
Satisfiability in the Triguarded Fragment of
First-Order Logic

Sebastian Rudolph1 and Mantas Šimkus2

1 Computational Logic Group, TU Dresden, Germany
2 Institute of Logic and Computation, TU Wien, Austria

Abstract. Most Description Logics (DLs) can be translated into well-
known decidable fragments of first-order logic FO, including the guarded
fragment GF and the two-variable fragment FO2. Given their prominence
in DL research, we take closer look at GF and FO2, and present a new
fragment that subsumes both. This fragment, called the triguarded frag-
ment (denoted TGF), is obtained by relaxing the standard definition of
GF: quantification is required to be guarded only for subformulae with
three or more free variables. We show that satisfiability of equality-free
TGF is N2ExpTime-complete, but becomes NExpTime-complete if we
bound the arity of predicates by a constant (a natural assumption in
the context of DLs). Finally, we observe that many natural extensions of
TGF, including the addition of equality, lead to undecidability.

1 Introduction

Description Logics (DLs) are a family of logic-based knowledge representation
languages, usually suitably limited to ensure the decidability of basic reasoning
problems [2, 3]. Many properties of DLs can be explained by seeing them as
fragments of (function-free) first-order logic (denoted FO in this paper). In fact,
most DLs fall into well-known decidable fragments of FO, implying not only
decidability, but also complexity results, model-theoretic properties, and limits
of expressiveness. For instance, many standard DLs are subsumed by FO2, the
fragment of FO with at most two variables [8]. For FO2 without equality, the
satisfiability problem has been known to be decidable for over five decades due to
Scott [20]. The decidability of satisfiability in FO2 in the presence of equality is
known since 1975 due to Mortimer [16], with the worst-case optimal NExpTime
upper bound known since over two decades [13].

An alternative explanation for the decidability of DLs is the fact that they
can often be translated into the guarded fragment GF of FO [1] (see also [11]
for a discussion). Satisfiability checking in GF is 2ExpTime-complete in general,
but it is ExpTime-complete under the assumption that the arities of predicates
are bounded by a constant [12]. The latter is particularly important because
many standard DLs are ExpTime-complete for consistency checking, while their
FO translations use predicate symbols of arity at most two. We note that the
connection between DLs and GF is somewhat more robust than that between
DLs and FO2, which can be observed if we look beyond consistency checking

in DLs. Most notably, conjunctive query answering, which is decidable for most
DLs, remains decidable for GF, but becomes undecidable for FO2 [5, 18].

Given the importance of GF and FO2 to research in DLs, in this paper we
take a deeper look at them, and study a new fragment of FO that subsumes
both GF and FO2. The fragment is called the triguarded fragment (denoted
TGF), and it is obtained by relaxing the standard definition of GF. In GF,
existential and universal quantification can only be used in (sub)formulae of the
form ∃x.(R(t)∧ψ) or ∀x.(R(t)→ ψ), where R(t) is an atomic formula such that
t contains all free variables of ψ (the atom R(t) “guards” the formula ψ). In
TGF, guardedness of quantification is required only in case ψ has three or more
free variables (hence the name “triguarded”). This entails that quantification
can be used in an unrestricted way for formulae with at most two free variables,
and hence FO2 gets included in TGF seamlessly.

After providing a simple definition of TGF, we study its satisfiability problem.
To this end, we first consider a slightly different problem: we study satisfiability
of formulae of GF in the presence of a built-in binary predicate U that contains all
pairs of domain elements. In DL parlance, we consider the extension of GF with
the universal role, and thus this fragment is denoted GFU. Since the predicate
U can be used to provide “spurious” guards to formulae with up to two free
variables, GFU adds to GF precisely the expressivity needed to capture TGF,
and thus in the paper we mainly focus on GFU instead of TGF.

We show that in the equality-free case, satisfiability of formulae in GFU (and
in TGF) is N2ExpTime-complete. We establish the upper bound by character-
izing the satisfiability of a formula in GFU via mosaics, where a mosaic is a
special (finite) collection of types that can be used to build a model for the input
formula. The matching lower bound can be obtained by a reduction from the
tiling problem of a doubly exponential grid. We then consider the assumption
that predicate arities are bounded by a constant. In this case, the mosaic con-
struction gives rise to a NExpTime upper bound for satisfiability of formulae
without equality. We note that FO2 is already NExpTime-hard (even without
equality), which means that in the bounded-arity setting TGF and GFU do not
have higher complexity than FO2. Finally, we show that satisfiability of TGF
and GFU formulae with equality is undecidable (interestingly, the complexity of
satisfiability in GF and FO2 is insensitive to the presence of equality).

