables [15] and thus there are no undec arguments [7].
From Theorem 2 the result follow. ut

Theorem 3 states that the two field of Abstract Argumentation and System
Level Diagnosis are strongly related. In fact, in both cases the solution space
is made of maximal independent sets of the graph used to model the system:
the graph of arguments and conflicts in the case of Argumentation, and the
contracted graph of Z-Aggregates in the case of Diagnosis.

5 Conclusions and Future Works

In this paper we studied how to cast the problem of Diagnosis of faulty units,
studied in the area of System Level Diagnosis, that we reviewed in Section 2 in
the framework of abstract argumentation, reviewed in Section 3. We proved in
Theorem 1 that the simplest, most intuitive mapping do not work, and provide
a different mapping based on the notion of a contracted graph. We proved in
Theorem 3 that under this mapping, the complement of a consistent fault set
for a given syndrome, and the set of accepted arguments are both described by
independent set of a graph.
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However, computing a correct diagnosis using the mapping in Definition 7
and the solutions of the argumentation system, requires a last step. Solving the
argumentation system (for instance using a solver like ConArg6 [5,3]), gives us
the set of solutions, i.e. Epref(〈X ,A〉), but we cannot distinguish among them.
In argumentation this is clearly reasonable, since there is no reason to prefer
a particular solution to another. However, the diagnosis must distinguish the
correct consistent fault set, under some hypothesis on the diagnosability of the
system.

As an example of this problem, consider Fig. 2 (b), and two solutions can be
S = {1, 3, 2}, or S′ = {12, 13, 4, 5, 6, 7, 8, 9, 10, 11}, both are maximal indepen-
dent sets. The two sets represent two different diagnosis, both consistent with σ,
but qualitatively different: S consider as fault-free a large fraction of the system
(60 units), while S′ declare fault-free a minority of units. Since the diagnosability
of any system must be at least n/2 (the majority of units must be fault-free) the
first diagnosis is also correct and complete, while the other is not.

A possible way to solve to the above problems would be to consider, among all
solutions computed by the argumentation system, i.e. all S ∈ Eadm(〈X ,A〉) the
ones with maximum weight. Use the weights in the contracted graph to compute
a value w(S) =

∑
v∈S w(v) for each set S, and consider the set S′ that maximize

w(S′). We diagnose all units inside the Z-aggregates accepted (as arguments) in
S′ as fault-free, and the others as faulty; this diagnosis is correct if the number
of faults in the system is strictly below w(S′), a value (called the diagnosability
bound) that is returned to the user together with the diagnosis. This will be part
of our future work, by using extensions of the Dung’s framework, that allows, for
example, weighted conflict [2,4,14,19]. Also, some work on coalitions [6,1], can
be used to work on the contracted graph natively in the AF framework. Other
further work will be the use of both fault and fault-free diagnosis in the syndrome
by using bipolar Argumentation frameworks [13].
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