
Flexible coinduction for infinite behaviour?

Francesco Dagnino

DIBRIS, University of Genova, Italy
franceso.dagnino@dibris.unige.it

Abstract. Generalized inference systems have been recently defined to
overcome the strong dichotomy between inductive and coinductive in-
terpretations. They support a flexible form of coinduction, subsuming
even induction, which allows one to mediate between the two standard
semantics. Recently, this framework has been successfully adopted to de-
fine semantic judgments which uniformly model finite and infinite com-
putations. In this communication, we survey these results and outline
directions for further developments.

Keywords: inference systems · coinduction · operational semantics ·
infinite behaviour

1 Introduction

In operational semantics, finite behaviour can be easily modelled by inductive
techniques. That is, we can define a judgement c ⇒ r , meaning that the eval-
uation of the configuration c terminates with final result r , by an inductive1

inference system, either on top of a small-step relation [17,18], or directly, as in
big-step style [10].

However, modelling infinite behaviour is not that easy. The simplest infinite
behaviour we may want to model is divergence itself, which can be formalized
by a judgement c ⇒∞. Such judgement is usually defined at the meta-level in
small-step semantics, saying that c ⇒∞ holds if there is “an infinite sequence of
steps” starting from c. In big-step style the situation is worse: non-terminating
and stuck computation cannot be distinguished.

In literature, several approaches to face this issue can be found: divergence is
modelled by a separate coinductive definition [8,11], by interpreting coinductively
standard rules [11,2,7], by using definitional interpreters [19] in combination with
step indexing, as in [16], or with the partiality monad [6], as in [9].

However, modelling divergence is not enough to formally reason about non-
terminating programs, since we want in some cases richer information about their
behaviour. Hence we need more sophisticated semantics, which are even more
difficult to define. An example is trace semantics, where, in addition to the final

? Special thanks go to Elena Zucca and Davide Ancona for their useful comments and
the review of this communication.

1 Valid judgements are those having a finite derivation.



2 F. Dagnino

result, a trace of observed events is produced. Also in this setting there is some
literature [12,13,14] where coinduction is adopted to get a correct definition.

All these approaches are not completely satisfactory because they require
ad-hoc changes to the natural definition. A possible alternative, shown in [4,5],
is to use generalized inference systems [3], which are an extension of inference
systems [1] allowing flexible coinductive definitions, thanks to a generalized in-
terpretation.

In this communication we summarize the sresults obtained by this approach
and we outline possible directions for further developments. More precisely, in
Section 2 we briefly present the framework of generalized inference systems, and
in Section 3 we deal with their application to infinite behaviour.

2 Flexible coinduction

In this section we briefly introduce inference systems [1], and our generalization
based on corules, which is a smooth extension of what we have proposed in [3].

Assume a set U called the universe, whose elements are called judgments.

An inference system I consists of a set of (inference) rules, which are pairs
Pr

c
,

with Pr ⊆ U the set of premises, c ∈ U the consequence (a.k.a. conclusion).
A rule with an empty set of premises is also called an axiom. A proof tree is a
tree whose nodes are (labeled with) judgments, and there is a node c with set of

children Pr only if there exists a rule
Pr

c
.

We can associate with an inference system I a function FI : ℘(U)→ ℘(U),
monotone on the complete lattice ℘(U) ordered by set inclusion. We define the
inductive interpretation JIKind as the least fixed point of FI , and the coinductive
interpretation JIKcoind as the greatest fixed point of FI , which exist thanks to
Tarski’s theorem [20]. An equivalent proof-theoretic characterization is based on
proof trees: JIKind is the set of judgements which are the root of a well-founded
proof tree, while JIKcoind of those which are the root of an arbitrary (well-founded
or not) proof tree.

In some cases neither of these two approaches yields the expected semantics.
Let us consider an example: let N∞ be the set of finite and infinite lists of natural
numbers. The predicate maxElem(l, x), stating that x ∈ N is the maximum of
l ∈ N∞, is defined as follows:

maxElem(x, x)

maxElem(l, y)

maxElem(xl, z)
z = max{x, y}

The inductive interpretation is not enough, because the predicate would be un-
defined for all infinite lists. Indeed, in order to compute the maximum of an infi-
nite list, we need to inspect all its elements, and this clearly cannot be done in a
finitely many steps. On the other hand, the coinductive interpretation does not
work as well: for the list L containing only 1s, we can derive by an infinite proof,
applying infinitely many times the second rule, the judgement maxElem(L, n)



Flexible coinduction for infinite behaviour 3

for all n ≥ 1. That is, the coinductive interpretation is not sound, since it al-
lows us to derive too many judgements. Hence, we need something in the middle
between the (least) inductive interpretation and the (greatest) coinductive one.