The fragment GFU is similar to the fragment GF×2 of [10], which extends GF
with cross products (allowing to capture statements like “all elephants are bigger
than all mice” as in [19]). The difference is that GF×2 , inspired by the database
view, imposes a separation into a set of ground facts (the data) and a constant-
free theory (the schema) [9]. Under this restriction on expressiveness (which is
only implicit in [10]), GF×2 is in fact subsumed by the fragment GF|FO2 from
[14]. Using a resolution-based procedure, satisfiability in GF|FO2 was shown to
be in 2ExpTime, and in NExpTime in case of bounded predicate arities [14].
Instead of resolution, the proof of the 2ExpTime upper bound for GF×2 in [10]
uses a reduction to satisfiability in plain GF. As we shall see, the unrestricted
availability of constants is key in the N2ExpTime-hardness of full GFU and
TGF, and thus is the main distinguishing feature of the fragments introduced

in this paper. We note that the undecidability of GFU and TGF in the presence
of equality can be inferred from [14] (Section 4.2.3), where a reduction from
satisfiability in the Goldfarb class is presented, and it can be applied to our
fragments. Instead, in this paper we provide a more direct undecidability proof
by a reduction from the tiling problem for an infinite grid.

2 Preliminaries

We assume the reader is familiar with the syntax and semantics of FO, and
thus here we only present some notation. We use NP, NC and NV to denote
the countably infinite, mutually disjoint sets of predicate symbols, constants and
variables, respectively. We will mostly use (possibly subscripted) P , R, B and H
as predicate symbols. Given a formula ϕ, we use NC(ϕ) and NP(ϕ) to denote the
set of constants and the set of predicate symbols that appear in ϕ, respectively.
Elements of NC ∪ NV are called terms. An atom (or, atomic formula) is an
expression of the form R(t), where t is an n-tuple of terms, where n is the arity
of the predicate symbol R ∈ NP. For convenience, given a tuple t = 〈t1, . . . , tn〉 of
terms, we sometimes view t as the set {t1, . . . , tn}. Given a tuple x of variables,
an x-assignment is any function f : NC ∪NV → NC ∪NV such that (i) f(y) ∈ NC

for all y ∈ x, and (ii) f(t) = t for all t 6∈ x. Given a tuple t = 〈t1, . . . , tn〉 of
terms and an x-assignment f , we let f(t) = 〈f(t1), . . . , f(tn)〉. The semantics to
formulae is given using interpretations. An interpretation is a pair I = (∆I , ·I),
where ∆I is a non-empty set (called domain), and ·I is a function that maps (i)
every constant c ∈ NC to an element cI ∈ ∆I , and (ii) every predicate symbol
R ∈ NP to an n-ary relation over ∆I , where n is the arity of R. We assume
that 0-ary predicate symbols > and ⊥ belong to NP, and they have the usual
(built-in) meaning. The equality predicate ≈ also belongs to NP, and has the
fixed meaning ≈I= {(e, e) | e ∈ ∆I} for all interpretations I. We write I |= ϕ,
if an interpretation I is a model of a closed formula (or, a sentence) ϕ. We use
free(ϕ) to denote the set of free variables in a formula ϕ.

3 The Triguarded Fragment

We are now ready to introduce the triguarded fragment of FO. Essentially, it is
a relaxed variant of GF where guards are only required when quantifying over
formulae with three or more free variables.

Definition 1. The triguarded fragment TGF of first-order logic with equality is
defined as the smallest set of formulae closed under the following rules:

(1) Every atomic formula belongs to TGF.

(2) TGF is closed under the propositional connectives ¬, ∧, ∨ and →.

(3) If x is a variable, and ϕ is a formula in TGF with |free(ϕ)| ≤ 2, then ∃x.ϕ
and ∀x.ϕ also belong to TGF.

(4) If x is a non-empty tuple of variables, ϕ is a formula in TGF, α is an atom,
and free(ϕ) ⊆ free(α), then ∃x.(α∧ϕ) and ∀x.(α→ ϕ) also belong to TGF.

Observe that if we consider only the items (1), (2) and (3) in Definition 1
as legal rules to build formulae, we can build all formulae of FO that use at
most 2 variables, and thus FO2 ⊆ TGF. If we consider the items (1), (2) and (4)
in Definition 1, we can build all guarded formulae, and thus GF ⊆ TGF. The
syntax of TGF also allows us to build formulae that are neither in GF nor in
FO2, witnessed by formulae like

∀x∀y.((R1(x, a) ∧R2(y, b))→ ∃z.R3(x, y, z)).

