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Institute of Logic and Computation, TU Wien, Austria

Abstract. Hierarchical data, where facts may refer to different cate-
gories in an ordered hierarchy, in the style of the multi-dimensional data
model, arises in many applications. When these hierarchies are not cap-
tured by subclasses, but require navigation along roles, this data cannot
be satisfactorily queried in the standard OBDA setting based on first-
order rewritable languages like DL-Lite. For this reason, we study how to
extend DL-Lite with complex role inclusions (CRIs) in a way that over-
comes this limitation. Complex role inclusions (CRIs) cause the loss of
first-order rewritability in general, but we study meaningful restrictions
which guarantee that rewritability is preserved.

1 Introduction

In Ontology-based Data Access (OBDA) [15] the knowledge represented in an on-
tology is leveraged to retrieve more complete answers from incomplete data. For
example, consider the datasetAe in Figure 1 about cultural events and their loca-
tions, and the ontology in Figure 2 which includes the knowledge that both con-
certs and exhibitions are cultural events. Using this knowledge, all cultural events
ex1, ev1, and c1 can be retrieved with a the query: q1(x)← CulturEvent(x).

In OBDA, ontologies are often written in the Description Logics (DLs) of the
DL-Lite family [6]. These DLs are tailored in such a way that CQs mediated by
DL-Lite ontologies are first-order (FO)-rewritable. That means that evaluating
a query q over (T ,A) can be reduced to evaluating a query qT (incorporating
knowledge from T ) over A alone, which amounts to standard query evaluation
in relational databases. In our example, a rewriting of q1 is

qT (x)← CulturEvent(x) ∨ Exhibition(x) ∨ Concert(x).

FO rewritability is important as it allows to implement OBDA by using standard
database technologies. A missing functionality in OBDA is leveraging hierarchi-
cal knowledge not captured by subclass relations. Event locations may range
from a specific venue, to more general locations such as the city or the country
where the event occurs. But unlike our previous example, venue is not a subclass
of city, and there is no natural way to express in DL-Lite that if an event occurs
in a venue located in a city, then it occurs in that city. Therefore, when evaluated
over (Te,Ae), the query q2 retrieves ex1 but not the expected c1:

q2(x)← CulturEvent(x), occursIn(x, y), y = Vienna.
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Fig. 1: Event dataset Ae.
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Fig. 2: Event ontology Te.

The previous is a prototypical example of dimensional knowledge: venues,
cities, and countries can be seen as different levels in the Location dimension.
Dimensional knowledge arises in many settings, and it is useful for storing and
accessing data at different granularity levels. To store and query time-stamped
data, a Time dimension including day, month, and year could be used; the phys-
ical parts of complex objects may be ordered along a hierarchy of components.
These hierarchies are often called dimensions, and are formalized as a finite set
of categories with a partial order between them. Figure 3, shows a formaliza-
tion for a Location dimension. Modeling and leveraging dimensional knowledge
in query answering has been a major research problem in the database com-
munity, we discuss some works in Section 5. In this paper, we make a step
towards extending the OBDA setting to leverage dimensional knowledge. In or-
der to capture this kind of knowledge, we propose to extend the expressive power
of DL-Lite with complex role inclusions (CRIs). For instance, adding the CRI
occursIn · locatedIn v occursIn to our example captures the missing knowledge,
and makes c1 an answer to q2.

While CRIs enables DL-Lite to capture hierarchical knowledge, their addi-
tion is in general computationally costly. They easily lead to undecidability if
unrestricted [10], and critically for DL-Lite, even one fixed CRI destroys the
FO-rewritability of CQs [1]. In this paper, we are interested in extensions of
DL-Lite with CRIs able to capture dimensional knowledge, while still preserv-
ing FO-rewritability of CQs. Achieving both simultaneously is not easy though.
While an FO-rewritable extension results from imposing suitable acyclicity con-
ditions on the roles in CRIs, the combined complexity of standard reasoning be-
comes intractable, and more critically, the language cannot capture the desired
scenarios: the CRIs we need to navigate along dimensions are in general recur-
sive, as in the example above. We therefore allow recursion under some safety
restrictions, in a way that we can ensure FO-rewritability and under the assump-
tion that datasets satisfy certain guarantees, which effectively impose a bound
on the length of paths over which CRIs provide relevant inferences. The interest-
ing observation is that dimensions naturally provide such guarantees, bounding
the propagation of dimensional knowledge. We introduce order constraints that
naturally express dimensional information, and at the same time guarantee the



Fig. 3: Location dimension; the dashed arrows
show the order between the categories Venue,
City, and Country. Some members of each cat-
egory are illustrated, and the solid arrows rep-
resent the role locatedIn.
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boundedness required for FO-rewritability. Due to space restrictions, full proofs
can be found in the long version1.

