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Abstract
We propose a novel driving policy which is a veloc-
ity control for self-driving vehicles to relieve traf-
fic jams. Although the driving policy in previous
research was empirically designed for a given traf-
fic situation, which meant that the driving policy
required to be reconfigured for every traffic situ-
ation and every change in traffic, we propose a
driving policy that is learned by a learning agent
via reinforcement learning using the data collected
from the self-driving vehicles during simulation.
The driving policy is relayed to the smart vehicles,
which, in turn, are guided by the driving policy. To
test and evaluate our proposed driving policy, we
conducted traffic flow simulations with manually
driven and self-driving vehicles in several scenar-
ios wherein the two key parameters, vehicle den-
sity and self-driving vehicle penetration rate, are
assigned different values. Our findings show that a
driving policy for self-driving vehicles does relieve
traffic jams in conditions such as (1) when the vehi-
cle density is 42 vehicles/km and the penetration of
the self-driving vehicle is 10% of the total traffic,
and (2) when the vehicle density is 50 vehicles/km
and the penetration of the self-driving vehicle is
70% of the total traffic (at which point traffic flow is
nearly optimized). In addition, we found that inter-
vehicle communication among self-driving vehi-
cles provides real-time traffic information that re-
lieves traffic jam even more effectively.

1 Introduction
Traffic jams cause significant inconvenience and economic
costs in terms of fuel usage and time lost. Traffic jams
are caused by bottlenecks, which reduce road capacity, and
by perturbations associated with manually driven vehicles,
which can increase vehicle density. In a previous study, we
proposed a driving policy for relieving perturbation-induced
traffic jams in traffic situations involving homogeneous vehi-
cles [Ishikawa and Arai, 2015]. In this present study, we pro-
pose a driving policy for relieving traffic jams in traffic situa-
tions involving heterogeneous vehicles, that is, both manually
driven and self-driving vehicles.

The self-driving vehicle is equipped with smart functions,
such as an adaptive cruise control (ACC) or cooperative adap-
tive cruise control (CACC) that can penetrate and potentially
influence traffic flow. An ACC-equipped vehicle can auto-
matically detect the leading vehicle and can control veloc-
ity using sensor and radar instruments. A CACC-equipped
vehicle can receive driving information from the vehicle pre-
ceding it via vehicle-to-vehicle (V2V) communication. Some
papers have proposed a driving policy of ACC and CACC to
relieve traffic jams. For example, Kesting et al. [Kesting et
al., 2008] proposed the driving policy of ACC, and Forster
et al. [Forster et al., 2014] proposed the driving policy of
CACC. Detecting traffic condition, these vehicles drive flexi-
bility and improve traffic flow stability.

However, the current practice of designing a driving pol-
icy is challenging as the driving policy must account for
any number of traffic situations (road structures, traffic reg-
ulations, etc.), consider perturbations induced by manually
driven vehicles, and direct and coordinate self-driving vehi-
cles. Designing driving policies requires simulation trial-and-
error, is labor intensive, and is time consuming.

We propose the driving policy that is learned by a learner
agent via reinforcement learning using data that are collected
from the self-driving vehicles. In the proposed approach,
a learner agent for the driving policy simultaneously inter-
acts with the all self-driving vehicles in traffic simulation.
Collecting driving data of the self-driving vehicles that obey
the driving policy, the learner agent learns the driving policy
from driving data. After this interaction repeats, the learner
agent acquires the driving policy. To validate the proposed
approach, we introduce self-driving vehicles equipped with
driving policy into traffic jam simulations induced by per-
turbation of a manually driven vehicle. Several traffic situ-
ations having different vehicle densities and self-driving ve-
hicle penetration rates were used in the simulation. The ef-
fectiveness of the driving policy on relieving traffic jam was
measured based on the amount of increase in traffic flow.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss our approach to relieving traffic jams by
means of a learner agent that learns and updates the driving
policy through data collected from self-driving vehicles. In
Section 3, we describe a traffic problem scenario. In Section
4, we propose a framework for learning the driving policy
by a learner agent. In Section 5, we describe a Generalized



Nagel–Schreckenberg (GNS) model of traffic flow for man-
ually driven and self-driving vehicles. In Section 6, we de-
scribe the traffic simulation experiments conducted based on
our proposed approach. In Section 7, we conclude this paper
with remarks on future work.