Our main goal in this paper is to understand the computational complexity of
satisfiability in TGF. To this end, we concentrate on a slightly different logic,
which is effectively equivalent to TGF, but which makes presentation significantly
easier. In particular, there is a simple extension of GF that allows us to capture
TGF. Intuitively, TGF 6⊆ GF because TGF allows “unguarded” quantification in
front of formulae ϕ, but only in case ϕ has no more than 2 free variables. If we
have the availability of a binary predicate whose extension always contains all
pairs of domain elements, we can use it to guard ϕ. In particular, we consider
next the binary universal role predicate U ∈ NP, whose extension is fixed to be
UI = ∆I × ∆I for all interpretations I. Note that in FO, FO2 and TGF, the
built-in predicate U does not add expressiveness, because it can be axiomatized
using an ordinary binary predicate U and the sentence φ = ∀x∀y.U(x, y); thus
we can safely allow U to be used as a predicate symbol in formulae of FO, FO2

and TGF. Since φ is not in GF, the addition of the built-in U to GF makes a big
difference (as we shall see from complexity results). We now formally define GFU,
which extends GF with U, and in fact adds to GF the necessary expressivity to
capture TGF.

Definition 2. Let GFU be the set of formulae of TGF that can be built using
the items (1), (2) and (4) of Definition 1 only, possibly using the predicate U in
atomic formulae.

By using the U predicate as a guard for formulae with at most 2 free variables,
we can convert any TGF formula into an equivalent formula in GFU. For instance,
the above example formula can be transformed into the equivalent GFU formula

∀x∀y.(U(x, y)→ ((R1(x, a) ∧R2(y, b))→ ∃z.R3(x, y, z))).

Proposition 1. For any ϕ ∈ TGF, we can build in polynomial time an equiva-
lent formula ϕ′ ∈ GFU. Moreover, NP(ϕ′) ⊆ NP(ϕ) ∪ {U}.

Due to Proposition 1, in order to check satisfiability in TGF, it suffices to
focus on the satisfiability problem for GFU, and thus in the rest of the paper we
focus on GFU.

4 Characterizing Satisfiability via Mosaics

In this section, we study GFU in the equality-free setting, and provide a finite
representation of models of satisfiable GFU formulae, which will be the basis of

the satisfiability checking algorithm. In particular, we show that an equality-free
GFU formula ϕ has a model iff there exists a mosaic for ϕ, which is a relatively
small set of building blocks that can be used to build a model for ϕ. In this way,
checking satisfiability of ϕ reduces to checking the existence of a mosaic for ϕ.

To simplify the structure of GFU formulae we use a suitable (Scott-like)
normal form, which is not much different from the ones used, e.g., in [13, 12].

Definition 3 (Normal Form). A sentence ϕ ∈ GFU is in normal form if it
has the form

∧
ψ∈A ψ ∧

∧
ψ∈E ψ, where A contain sentences of the form

∀x.(R(t)→ (¬H1(v1) ∨ . . . ∨ ¬Hn(vn) ∨Hn+1(vn+1) ∨ . . . ∨Hm(vm))), (1)

and E contain sentences of the form

∀x.(R(u)→ ∃y.H(v)). (2)

We use A(ϕ) and E(ϕ) to denote the sets A and E of a formula ϕ as above.
For a sentence ψ = ∀x.(R(u) → ∃y.H(v)), we let width(ψ) denote the number
of variables that appear in v. For a formula ϕ as above, width(ϕ) is the maximal
width(ψ) over all ψ ∈ E(ϕ).

As usual, in case m = 0, the empty disjunction in (1) stands for ⊥. Note that
since (1) and (2) are in GFU, each variable that appears in v1, . . . ,vm also
appears in t, and each variable that appears in v also appears in u. Observe
that the sentence in (1) can be equivalently written as

∀x.(R(t) ∧H(v1) ∧ . . . ∧Hn(vn)→ Hn+1(vn+1) ∨ . . . ∨Hm(vm)). (3)

For presentation reasons, in what follows we will mostly use the form (3) instead
of (1) when speaking about sentences in A. Note that (3) closely resembles a
(guarded) disjunctive Datalog rule with R(t) a guard atom.

The following statement shows that we can focus on formulae in normal form.

Proposition 2. For any formula ϕ ∈ GFU, we can construct in polynomial
time a formula ϕ′ ∈ GFU in normal form such that (a) ϕ is satisfiable iff ϕ′

is satisfiable, and (b) the translation does not increase the arity of predicate
symbols, i.e., there is no predicate symbol in ϕ′ whose arity is strictly greater
than the arity of every predicate symbol in ϕ.