2 Preliminaries

We consider the core fragment of DL-Lite with role inclusions DL-LiteH [5,1].
As usual, NC,NR, and NI are countable infinite alphabets of concept, role, and
individual names, respectively. DL-LiteH expressions are constructed according
to the following grammar:

B := ⊥ | A | ∃r r := p | p−,

where A ∈ NC, p ∈ NR, B is called a concept, and p− an inverse role. The set
of roles is defined as NR

± = NR ∪ {p− | p ∈ NR}. We assume w.l.o.g. that a
DL-LiteH TBox T is a finite set of concept inclusion axioms taking any of the
following normal forms:

A v A′, A v ∃p, ∃p v A, p v s, p v s−,

together with a set of disjointness axioms of the form disj(A,A′), and disj(p, p′).

For example, the ontology in Figure 2 is expressed with the DL-LiteH TBox:

∃occursIn v Event ∃locationOf v Location Theater v Venue

CulturEvent v Event City v Location Museum v Venue

Exhibition v CulturEvent Country v Location locationOf v occursIn−

Concert v CulturEvent Venue v Location

A DL-LiteH ABox (or dataset) is a finite set of assertions A(a), and p(a, b), with
a, b ∈ NI, A ∈ NC, and p ∈ NR, and we denote ind(A) as the set of individuals
occurring in A. A knowledge base (KB) is a pair K = (T ,A). The semantics
is defined as usual in terms of interpretations I = (∆I , ·I) consisting of a non-
empty domain ∆I and an interpretation function ·I , that complies with the
standard name assumption in the sense that aI = a for every a ∈ NI.

We consider the class of conjunctive queries and unions thereof. A term is
either an individual name or a variable. A conjunctive query (CQ) is a first
order formula with free variables x and existential variables y that takes the
form q(x) ← ϕ(x,y), with ϕ a conjunction of atoms of the form A(x), r(x, y),
and t = t′, where A ∈ NC, r ∈ NR, and t, t′ range over terms. Instance queries
are CQs with exactly one atom and no existential variables. The terms occurring

1 https://arxiv.org/abs/1808.02850
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in q are denoted terms(q), and the variables vars(q). The free variables x of a
query are called answer variables.

Let I be an interpretation, q(x) a CQ. An answer to q in I is a tuple a
from ∆I of length |x| such that there is a map π : terms(q) 7→ ∆I satisfying
(i) π(x) =a, (ii) π(b) = b for each individual b, (iii) I |= P (π(z)) for each atom
P (z) in q, and (iv) π(t) = π(t′) for each atom t = t′ in q, and in that case we
write I |= q(a). The map π is called a match for q in I. We denote ans(q(x), I)
as the set of all answers to q in I. The certain answers of q(x) over A w.r.t. T ,
denoted cert(q, T ,A), is defined as the tuples of individuals that are an answer
to q in I, for every model I of (T ,A).

3 DL-Lite with Complex Role Inclusions

A complex role inclusion (CRI) is an expression of the form r · s v t, with
r, s, t ∈ NR. An interpretation I = (∆I , ·I) satisfies a CRI r · s v t if for all
d1, d2, d3 ∈ ∆I , (d1, d2) ∈ rI , (d2, d3) ∈ sI imply (d1, d3) ∈ tI . We assume a set
NRs ⊆ NR

± of simple roles closed w.r.t. inverses (i.e. s ∈ NRs implies s− ∈ NRs);
for each r ∈ NR

± \ NRs , r is a non-simple role.

Definition 1 (DL-LiteHR). A DL-LiteHR TBox T is a DL-LiteH TBox that
may also contain CRIs, and such that:

– For every CRI r · s v t ∈ T , s is simple and t is non-simple.
– If s v t ∈ T and t ∈ NRs , then s ∈ NRs .