2 Related Work
The proposed approach aims at generating a driving policy
with data collected from self-driving vehicles and reinforce-
ment learning of the driving policy by a learner agent. This
approach is based on works related to traffic flow control in
terms of driving policy and reinforcement learning.

To prevent traffic jams caused by the perturbation of a
manually driven vehicle, the vehicle must be able to main-
tain an appropriate gap distance between itself and the pre-
ceding vehicles to prevent perturbation from propagating
downstream to eventually be reflected upstream. Research
has been done on the effect of maintaining an appropri-
ate gap between vehicles for relieving traffic jam when one
vehicle, all vehicles, or some vehicles are regulated by a
driving policy [Kamal et al., 2014; Forster et al., 2012;
Papacharalampous et al., 2015].

The driving policy for a manually driven vehicle may in-
clude predicting a traffic situation using inter-vehicle com-
munication and recommending that the driver keep an appro-
priate amount of distance [Knorr et al., 2012]. Kesting et al.
and Forster et al. proposed a driving policy for an ACC and
CACC self-driving vehicle that adapts to a traffic situation,
respectively [Kesting et al., 2008; Forster et al., 2014]. Won
et al. proposed fuzzy inference systems that effectively cap-
ture the dynamics of traffic jams [Won et al., 2017]. Although
these approaches are effective ways of relieving traffic jams,
designing a driving policy that anticipates various traffic sce-
narios is difficult. We propose an approach that uses a learner
agent to learn the driving policy in order to cut down on de-
signing the policy.

Research on reinforcement learning for traffic flow opti-
mization includes finding policies dictating how speed lim-
its should be assigned to highway sections [Walraven et al.,
2016] and controlling ramp metering devices with Q-learning
[Rezaee et al., 2012]. For advanced reinforcement learn-
ing approaches, a multi-objective reinforcement learning in-
volves learning the traffic signal policy [Khamis and Gomaa,
2014], and multi-agent reinforcement learning determines the
route planning [Zolfpour-Arokhlo et al., 2014]. In contrast,
our approach acquires the driving policy of the self-driving
vehicles.

3 Traffic Problem Scenario
Figure 1 shows a traffic scenario involving two road-
to-vehicle communication infrastructures (R2Vs), N self-
driving vehicles, and M manually driven vehicles. The R2Vs,
which share information on the number of self-driving or
manually driven vehicles passed by it, are installed at the edge
of a road section having length L. The R2Vs can calculate the
traffic density ρ and the penetration rate of the self-driving ve-
hicle µ of the road section. The upstream R2V sends the driv-
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Figure 1: A traffic situation that we assume in this paper.

ing policy πρ,µ corresponding to ρ and µ to the self-driving
vehicles passed by it.

We propose a solution to relieving traffic jams on the
road by instituting driving policy πρ,µ, wherein the self-
driving vehicle complies with driving policy πρ,µ; that is,
the self-driving vehicle observes a state s, and performs ac-
tion output a expressed as πρ,µ(s) = a. The state s is a
six-dimensional vector s =(ϕvel,ϕgap,ϕrel,ϕc−d,ϕc−v,ϕc−g),
where ϕvel,ϕgap,ϕrel,ϕc−d,ϕc−v, and ϕc−g indicate velocity,
gap, relative velocity, communication distance between com-
munication partners, communication partner’s velocity, and
communication partner’s gap, respectively. The action a is
velocity control. The state s contains the information about
preceding vehicle, and the driving policy is cooperative pol-
icy to relieving traffic jams.

4 Framework for the Reinforcement Learning
of Driving Policy

The reinforcement learning framework shown in Figure 2
comprises the traffic environment and the learner agent.

Environment
The traffic environment comprises self-driving and manually
driven vehicles on a road characterized by periodic-boundary
conditions. Because the number of vehicles is constant, ve-
hicle density ρ and penetration rate µ are also constant. The
learner agent therefore learns the driving policy πρ,µ by inter-
acting with a traffic environment in which vehicle density ρ
and penetration rate µ are constant.