To define mosaics, we need the notion of a type for a formula ϕ. Types will
form mosaics, and they can be seen as patterns (interpretations of restricted
size) for building models of ϕ.

Definition 4 (Types). A type τ for a formula ϕ is any set of ground atoms
with predicate symbols from NP(ϕ). We let dom(τ) denote the set of constants
that appear in a type τ , and let I(τ) denote the interpretation such that (i)
∆I(τ) = dom(τ), and (ii) P I(τ) = {t | P (t) ∈ τ} for all predicate symbols P .
For a sentence ϕ, we write τ |= ϕ if I(τ) |= ϕ. Given a set of constants F , we
let τ |F = {P (t) ∈ τ | t ⊆ F}, i.e., τ |F is the restriction of τ to atoms whose all
arguments are included in F .

Of particular interest in our treatment is how a distinguished element of some
type “looks like” in terms of the predicates it satisfies and its relationship to
constants. This information is captured using unary types, in which we abstract
from the concrete target constant by replacing it with a special variable.

Definition 5 (unary types). Assume a formula ϕ ∈ GFU and let xϕ be a
special variable associated with ϕ. We let base(ϕ) denote the set of all atoms
P (t) such that t ⊆ NC(ϕ) ∪ {xϕ} and P ∈ NP(ϕ). Any subset σ ⊆ base(ϕ) is
called a unary type for ϕ. Assume a constant c, and let f be the function such
that (i) f(xϕ) = c, and (ii) f(d) = d for all d ∈ NC. For a type τ , we define the
unary type τ |ϕc = {R(t) ∈ base(ϕ) | R(f(t)) ∈ τ}.

We are now ready to define mosaics, which will act as witnesses to satisfi-
ability of GFU formulae (without equality). Roughly, a mosaic for a formula ϕ
is a pair (M,X), where X is a collection of “placeholder” constants, and M
is a set of types for ϕ. In order to be a proper witness to satisfiability, a mo-
saic must satisfy a collection of conditions. In particular, they ensure that in
case ϕ is satisfiable, we will be able to construct a model by arranging together
(possibly multiple) instances of types from M. Intuitively, by an instance of a
type τ ∈ M we mean a concrete structure that is obtained by replacing the
placeholder constants from X with concrete domain elements.

Definition 6 (Mosaic). A mosaic for a sentence ϕ ∈ GFU in normal form is
a pair (M,X), where M is a set of types for ϕ and X ⊆ NC \ NC(ϕ), satisfying
the following:

(A) |X | ≤ width(ϕ);

(B) For all τ ∈M, dom(τ) ⊆ NC(ϕ) ∪ X ;

(C) For all τ, τ ′ ∈M, τ |NC(ϕ) = τ ′|NC(ϕ);

(D) U(t, v) ∈ τ for all τ ∈M and each pair t, v ∈ dom(τ);

(E) τ |= ψ for all τ ∈M and all ψ ∈ A(ϕ);

(F) If τ ∈ M, ∀x.(R(t) → ∃y.H(v)) ∈ E(ϕ), and R(g(t)) ∈ τ for some x-
assignment g, then there is some τ ′ ∈M such that:

(a) H(h(g(v))) ∈ τ ′ for some y-assignment h;

(b) τ |F = τ ′|F , where F = NC(ϕ) ∪ {g(x) | x ∈ x ∩ v}.
(G) If t1 ∈ dom(τ1) ∩ X and t2 ∈ dom(τ2) ∩ X for some τ1, τ2 ∈M, then there

exists a type τ ∈M and a pair v1, v2 with dom(τ)∩X = {v1, v2} such that
(i) v1 6= v2, (ii) τ1|ϕt1 = τ |ϕv1 , (iii) τ2|ϕt2 = τ |ϕv2 .

Intuitively, the conditions (A-G) ensure the following. (A) requires that only
a small number of placeholder constants is used. Due to (B), types in mosaics
only refer to original constants of the formula and the small number of place
holder constants. The conditions (A) and (B) are important to ensure the rela-
tively small size of mosaics. The condition (C) forces the types to agree on the
participation of constants in predicates. (D) requires U to be correctly inter-
preted locally (i.e., within the individual types), and (E) requires each type to

(locally) satisfy all sentences from A(ϕ). The condition (F) ensures that for each
type locally satisfying the body of some sentence from E(ϕ), we find a matching
type where also the head of that sentence is satisfied. Using (G) we make sure
that any two representatives of unnamed domain elements (in terms of unary
types) found across the types also occur together in one type.