The restriction to a simple role s in Definition 1 guarantees that recursion is
linear, avoiding a possible explosion in the size of rewritings.
Properties such as FO-rewritability are affected by CRIs. In the case of DL-Lite,
even one single fixed CRI r · s v r destroys first-order rewritability, since it can
easily enforce r to capture reachability along the s-edges of a given graph.

Lemma 1. [1] Instance checking in DL-LiteHR is NLogSpace-hard in data
complexity, already for TBoxes consisting of the CRI r · s v r only.

3.1 Non-recursive DL-LiteHR

We start by defining a suitable notion of recursive CRIs. For a DL-LiteHR TBox
T , the recursion graph GT of T is the directed graph that contains (i) a node vA
for each concept name A in T , (ii) a node vr for each role name r in T , and (iii)
there exists an edge from a node vP ′ to a node vP whenever P occurs on the
left-hand-side and P ′ on the right-hand-side of an axiom in T . A CRI t · s v r
is recursive w.r.t. a TBox T if GT has a path from vt or vs to vr.

Definition 2. A DL-LiteHRnon-rec TBox is a DL-LiteHR TBox without recursive
CRIs.



Restricting CRIs to be non-recursive indeed guarantees FO-rewritability. For
a CQ q, we denote by zq an arbitrary but fixed variable not occurring in q. An
atom substitution θ = [Γ1/Γ2] can be applied to q if Γ1 ⊆ q and the effect is to
replace atoms Γ1 with atoms Γ2 in q.

Definition 3. Let T be a DL-LiteHRnon-rec TBox. For CQs q, q′, we write q T q′

whenever q′ is obtained by

B1 replacing x by y in q, for x, y ∈ vars(q)

or by applying an atom substitution θ to q, as follows:

S1 θ = [A2(x)/A1(x)], if A1 v A2 ∈ T and A2(x) ∈ q;
S2 θ = [r(x, y)/A(x)], if A v ∃r ∈ T , r(x, y) ∈ q and y is a non-answer variable

occurring only once in q;
S3 θ = [A(x)/r(x, zq)], if ∃r v A ∈ T and A(x) ∈ q;
S4 θ = [s(x, y)/r(x, y)], if r v s ∈ T and s(x, y) ∈ q;
S5 θ = [s(x, y)/r(y, x)], if r v s− ∈ T and s(x, y) ∈ q;
S6 θ = [r(x, y)/{t(x, zq), s(zq, y)}], if t · s v r ∈ T and r(x, y) ∈ q;

By applying  T exhaustively, we obtain a FO-rewriting of a given query q.

Definition 4. The rewriting of q w.r.t. T is the rew(q, T ) = {q′ | q T ∗q′}
such that for each q′ ∈ rew(q, T ) there is no q′′ ∈ rew(q, T ) isomorphic to q′,
where q T ∗q′ is the reflexive, transitive closure of q T q′.

For any CQ q, rew(q, T ) is a finite query that can be effectively computed.

Lemma 2. Let T be a DL-LiteHRnon-rec TBox and let q a CQ. Each q′ ∈ rew(q, T )
is polynomially bounded in the size of T and q, and can be obtained in a polyno-
mial number of steps.

Proof (sketch). Due to the non-recursiveness of the dependency graph and the
restriction on simple roles, we show that we can assign to queries a (suitably
bounded) degree that roughly corresponds to the number of rewriting steps that
can be further applied. We prove that for each q′ such that q T ∗q′, the degree
does not increase, and after polynomially many steps we will reach q T ∗q′′ such
that the degree strictly decreases.

The next result is shown analogously as in [6], extended to the new rule S6.

Theorem 1. Let T be a DL-LiteHRnon-rec TBox, q a CQ. For every ABox A con-
sistent with T we have that cert(q, T ,A) =

⋃
q′∈rew(q,T )

cert(q′, ∅,A).

Non-recursive CRIs preserve FO-rewritability of DL-Lite, but their addition
is far from harmless. Indeed, unlike the extension with transitive roles, even
non-recursive CRIs increase the complexity of testing KB consistency.

Theorem 2. Consistency checking in DL-LiteHRnon-rec is coNP-complete.
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Fig. 4: Propagating the clauses that are satisfied under a variable assignment.