In [3] we have proposed a generalization of inference systems to allow more
flexible interpretations; here we summarize a slight further extension based on
the notion of corules.

Definition 1 (Inference system with corules). An inference system with
corules, or generalized inference system, is a pair 〈I, Ico〉 where I and Ico are
inference systems, whose elements are called rules and corules, respectively.

Corules are written
Pr

c
and a corule with empty premises is called coaxiom.

Analogously to rules, the meaning of corules is to derive a consequence from the
premises. However, they can only be used in a special way, as described below.

The interpretation of an inference system with corules 〈I, Ico〉 is defined in
two steps:

1. First, we consider the inference system I ∪ Ico where corules can be used as
rules as well, and we take its inductive interpretation JI ∪ IcoKind.

2. Then, we take the coinductive interpretation of the inference system obtained
from I by keeping only rules with consequence in JI ∪ IcoKind.

Altogether, we get the following definition.

Definition 2 (Interpretation). Let 〈I, Ico〉 be a generalized inference system.
Then, its interpretation JI, IcoK is defined by JI, IcoK = JI|JI∪IcoKindKcoind

where, for a subset S ⊆ U , I|S denotes the inference system obtained from I by
keeping only rules with consequence in S.

It can be shown that JI, IcoK is a fixed point of FI , in particular the greatest
fixed point below the least fixed point of FI∪Ico . From this fact, we also get
a generalization of the coinduction principle to our setting, called the bounded
coinduction principle, which is a proof technique to show the completeness of a
definition.

An interesting fact is that both the inductive and the coinductive interpre-
tations are subsumed by this generalized semantics. Indeed, if Ico = ∅, we get
the former, while if Ico contains a coaxiom for each c ∈ U we get the latter.

In proof-theoretic terms, JI, IcoK is the set of judgments which have an arbi-
trary (well-founded or not) proof tree in I, whose nodes all have a well-founded
proof tree in I ∪ Ico.

Considering again the above example, by adding the coaxiom

maxElem(xl, x)

we get the expected semantics. Intuitively, the coaxiom forces the result to belong
to the list. Then, from the standard inference system we get that maxElem(l, x)
iff x is an upper bound of l, and from the coaxiom x must belong to l, hence x
must be the maximum of l.



4 F. Dagnino

3 Operational semantics for infinite behaviour

We started studying how corules can be used to model infinite behaviour [4,5]
by defining some example semantics including also infinite computations and
showing how they support formal reasoning on diverging programs.

In [4] we began from the simplest infinite behaviour, which is divergence itself,
considering two examples: λ-calculus and a simple imperative FJ-like language.
In both cases we defined a big-step semantics through an inference system with
corules, where divergence is explicitly modelled by a new result, denoted by ∞.
To properly capture the semantics of divergence, we have added specific rules
for divergence propagation; for instance, for the λ-calculus, the following rules:

(div-l)
e1 ⇒∞

e1 e2 ⇒∞
(div-r)

e1 ⇒ v e2 ⇒∞
e1 e2 ⇒∞

(div-app)
e1 ⇒ λx .e e2 ⇒ v e[v/x ]⇒∞

e1 e2 ⇒∞

The intuition behind such rules is, that if one of the premises diverges, then
the conclusion should diverge as well. The problem now is how to interpret the
extended definition: the inductive interpretation is not enough because there is
no way to introduce divergence2, but the coinductive interpretation allows to
derive too many judgements for non-terminating programs.

Hence, to capture the intended semantics, we designed appropriate corules.
Intuitively, corules specify when we are allowed to use coinduction. In this case,
they shoud be applied only to derive divergence; thus we added a coaxiom with
conclusion e ⇒∞ for each e.

Having defined big-step semantics including divergence, we started studying
how to prove properties of non-terminating programs. The first one we have
considered is type soundness, which can be rephrased as completeness of the
big-step semantics with respect to the type system, hence it can be proved using
a variation of the bounded coinduction principle.

In [5] we have modeled richer forms of infinite behaviour, notably trace se-
mantics, which, in addition to the final result, produces a trace of events observed
during the computation. This notion smoothly adapts to infinite behaviour, since
it is enough to consider also infinite traces.