The following soundness and completeness theorems show that mosaics prop-
erly characterize satisfiability of equality-free GFU formulae (and, due to Propo-
sition 1, of equality-free TGF formulae).

Theorem 1 (Completeness). Let ϕ ∈ GFU be a formula in normal form. If
ϕ is satisfiable, then there exists a mosaic (M,X) for ϕ.

Proof (Sketch). Assume that ϕ has some model J . Since ϕ is equality-free, we
can make the standard name assumption (SNA): NC(ϕ) ⊆ ∆J and cI = c
for all c ∈ NC(ϕ). Now, let I be obtained from J by duplicating all anonymous
individuals. Formally, let ∆anon = ∆J \NC(ϕ) and ∆I = NC(ϕ)∪{1, 2}×∆anon.
Let π : ∆I → ∆J such that π(c) = c for c ∈ NC(ϕ) and π((i, e)) = e otherwise.

Now we let t ∈ P I if π(t) ∈ PJ . As ϕ does not contain equality, J |= ϕ
implies I |= ϕ. This duplication of anonymous individuals makes sure that for
every non-constant domain element e, I contains a twin element ẽ different from
e but with the same unary type. This property turns out to be crucial to show
part (G) of the mosaic definition.

We show how to extract from I a mosaic (M,X) for ϕ. We can assume,
w.l.o.g., that ∆I ⊆ NC and that cI = c for all c ∈ NC(ϕ).

Let X be any set with X ⊆ NC, X ∩∆I = ∅, and |X | = width(ϕ). We say a
type τ can be extracted from I if τ can be obtained from I in 4 steps:

(a) Take any S ⊆ ∆I such that NC(ϕ) ⊆ S and |S| − |NC(ϕ)| ≤ width(ϕ).
(b) Let τ∗ = {P (t) | t ⊆ S ∧ t ∈ P I}.
(c) Let f be any injective function from dom(τ∗) \ NC(ϕ) to X .
(d) Let τ be the type obtained from τ∗ by replacing every occurrence of c ∈

dom(τ∗) \ NC(ϕ) by f(c).

The set M contains all types τ that can be extracted from I. It is not difficult
to see that the constructed (M,X) is a mosaic for ϕ. ut

Theorem 2 (Soundness). Let ϕ ∈ GFU be a formula in normal form. If there
exists a mosaic (M,X) for ϕ, then ϕ is satisfiable.

Proof (Sketch). Assume a mosaic (M,X) for ϕ. An instantiation for a type
τ ∈ M is any injective function δ from dom(τ) ∩ X to NC \ X . Given such τ
and δ, we use δ(τ) to denote the type that is obtained from τ by replacing every
occurrence of a constant c ∈ dom(τ) ∩ X by δ(c). Our goal is to show how to
inductively construct a possibly infinite sequence S = (τ0, δ0), (τ1, δ1), . . . of pairs
(τj , δj), where τj ∈M and δj is an instantiation for τj , such that

⋃
i≥0 δi(τi) |= ϕ.

In the base case, we let τ0 be an arbitrary type from M, and let δ0 be any
instantiation for τ0.

For the inductive case, suppose (τ0, δ0), . . . , (τi−1, δi−1) have been defined,
where i > 0. We show how define the next segment (τi, δi), . . . , (τm, δm) of S,
where m ≥ i (we indeed may attach to S multiple new elements in one step).
To this end, choose the smallest index 0 ≤ j ≤ i − 1 satisfying the following
condition: there is ∀x.(R(t)→ ∃y.H(v)) ∈ E(ϕ), and R(g(t)) ∈ δj(τj) for some
x-assignment g. If such j does not exist, the construction of S is complete, and
we can proceed to (?) below, where we argue that

⋃
0≤k<i δk(τk) |= ϕ. We assume

that the above j exists. We first show in (†) how to define (τi, δi), and then in
(‡) how to define the remaining (τi+1, δi+1), . . . , (τm, δm).

(†) From the x-assignment g construct the following x-assignment h. For
every x ∈ x, (i) let h(x) = g(x), if g(x) ∈ dom(τj), and (ii) let h(x) = δ−j (g(x)), if
g(x) 6∈ dom(τj). Since R(g(t)) ∈ δj(τj), we get R(h(t)) ∈ τj . Since the condition
(F) is satisfied by the mosaic, there exists a type τ ′ ∈M such that

1. H(f(g((v))) ∈ τ ′ for some y-assignment f ;
2. τ |F = τ ′|F , where F = NC(ϕ) ∪ {g(x) | x ∈ x ∩ v}.

We let τi = τ ′, and define an injective function δi from dom(τi) ∩ X to NC \ X
as follows. For every c ∈ dom(τi) ∩ X , we let δi(c) = δj(c) in case c ∈ {h(x) |
x ∈ x ∩ v}, and otherwise we let δi(c) be a fresh constant, i.e., a constant that
does not appear in NC(ϕ) or in the range of any instantiation built so far.