Proof. Upper-bound: Similarly as for standard DL-Lite, inconsistency checking
can be reduced to UCQ answering, using a CQ qα for testing whether each
disjointness axiom α is violated. By Lemmas 2 and 1, an NP procedure can
guess one such qα, guess a q′α in its rewriting, and evaluate q′α over A.

Lower-bound: We reduce the complement of 3SAT to KB satisfiability. Sup-
pose we are given a conjunction ϕ = c1∧· · ·∧cn of clauses of the form `i1∨`i2∨`i3 ,
where the `k are literals, i.e., propositional variables or their negation. Let
x0, . . . , xm be all the propositional variables occurring in ϕ. In order to encode
the possible truth assignments of each variable xi, we take two fresh roles rxi

and
r̄xi

, intended to be disjoint. We construct a DL-LiteHRnon-rec TBox Tϕ containing,
for every 0 ≤ i ≤ m, the following axioms:

disj(rxi , r̄xi), Ai v ∃rxi u ∃r̄xi , ∃r−xi
v Ai+1, ∃(r̄xi)

− v Ai+1,

rxi v t, r̄xi v t

These axioms have a model that is a full binary tree, rooted at A0 and whose
edges are labeled with the role t, and with different combinations of the roles ri
and r̄xi

. Intuitively, each path represents a possible variable truth assignment.
Further, Tϕ contains axioms relating each variable assignment with the clauses
it satisfies, using roles sc1 , . . . , scn . More precisely, we have the following role
inclusions for 0 ≤ i ≤ m, and 1 ≤ j ≤ n:

rxi
v scj , if xi ∈ cj r̄xi

v scj , if ¬xi ∈ cj (1)

To encode the evaluation of all clauses, we have axioms propagating down the
tree all clauses satisfied by some assignment. Note that we could do this easily
using a CRI such as scj · t v scj . However, this would need a recursive role scj .
Since the depth of the assignment tree is bounded by m, we can encode this
(bounded) propagation using at most m roles sicj (1 ≤ i ≤ n) for each clause
cj , which will be declared as subroles of another role s∗cj . For 1 ≤ j ≤ n and

1 ≤ i < m, we have the CRIs: scj · t v s1cj , sicj · t v s
i+1
cj , sicj v s

∗
cj .



Thus, if cj is satisfied in a t-branch of the assignment tree, its leaf will have
an incoming s∗cj edge. Now, in order to encode that there is at least one clause
that is not satisfied, we need to forbid the existence of a leaf satisfying the
concept ∃(s∗c1)− u · · · u ∃(s∗cn)−. This cannot be straightforwardly written in

DL-LiteHRnon-rec, but we resort again to CRIs to propagate information:

∃(s∗c1)− v ∃t1 s∗ck · t1 v p
1
k, for 2 ≤ k ≤ n (2)

∃(pi−1i )− v ∃ti pi−1k · ti v pik, for 2 ≤ i ≤ n, i < k ≤ n (3)

Figure 4 shows how the satisfaction of clauses is propagated using these axioms.
Lastly, by adding the axiom ∃tn v ⊥, we obtain the required restriction. We use
this in the full proof that ϕ is unsatisfiable iff (Tϕ, {A0(a)}) is satisfiable.

3.2 Recursion-safe DL-LiteHR

In DL-LiteHRnon-rec we cannot express CRIs like the one in our motivating example.
To overcome this, we introduce an extension with certain kind of recursive CRIs.

Definition 5 (recursion safe DL-LiteHR). A DL-LiteHRrec-safe TBox T is a
DL-LiteHR TBox where every CRI r1 · s v r2 ∈ T satisfies the following condi-
tions:
– If r2 is recursive, then every cycle in GT containing r2 has length at most

one, and r1 = r2.
– There is no axiom of the form B v ∃t ∈ T with t vs

T s or t vs
T s
−, where

vs
T denotes the reflexive and transitive closure of s1 v s2 ∈ T with s2 ∈ NRs .

The key idea behind recursion safety is that every recursive CRI is ‘guarded’
by a simple role that is not existentially implied. For query answering, we can
then assume that only ABox individuals are connected by these guarding roles,
and thus CRIs only ‘fire’ close to the ABox (that is, each pair in the extension
of a recursive role has at least one individual). In fact, we show below that every
consistent recursion-safe KB has a model where both conditions hold.