We have considered two example languages: a λ-calculus with output effects
and an imperative FJ-like language with I/O primitives; in the former case
traces contain printed values, in the latter I/O events. As for the simpler case
of divergence, we have added rules for divergence propagation and appropriate
corules, which in this case are more complex. Consider for instance those for the
λ-calculus:

(co-empty)

e ⇒ 〈∞, ε〉
(co-out)

e ⇒ 〈v , o〉

out e ⇒ 〈∞, o · v · o∞〉

2 There is no axiom with conclusion e ⇒∞ for some expression e.



Flexible coinduction for infinite behaviour 5

where ε is the empty trace, o a finite trace, o∞ a possibly infinite trace, and ·
trace concatenation. As before, corules allow coinduction only to derive diverg-
ing judgements. Coaxiom (co-empty) deals with diverging computations produc-
ing a finite trace, namely, computations printing some values and then diverging
without producing any other output, as expressed by the empty trace in the con-
clusion. Corule (co-out), instead, deals with computations producing an infinite
output trace: intuitively, those which evaluate infinitely many output expres-
sions. In such cases the infinite trace is unique, hence the corule allows any trace
in the conclusion, but it checks that the output expression is actually evaluated,
that is, its argument must converge.

The above considered semantics exhibit common patterns, both for rules and
corules. An interesting and promising direction for further work is to abstract
these patterns to a more general setting, to study general properties of semantics
defined by inference systems with corules.

This common structure can be summarized as follows: all semantics with
corules contain standard rules for converging computations, rules for divergence
propagation and corules to allow coinduction only to derive divergence. Further-
more, the definition of semantics including divergence seems to be driven by the
standard semantics for converging computations.

Following these remarks, what we plan to do is to define a canonical construc-
tion that, starting from a standard big-step semantics for finite computations,
produces an extended semantics including diverging computations as well. We
would like such general framework to subsume trace semantics and, more gener-
ally, other kinds of semantics describing the observable behaviour of programs.

To this end, we need to identify a general algebraic structure for observations,
and to define a general notion of semantics with observations, that is, a semantics
which, in addition to the final result, produces also an observation, describing
the observable behaviour of the program.

Then, the canonical extension will require to introduce a new result for di-
vergence, extend observations (and their structure) to include infinite ones and
to define appropriate divergence propagation rules and corules.

To guarantee the correctness of the proposed construction, we plan to com-
pare the resulting semantics with more standard techniques, such as labelled
transition systems. This comparison could be a parametric proof of equivalence,
which, starting from suitable hypothesis on the semantics for finite computa-
tions, proves the equivalence of the entire semantics.

Other possible, more long-term, directions for further developments are a
deeper comparison with definitional interpreters, notably those based on the
partiality monad [9], and the study of other examples with different notions of
infinite behaviour. The former could provide interesting hints for implementation
in proof assistants, for instance Agda [15,21], since definitional interpreters are
naturally supported by such tools; the latter could higlight the capabilities of
corules to support formal reasoning on infinite computations.



6 F. Dagnino

References

1. Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook
of Mathematical Logic, Studies in Logic and the Foundations of Mathematics,
vol. 90, pp. 739 – 782. Elsevier (1977)

2. Ancona, D.: Soundness of object-oriented languages with coinductive big-step se-
mantics. In: Noble, J. (ed.) 26th European Conference on Object-Oriented Pro-
gramming, ECOOP 2012. Lecture Notes in Computer Science, vol. 7313, pp. 459–
483. Springer (2012). https://doi.org/10.1007/978-3-642-31057-7 21

3. Ancona, D., Dagnino, F., Zucca, E.: Generalizing inference systems by coax-
ioms. In: Yang, H. (ed.) 26th European Symposium on Programming, ESOP
2017. Lecture Notes in Computer Science, vol. 10201, pp. 29–55. Springer (2017).
https://doi.org/10.1007/978-3-662-54434-1 2

4. Ancona, D., Dagnino, F., Zucca, E.: Reasoning on divergent computations with
coaxioms. Proceedings of ACM on Programming Languages 1(OOPSLA) (2017).
https://doi.org/10.1145/3133905

5. Ancona, D., Dagnino, F., Zucca, E.: Modeling infinite behaviour by corules. In:
Millstein, T.D. (ed.) 32nd European Conference on Object-Oriented Programming,
ECOOP 2018. LIPIcs, vol. 109, pp. 21:1–21:31. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.ECOOP.2018.21