(‡) Let N be the set of all constants that were freshly introduced in S by δi,
i.e., N is the set of all δi(c) such that c ∈ dom(τi)∩X but c 6∈ {h(x) | x ∈ x∩v}.
Intuitively, in order to properly deal with the U predicate, we need to find inM
proper types to connect every c ∈ N with the relevant remaining constants of the
sequence S constructed so far. Let (d1, d

′
1), . . . , (dn, d

′
n) be an enumeration of all

pairs (d, d′) such that d ∈ N and d′ ∈
⋃

0≤k≤i−1 ran(δk), i.e. d′ is any constant

that appears in the sequence S constructed so far but d′ 6∈ N ∪ NC(ϕ). The
definition of the segment (τi+1, δi+1), . . . , (τm, δm) of S in this inductive step is
as follows. We let m = i+ n, and for each 1 ≤ k ≤ n, we select (τi+1+k, δi+1+k)
as described next.

Assume an arbitrary 1 ≤ k ≤ n. We let c = δ−i (dk), and let τ = τl for some
0 ≤ l ≤ i such that d′k ∈ ran(δl). Let c′ = δ−l (d′k). Due to Condition (G) in the
definition of mosaics, there exists a type τ∗ ∈ M such that (i) dom(τ) ∩ X =
{v1, v2} for some v1, v2 with v1 6= v2, (ii) τi|ϕc = τ∗|ϕv1 , and (iii) τ |ϕc′ = τ∗|ϕv2 .
Then we set τi+1+k = τ∗, and let δi+1+k = {(v1, dk), (v2, d

′
k)}.

(?) The above completes the construction of a candidate model for ϕ. It is
not too difficult to see that

⋃
i≥0 δi(τi) |= ϕ. ut

5 Complexity of TGF without Equality

Using the characterization of the previous section, we can infer worst-case opti-
mal upper bounds for satisfiability checking in GFU, and thus in TGF.

Theorem 3. Deciding satisfiability of TGF and of GFU formulae without equal-
ity is N2ExpTime-complete. The problem is NExpTime-complete under the
assumption that predicate arities are bounded by a constant.

Proof (Sketch). Due to Propositions 1 and 2, it suffices to show the two upper
bounds for GFU formulae in normal form. Due to Theorems 1 and 2, we can
decide the satisfiability of a formula ϕ ∈ GFU in normal form by checking the
existence of a mosaic for ϕ. Our approach is to non-deterministically guess a
pair (M,X) of a set M of types over NP(ϕ) together with a set of constants X
of cardinality at most width(ϕ), and then verify that (M,X) is indeed a mosaic
for ϕ. Note that given a candidate (M,X) as input we can check in polynomial
time whether (M,X) satisfies all the conditions given in Definition 6. Observe
that the number of ground atoms over the signature of ϕ with arguments from
NC(ϕ) ∪ X is bounded by |NP(ϕ)| · (|NC(ϕ)|+ width(ϕ))k, where k the maximal
arity of predicates in ϕ. Consequently, we can restrict ourselves to candidates

(M,X), where M has no more than 2|NP(ϕ)|·(|NC(ϕ)|+width(ϕ))k types. Since this
bound is double exponential in the size of ϕ, but only single exponential under
the assumption that k is a constant, the two upper bounds follow.

The matching lower bound for the bounded arity follows from the complexity
of FO2 [13]. N2ExpTime-hardness for unbounded arity follows from a reduction
from the tiling problem of a grid of doubly exponential size [7]. ut

6 Undecidability of TGF with Equality

In the presence of equality, we can show the undecidability of satisfiability of GFU
(and hence of TGF) by a reduction from the tiling problem for an infinite grid
[7].1 We can construct a GFU formula with equality such that its universal model
represents an N×N grid. Thereby, the domain elements of the model correspond
to grid positions and every position is connected to its upper neighbor by a
binary predicate V and to its right neighbor by a binary predicate H .

In the following, we omit leading universal quantifiers; all formulae are sen-
tences. We start our modeling by ensuring there is exactly one leftmost, bottom-
most position of the grid, i.e., the “origin”.