Example 1. Ke is recursion safe, since occursIn · locatedIn v occursIn is the only
CRI, and locatedIn is not implied by any existential axiom in Te.

In DL-LiteHRrec-safe, consistency checking and instance query answering are
tractable. In fact, for a given KB, we can build a polynomial-sized interpre-
tation that is a model whenever the KB is consistent, and that can be used for
testing entailment of assertions and of disjointness axioms.

Definition 6. Let (T ,A) be a DL-LiteHRrec-safe KB. We define an interpretation
ET ,A as follows. As domain ∆ET ,A = D0 ∪D1 ∪D2 we use the individuals in A,
fresh individuals car that serve as r-fillers for individual a, and fresh individuals
cr that serve as shared r-fillers for the objects that are not individuals in A:

D0 = ind(A), D1 = {car | a ∈ D0, r occurs on the rhs of a CI in T },
D2 = {cr | r occurs on the rhs of a CI in T }.



The interpretation function has aET ,A = a for each a ∈ ∆ET ,A , and assigns to
each concept name A and each role name r in ΣT the minimal set of the form
AET ,A ⊆ ∆ET ,A , rET ,A ⊆ ∆ET ,A ×∆ET ,A such that the following conditions hold,
for all A ∈ NC, B a concept, and r, r1, r2, s, t ∈ NR:

1. A(a) ∈ A implies a ∈ AET ,A , and r(a, b) ∈ A implies (a, b) ∈ rET ,A .
2. For each B v ∃r ∈ T , a ∈ BET ,A ∩D0 implies (a, car) ∈ rET ,A .
3. For each B v ∃r ∈ T , d ∈ BET ,A ∩ (D1 ∪D2) implies (d, cr) ∈ rET ,A .
4. For each B v A ∈ T , d ∈ BET ,A implies d ∈ AET ,A .

5. For each r1 v r2 ∈ T , (a, b) ∈ rET ,A
1 implies (a, b) ∈ rET ,A

1 .
6. For each r · s v t ∈ T , (a, b) ∈ rET ,A and (b, c) ∈ sET ,A imply (a, c) ∈ tET ,A .

For ET ,A, we can show the following useful properties:

Proposition 1. Let T = Tp ∪ Tn be a DL-LiteHRrec-safe TBox, where Tp contains
only positive inclusions, and Tn contains only disjointness axioms. Then, for
every ABox A:

P1 If (T ,A) is consistent, then ET ,A � (T ,A).
P2 (T ,A) is inconsistent iff ET ,A 6|= α for some α ∈ Tn.
P3 If (T ,A) is consistent and q is an instance query, cert(q, T ,A) = ans(q, ET ,A).

Proof (sketch). To prove P1, we assume that (T ,A) is consistent. Verifying that
ET ,A satisfies all but the disjointness axioms is straightforward. Let I be an
arbitrary model of (T ,A). For d, d′ ∈ ∆I , let tpI(d) = {B | d ∈ BI} the set of
concepts satisfied at d in I, and tpI(d, d′) = {r | (d, d′) ∈ rI}, the set of roles
connecting d and d′ in I. We show the following claim:

Claim. For any given d ∈ ∆ET ,A (i) there exists e ∈ ∆I such that tpET ,A
(d) ⊆

tpI(e) and (ii) for each d′ ∈ ∆ET ,A such that tpET ,A
(d, d′) 6= ∅ we have that there

exists e′ ∈ ∆I such that tpET ,A
(d, d′) ⊆ tpI(e, e′).

Towards a contradiction, assume there is α = disj(B1, B2) ∈ T such that
ET ,A 6|= α; the case of role disjointness axioms is analogous. Then there is d ∈
∆ET ,A with B1, B2 ∈ tpET ,A

, and by the claim above, B1, B2 ∈ tpI(d) for each
model I. Hence ET ,A � α, and this concludes proof of P1; P2 and P3 can also
be shown using the above claim and the fact that ET ,A is a model of the KB.

This proposition allows us to establish the following results:

Theorem 3. KB consistency and instance query answering in recursion safe
DL-LiteHR are in PTime for combined complexity.