6. Capretta, V.: General recursion via coinductive types. Logical Methods in Com-
puter Science 1(2) (2005). https://doi.org/10.2168/LMCS-1(2:1)2005

7. Charguéraud, A.: Pretty-big-step semantics. In: Felleisen, M., Gardner, P. (eds.)
22nd European Symposium on Programming, ESOP 2013. Lecture Notes in Com-
puter Science, vol. 7792, pp. 41–60. Springer (2013). https://doi.org/10.1007/978-
3-642-37036-6 3

8. Cousot, P., Cousot, R.: Inductive definitions, semantics and abstract inter-
pretations. In: Sethi, R. (ed.) 19th Annual ACM Symposium on Princi-
ples of Programming Languages, POPL 1992. pp. 83–94. ACM Press (1992).
https://doi.org/10.1145/143165.143184

9. Danielsson, N.A.: Operational semantics using the partiality monad. In:
Thiemann, P., Findler, R.B. (eds.) 17th ACM International Conference
on Functional Programming, ICFP 2012. pp. 127–138. ACM Press (2012).
https://doi.org/10.1145/2364527.2364546

10. Kahn, G.: Natural semantics. In: Brandenburg, F., Vidal-Naquet, G., Wirsing,
M. (eds.) 4th Annual Symposium on Theoretical Aspects of Computer Science,
STACS 1987. Lecture Notes in Computer Science, vol. 247, pp. 22–39. Springer
(1987). https://doi.org/10.1007/BFb0039592

11. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Information and
Computation 207(2), 284–304 (2009). https://doi.org/10.1016/j.ic.2007.12.004

12. Nakata, K., Uustalu, T.: Trace-based coinductive operational semantics for while.
In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in
Higher Order Logics, TPHOLs 2009. Lecture Notes in Computer Science, vol. 5674,
pp. 375–390. Springer (2009). https://doi.org/10.1007/978-3-642-03359-9 26

13. Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step se-
mantics of while. In: Gordon, A.D. (ed.) 19th European Symposium on Program-
ming, ESOP 2010. Lecture Notes in Computer Science, vol. 6012, pp. 488–506.
Springer (2010). https://doi.org/10.1007/978-3-642-11957-6 26

14. Nakata, K., Uustalu, T.: Resumptions, weak bisimilarity and big-step semantics
for while with interactive I/O: an exercise in mixed induction-coinduction. In:

https://doi.org/10.1007/978-3-642-31057-7_21
https://doi.org/10.1007/978-3-662-54434-1_2
https://doi.org/10.1145/3133905
https://doi.org/10.4230/LIPIcs.ECOOP.2018.21
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1007/978-3-642-37036-6_3
https://doi.org/10.1007/978-3-642-37036-6_3
https://doi.org/10.1145/143165.143184
https://doi.org/10.1145/2364527.2364546
https://doi.org/10.1007/BFb0039592
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1007/978-3-642-03359-9_26
https://doi.org/10.1007/978-3-642-11957-6_26


Flexible coinduction for infinite behaviour 7

Aceto, L., Sobocinski, P. (eds.) Structural Operational Semantics, SOS 2010. Elec-
tronic Proceedings on Theoretical Computer Science, vol. 32, pp. 57–75 (2010).
https://doi.org/10.4204/EPTCS.32.5

15. Norell, U.: Towards a practical programming language based on dependent type
theory. Phd thesis, Chalmers University of Technology and Göteborg University
(2007)

16. Owens, S., Myreen, M.O., Kumar, R., Tan, Y.K.: Functional big-step seman-
tics. In: Thiemann, P. (ed.) 25th European Symposium on Programming, ESOP
2016. Lecture Notes in Computer Science, vol. 9632, pp. 589–615. Springer (2016).
https://doi.org/10.1007/978-3-662-49498-1 23

17. Plotkin, G.D.: A structural approach to operational semantics. Tech. rep., Aarhus
University (1981)

18. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61, 17–139 (2004)

19. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: ACM 72, Proceedings of the ACM annual conference. vol. 2, pp. 717–740. ACM
Press (1972)

20. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5(2), 285–309 (1955)

21. The Agda Team: The Agda Wiki (2018), http://wiki.portal.chalmers.se/agda/
pmwiki.php

https://doi.org/10.4204/EPTCS.32.5
https://doi.org/10.1007/978-3-662-49498-1_23
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php

	Flexible coinduction for infinite behaviour