∃x.Orig(x)

U(x, y) ∧Orig(x) ∧Orig(y)→ x ≈ y

Any two domain elements co-occur together with the origin in a ternary auxiliary
predicate ChkFunc.

U(x, y)→ ∃z.ChkFunc(x, y, z) ∧Orig(z)

Intuitively, ChkFunc(x, y, z) indicates that we will enforce that if z is connected
with both x and y by predicate V (or H), then x and y must coincide; in other
words, as x and y are arbitrary elements, z has only one outgoing V -connection
and one outgoing H -connection. The following two sentences implement this.

ChkFunc(x, y, z) ∧H (z, x) ∧H (z, y)→ x ≈ y
ChkFunc(x, y, z) ∧V (z, x) ∧V (z, y)→ x ≈ y

1 As mentioned in the introduction, this undecidability result can be inferred from the
undecidability of the Goldfarb class, using the reduction in [14] (Section 4.2.3).

In particular, this makes sure that the origin has exactly one right and one upper
neighbor. Also, we propagate this “local funtionality” enforcing predicate along
the (known to be unique) V - and H -connections.

ChkFunc(x, y, z)→ ∃w.ChkFunc(x, y, w) ∧H (z, w)

ChkFunc(x, y, z)→ ∃w.ChkFunc(x, y, w) ∧V (z, w)

With these axioms alone, the corresponding universal model would resemble an
infinite binary tree, with the origin as root and every node having (exactly) one
H -successor and (exactly) one V -successor. The next axioms make sure that for
every element e in our structure, the element reached from e via an H -V -path
coincides with the element reached from e via a V -H -path, using another auxil-
iary 5-ary predicate ChkSq which is handled in a way that ChkSq(x, y, z1, z2, z3)
is only entailed whenever z1 has z2 as right neighbor and z3 as upper neighbor.

Again, we start ensuring this for e being the origin and then work our way
through the structure along the (unique) H - and V - connections.

U(x, y)→ ∃z1z2z3.ChkSq(x, y, z1, z2, z3) ∧Orig(z1) ∧H (z1, z2) ∧V (z1, z3)

ChkSq(x, y, z1, z2, z3)→ ∃w1w2.ChkSq(x, y, z2, w1, w2) ∧H (z2, w1) ∧V (z2, w2)

ChkSq(x, y, z1, z2, z3)→ ∃w1w2.ChkSq(x, y, z3, w1, w2) ∧H (z3, w1) ∧V (z3, w2)

Finally, we ensure that if ChkSq(x, y, z1, z2, z3) holds and x is the right neighbor
of z2 and y is the upper neighbor of z3, that then x and y must coincide.

ChkSq(x, y, z1, z2, z3) ∧V (z2, x) ∧H (z3, y)→ x ≈ y

This finishes our modeling of the infinite grid. It is now straightforward to model
a tiling on top of this, and we obtain the following theorem.

Theorem 4. Checking satisfiability of TGF formuale with equality is undecid-
able. The same applies to GFU formulae with equality.

7 Further Undecidable Extensions

In this section, we will review further natural extensions of TGF and find that
they lead to undecidability.

Relaxing guardedness further. Unguarded quantification of subformulae with
three variables would allow to express any formula of the three-variable fragment
of FO, denoted FO3, for which satisfiability is undecidable (as FO3 contains the
class of FO sentences with quantifier prefix ∀∃∀ which is undecidable [15]).

Counting. FO2 can be extended by counting quantifiers of the shape ∃=n, ∃≤n,
and ∃≥n, yielding a logic denoted C2. This extension (which helps to capture
DLs with cardinality restrictions) by itself does not lead to an increase in com-
plexity of satisfiability checking [17]. Yet, this enrichment is detrimental when
mixing it with the guarded fragment: via the C2 sentence ∀x.∃=1y.F (x, y) we can
enforce that F must be interpreted as a functional binary relation. Yet, adding
a functional relation to GF is known to cause undecidability [12].

Conjunctive Queries. Instead of asking for satisfiability of a TGF theory, an often
considered problem stemming from database theory is also if it entails a Boolean
conjunctive query (i.e., an existentially quantified conjunction of atoms). How-
ever, conjunctive query entailment has been shown to be undecidable already for
FO2 alone [18]. This also shows that any attempt of extending TGF such that it
incorporates FO fragments that can express negated Boolean conjunctive queries
(such as the unary negation fragment [21] or the guarded negation fragment [4])
will lead to undecidability.