The recursion safe fragment of DL-LiteHR is not FO-rewritable: indeed, the
TBox in the proof of Lemma 1 is recursion safe. However, we can get rid of
recursive CRIs and regain rewritability if we have guarantees that they will only
be relevant on paths of bounded length. We formalize this rough intuition next.



Input: (T ,A) satisfiable recursion safe DL-LiteHR KB, C - order constraints;
Output: true if (A, T ) is C-admissible, false otherwise;
foreach ord(s,A,≺) ∈ C do

q1(x, y)← s(x, y), q2(x, y)←
∨

A1≺A2

A1(x), s(x, y), A2(y) ;

if ans(q1, ET ,A) 6⊆ ans(q2, ET ,A) then return false ;
q3(x, y)←

∨
A1 6≺A2

A1(x), s(x, y), A2(y) ;

if ans(q3, ET ,A) 6= ∅ then return false ;
return true.

Algorithm 1: CheckAdmissibility

Definition 7 (k-bounded ABox). Let T be a DL-LiteHR TBox and A an
ABox. Let S be a set of simple roles. Given a, b ∈ ind(A), we say that there
exists an S-path of length n between a and b (inA w.r.t. T ) if there exist pairwise
distinct d1, . . . , dn−1 ∈ ind(A) with di 6∈ {a, b}, and s1(a, d1), . . . , si(di−1, di),
. . . , sn(dn−1, b) ∈ A such that si vs

T s and s ∈ S, 1 ≤ i < n. Let Sr = {s |
r · s v r ∈ T }. We say that A is k-bounded for T if for each recursive r ∈ T
there is no Sr-path of size larger than k.

We simulate recursive CRIs by unfolding them into k non-recursive ones.

Definition 8 (k-unfolding). For an arbitrary DL-LiteHRrec-safe TBox T , and fixed

k ≥ 0, a k-unfolding of T is a DL-LiteHRnon-rec TBox Tk obtained by replacing each
r · s v r ∈ T with the axioms:

r v r0 rj−1 · s v rj rj v r̂ (1 ≤ j ≤ k),

where r̂ and rj are fresh role names. For a CQ q, let q̂ be the query obtained
from q by replacing, for every r · s v r ∈ T , each r(x, y) ∈ q by r̂(x, y).

For k-bounded ABoxes, rew(q̂, Tk) is an FO-rewriting of q.

Lemma 3. Let T be a DL-LiteHRrec-safe TBox, Tk a k-unfolding of T for some
k ≥ 0, and let q be a CQ over ΣT . Then, for every k-bounded ABox A:

cert(q, T ,A) =
⋃

q′∈rew(q̂,Tk)

cert(q′, ∅,A)

Proof (sketch). In a nutshell, recursion-safety ensures that recursive CRIs in T
can only ‘fire’ in the chase along Sr-paths in the ABox. If A is k-bounded for T ,
then such paths have length ≤ k, so we get that every pair (d, d′) that should
be added to a recursive role r is added to some rj , and hence to r̂.

4 Taming CRIs for Dimensional Data

We introduce order constraints to express the order between categories of a
dimension.



Definition 9. An order constraint takes the form ord(s,A,≺), with s ∈ NRs ,
A ⊆ NC finite, and ≺ a strict partial order over A. I satisfies ord(s,A,≺) if

sI ⊆
⋃

A1,A2∈A

(AI1 ×AI2 ), (4) sI ∩
⋃

A1⊀A2

(AI1 ×AI2 ) = ∅. (5)

Intuitively, if ord(s,A,≺) is satisfied in I, then all objects connected via
role s are instances of A-concepts, in away that is compliant with the order ≺.
Equation 5 disallows also s-paths that are order compliant but connect instances
of A-concepts which are incomparable w.r.t. ≺. If such paths are allowed, one
cannot guarantee k-boundednes. An alternative solution would have been to
restrict concepts in A to be disjoint.

Example 2. The Location dimension from Figure 3 is captured by Ke = (Te,Ae)
and the constraint

c = ord(locatedIn, {Venue,City,Country},≺) (6)

with Venue ≺ City ≺ Country. In each model of Ke satisfying c, the role locatedIn
only connects instances of Venue with those of City or Country, and instances
of City only with those of Country, thus capturing the intended semantics of the
dimension. 4

An useful insight is that order constraints can provide k-bounded guarantees.