Learner agent
We explain a procedure that the learner agent updates the
driving policy whenever time t is updated from t to t + 1.
At time t, the learner agent delivers the driving policy πt,ρ,µ

to all self-driving vehicles. Following equation (1), the driv-
ing policy outputs randomly selected action with probability
ϵ or action a′ selected by argmaxa′Qρ,µ(s, a

′) with 1 − ϵ.
Here, the probability ϵ = {ϵ|0 ≤ ϵ ≤ 1} is a parame-
ter used to explore a new state, and Qρ,µ(s, a) is an action
value function when the vehicle state and action are, respec-
tively, s and a. After all vehicles drive, at time t + 1, the
self-driving vehicles observe the next state st+1 and receive a
reward rt+1. The learner agent then collects the driving data
ζn = {st, at, st+1, rt+1} from the self-driving vehicle.

πρ,µ(s) =

{
random select a ϵ
argmaxa′Qρ,µ(s, a

′) 1− ϵ
(1)
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Figure 2: Dynamic interaction between the learner agent and traffic
environment within the reinforcement learning of the driving policy.

Algorithm 1 Update action value Q at t, ρ, µ
Input D = {ζn|n ∈ N}, ζn = {st, at, st+1, rt+1}
1: Qnew

ρ,µ ← Qρ,µ

2: for n← 1 to N do
3: st, at, st+1, rt+1 ∈ ζn
4: Qnew

ρ,µ (st, at)
← (1− α)Qρ,µ(st, at)
+ α(rt+1 + γargmaxa′Qρ,µ(st+1, a

′))
5: end for
6: Qρ,µ ← Qnew

ρ,µ

Following Algorithm 1, the learner agent updates the driv-
ing policy using dataset D = {ζn|n ∈ N}. First, the learner
agent inserts an action value Qρ,µ into a Qnew

ρ,µ . Second, the
learner agent updates the Qnew

ρ,µ N times. The index n of the
most upstream self-driving vehicle is 1 and this index is in-
cremented by 1 from upstream to downstream. The Qnew

ρ,µ is
updated by the equation at line 4 in Algorithm 1. Finally, the
learner agent inserts the Qnew

ρ,µ into the action value Qρ,µ.
The equation in line 4 in Algorithm 1 is based on Q-

learning [Sutton and Barto, 1998]. Here, α is the learning
rate, and γ is the discount factor. The learning rate α is a pa-
rameter indicating, in degrees, the update of the action value,
and the discount factor γ is a parameter that determines the
current value of a reward expected to be obtained in the fu-
ture. The self-driving vehicle accepts the reward according to
its own state. The learning agent determines the driving pol-
icy that maximizes the action value that is the sum of rewards
r discounted by γ at each time t.

5 Simulation Modeling
In this study, we used a modified Generalized Nagel–
Schreckenberg (GNS) model [Ishikawa and Arai, 2015] 1.
The NaSch model [Nagel and Schreckenberg, 1992], which
is the basic cellular automaton for the description of traffic
flow, can model the perturbation of each vehicle. The GNS
is used to model the number of communication partners ncom

i
and the maximum communication distance dcomi .

5.1 Terminology
Figure 3 shows a notation of the GNS. The cellular automa-
ton model reproduces the traffic flow which is characterized

1The point of modification and driving rule are provided in the
appendix
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Figure 3: A notation of the Generalized Nagel–Schreckenberg
model

Table 1: GNS parameters for the manually driven vehicle, ACC self-
driving vehicle, and CACC self-driving vehicle.

Manual ACC CACC
Perturbation p [0, 1] - -
Policy action ppol - [0, 1] [0, 1]
Com. number ncom

i - - [1,∞)
Com. distance dcomi - [1,∞) [1,∞)

by a series of cells that indicate whether a vehicle occupies
or does not occupy the cell. Vehicle i+ 1 is ahead of vehicle
i, as the vehicle index is incremented by one. xi, gi, vi(t),
and vrel(t) indicate the coordinate, gap, velocity, and rela-
tive velocity, respectively. The self-driving vehicle i (white
car) is able to communicate with the preceding white i + 2
(white car) within the given maximum communication dis-
tance dcomi . icom, di, gicom , and vicom(t) indicate the index of
the communication partner, the communication distance, the
gap that the communication partner possesses, and the veloc-
ity of the communication partner, respectively.

Road model
The GNS reproduces the road section along length L. The
road section contains the perturbation section along length
l(0 ≤ l ≤ L) in which the manually driven vehicle deceler-
ates at probability p. The occurrence of a traffic jam is due to
the deceleration of the manually driven vehicle within the per-
turbation section [Sugiyama et al., 2008], which corresponds
to a sag or tunnel in the real world environment.