Loose guardedness. It has been shown that GF remains decidable if the guard-
edness restriction is relaxed, leading to notions such as the loosely guarded frag-
ment, the packed fragment or the clique-guarded fragment. For most restrictive
notion of those, the loosely guarded fragment [6], the guard does not need to be
one atom containing all free variables, rather it can be a conjunction of atoms
with the property that any pair of free variables occurs together in one of those
conjuncts. It is not hard to see that in the presence of the U predicate (or if
such a predicate can be axiomatized as in TGF), we can create a “loose guard”∧
{x,y}⊆x U(x, y) for any set x of free variables. This allows to quantify over the

full domain, hence every FO formula is equivalent to such a loosely guarded
one. Consequently, a hypothetical “loosely triguarded fragment” would be as
expressive as FO, hence undecidable.

8 Conclusion

In this paper, we have introduced the triguarded fragment of FO which subsumes
both GF and FO2. We clarified the computational complexity of satisfiability
checking in this fragment, both for the bounded and unbounded arity case. We
discussed that diverse natural extensions of the fragment lead to undecidability.

While both GF [12] and FO2 [16] are known to have the finite model property,
the status of TGF in this respect is still open. On a first glance, it seems the
arguments for establishing the finite model property of the two fragments are
incompatible and neither can be easily adapted to show that property for TGF.
Still, we conjecture that TGF has the finite model property which would imply
that satisfiability and finite satisfiability (and their complexity) coincide.

Acknowledgments

We thank Emanuel Kieroński and the anonymous reviewers for the valuable
comments. We are also grateful to Pierre Bourhis, Michael Morak, and Andreas
Pieris for clarifying some questions regarding their paper [10].

Sebastian Rudolph has been supported by the Institute of Logic and Com-
putation (E192) at TU Wien and the ERC Consolidator Grant DeciGUT. Man-
tas Šimkus has been supported by the Austrian Science Fund (FWF) projects
P30360 and P30873.

References

1. Andréka, H., van Benthem, J.F.A.K., Németi, I.: Modal languages and bounded
fragments of predicate logic. J. of Philosophical Logic 27(3), 217–274 (1998)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, second edn. (2007)

3. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press (2017)

4. Bárány, V., ten Cate, B., Segoufin, L.: Guarded negation. J. of the ACM 62(3),
22:1–22:26 (2015)

5. Bárány, V., Gottlob, G., Otto, M.: Querying the Guarded Fragment. Logical Meth-
ods in Computer Science Volume 10, Issue 2 (May 2014)

6. van Benthem, J.: Dynamic bits and pieces. Technical Report LP-97-
01, ILLC, University of Amsterdam, 1997. Available at http://www.illc.
uva.nl/Publications/reportlist.php?Series=LP

7. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer
(1997)

8. Borgida, A.: On the relative expressiveness of description logics and predicate
logics. Artif. Intell. 82(1-2), 353–367 (1996)

9. Bourhis, P., Morak, M., Pieris, A.: Personal Communication (23rd of July 2018)
10. Bourhis, P., Morak, M., Pieris, A.: Making cross products and guarded ontology

languages compatible. In: Proc. of IJCAI 2017 (2017)
11. Grädel, E.: Description logics and guarded fragments of first order logic. In: Proc. of

DL 1998 (1998)
12. Grädel, E.: On the restraining power of guards. J. Symb. Log. 64(4), 1719–1742

(1999)
13. Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable

first-order logic. Bulletin of Symbolic Logic 3(1), 53–69 (1997)
14. Kazakov, Y.: Saturation-Based Decision Procedures for Extensions of the Guarded

Fragment. Ph.D. thesis, Universität des Saarlandes, Saarbrücken, Germany (March
2006)

15. Lewis, H.R.: Unsolvable Classes of Quantificational Formulas. Addison-Wesley
(1979)

16. Mortimer, M.: On languages with two variables. Math. Log. Q. 21(1), 135–140
(1975)

17. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quan-
tifiers. J. of Logic, Language and Information 14, 369–395 (2005)

18. Rosati, R.: The limits of querying ontologies. In: Schwentick, T., Suciu, D. (eds.)
Proc. 11th Int. Conf. Database Theory (ICDT’07). LNCS, vol. 4353, pp. 164–178.
Springer (2007)

19. Rudolph, S., Krötzsch, M., Hitzler, P.: All elephants are bigger than all mice. In:
Proc. of DL 2008 (2008)

20. Scott, D.: A decision method for validity of sentences in two variables. Journal of
Symbolic Logic 27(377), 74 (1962)

21. Segoufin, L., ten Cate, B.: Unary negation. Logical Methods in Computer Science
9(3) (2013)