Definition 10. C covers a role r in T if there exists a partial order (A,≺) such
that for every role s in the set {s | r · s v r ∈ T }, ord(s,A′,≺) ∈ C for some
A′ ⊆ A. We say that C covers T , if it covers every role r in T .
Further, (T ,A) is C-admissible if ET ,A satisfies each c ∈ C.

For example, the singleton set containing the ordering constraint c from (6),
covers Te, and Ke is {c}-admissible since ETe,Ae

satisfies c.

Lemma 4. Let (T ,A) be a recursion-safe DL-LiteHR KB, and let C be a set of
order constraints covering T . If (T ,A) is C-admissible, then A is `(C)-bounded
for T , where `(C) := max{|A| | ord(s,A,≺) ∈ C}.

Proof (sketch). For any I, if I |= ord(s,A,≺), for each chain of individuals
a1, . . . , an with (ai, ai+1) ∈ sI for all 1 ≤ j < n, we have n ≤ |A|. This applies
to ET ,A, as (T ,A) is C-admissible. Further, C covers T , so for each Sr = {s |
r · s v r ∈ T }, all Sr-paths in ET ,A have size ≤ `(C). Finally, all Sr-paths in A
w.r.t. T are also in ET ,A, so their length is ≤ `(C).

Lemmas 3 and 4 give us the desired result: we obtain FO-rewritability in the
presence of CRIs, whenever order constraints allow us to guarantee boundedness.



Theorem 4. Let T be a DL-LiteHRrec-safe TBox, C a set of order constraints that
covers T , and q a CQ. Let qC be the `(C)-rewriting of q w.r.t. T . Then, for
each ABox A such that (T ,A) is consistent and C-admissible, cert(q, T ,A) =
cert(qC , ∅,A).

Finally, we note that C-admissibility amounts to evaluate simple queries on
ET ,A. This can be done in time that is polynomial in C, T , and A, using the
procedure in Algorithm 1. Moreover, although testing C-admissibility is data
dependent, once it is established, FO-rewritability is guaranteed for any CQ.

Proposition 2. Checking C-admissibility for recursion-safe DL-LiteHR KBs is
in PTime in combined complexity.

5 Related Work

CRIs have been studied since the earliest DL research, when role value maps
where considered very desirable [16]. Indeed, CRIs are part of the OWL stan-
dard, both in the OWL EL profile which is based on EL++ [2], and in full OWL
2 which is based on SROIQ [9]. Our work is also related to regular path queries
(RPQs) and their extensions. In fact, ontology mediated query answering where
the DL has CRIs, is also supported in settings where the query language contains
conjunctive RPQs; many such settings have been considered in the literature
and their complexity is well understood, see [13,14] for references. The latter
are necessarily NLogSpace-hard in data complexity, and PSpace-hard in com-
bined complexity even for lightweight DLs [4]. We have focused on FO-rewritable
settings with tractable combined complexity. Rule-based formalisms for OBDA
that can leverage dimensional knowledge include weakly-sticky Datalog± [3], but
those formalisms are not FO-rewritable.

The notion of dimension used here is basis of the multi-dimensional data
model used for online-analytical processing (OLAP) [11]. Logic-based formaliza-
tions of dimensions and multi-dimensional data schemata have been proposed in
the literature. Some works focus on modeling such data and use DLs to reason
about the models, rather than for querying [8,7]. A recent work in the database
area focuses on operators for taxonomy-based relaxation of queries over rela-
tional data [12]. Our work is closely related to [3], but as mentioned, they rely
on an expressive fragment of Datalog± for which CQs are not FO-rewritable.

6 Conclusions

In this paper we have advocated to use CRIs for getting more complete answers
in the OBDA setting, particularly in the presence of dimensional knowledge.
We extended DL-LiteH with CRIs. Severe restrictions are needed to preserve
FO-rewritability, but we have identified a setting that is both natural and use-
ful for the desired use case. An investigation of DL-LiteHR without the simple
roles restriction is left for future work. Finding effective ways to guarantee C-
admissibility, and identifying settings in which it can be tested via FO-queries,
also seems to be an interesting challenge.
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