Vehicle model
The GNS parameters for the manually driven vehicle, ACC
self-driving vehicle, and CACC self-driving vehicle are
shown in Table 1. The GNS parameters are set at a probabil-
ity of perturbation p, a probability of driving policy ppol, the
number of communication partners ncom

i , and the maximum
communication distance dcomi . The manually driven vehi-
cle decelerates with probability p in the perturbation section,
but the self-driving vehicle does not decelerate. The policy-
driven self-driving vehicle decelerates at probability ppol with
velocity control on any section of the road. The CACC self-
driving vehicle has 1 ≤ ncom

i communication partners, and
the ACC or CACC self-driving vehicle has a maximum com-
munication distance of 1 ≤ dcomi .
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5.2 Fundamental diagram of a GNS model
Generally, traffic flow analysis focuses on the relationship
between traffic flow and vehicle density as shown in Figure
4 using a GNS model diagram comprising traffic flow plots
of C+M (CACC self-driving and manually driven vehicles),
A+M (ACC self-driving and manually-driven vehicles), and
M (manually driven vehicles). Traffic flow as represented by
the number of vehicles passing through a measurement point
per 5 min is a function of vehicle density, as represented by
the number of vehicles per km.

The penetration rate of the self-driving vehicle is 30%. In
addition, the diagram shows the free-flow phase, and there is
a positive linear relationship between traffic flow and vehicle
density. In the jam phase, there is a negative linear relation-
ship between traffic flow and vehicle density. The intersection
of the free-flow and jam phases is called “critical density.” In
the meta-stable phase, traffic flow is as high as in the free-
flow phase even when vehicle density is greater than critical
density.

For this study, we assume that the effect of relieving a traf-
fic jam is greater as the traffic flow becomes larger than the
traffic flow of the jam phase. The plots show that the free-flow
phase transitions to the jam phase at 40 vehicles/km. We eval-
uated the effectiveness of the driving policy in vehicle density
ranging from 40 to 60 vehicles/km (red dashed line).

6 Experiment
6.1 Experimental setting
Experimental procedure
A trial of experiment excuses two steps and each step con-
sists of some episodes. Before an episode of simulation starts,
we initialize the road by orienting the vehicles randomly and
moving the vehicles around 1000 simulation times. We then
execute a learning step, in which vehicles move around for a
total of 1000 episodes (10,000 simulation times per episode),
to be followed by an evaluation step in which vehicle move
100 episodes. We repeated this experiment 10 times and av-
eraged the results.

Table 2: Values of the state vector elements.

Element Value range
Slow 0 ≤ vi(t) ≤ 1
Middle 1 < vi(t) ≤ 3
Fast 3 < vi(t) ≤ vlimit

Next 0 ≤ gi ≤ 1
Short 1 < gi ≤ 4
Long 4 < gi ≤ dcomi

Not in dcomi < gi
Depart vreli (t) ≤ −2
Track −2 < vreli (t) ≤ 1
Approach 1 < vreli (t)
Near 0 ≤ di ≤ 6
Far 6 < di ≤ dcomi

Disconnected dcomi < di or ncom
i = 0

Road and vehicle setting
We evaluate the proposed driving policy using a road model
under periodic-boundary condition, which is the same condi-
tion as the learning step. Compared with the open-boundary
condition in which vehicle density may change because of
inflow rate, vehicle density is constant under the periodic-
boundary condition in order to evaluate the effect of driving
policy on velocity without the confounding factor of inflow
rate. The experimental conditions for road and vehicle are as
follows:

• a time t = 1 s

• 1 cell = 5 m

• single-lane road under periodic-boundary condition

• limited velocity 5 cell/time = 90 km/h

• road length L = 100 cells

• road where perturbation occurs l = 5 cells

• perturbation probability p = 0.2

• maximum communication distance dcomi = 20

• the number of communication partners ncom
i = 1

Learning setting
The probability of exploration is ϵ = 0.01 from 1 to 500
episodes, and ϵ = 0 from 501 to 1100 episodes, learning rate
is α = 0.01 from 1 to 1000 episodes, and α = 0 from 1001
to 1100 episodes, and discount factor is γ = 0.9.

The elements of the six-dimensional vector of state
s =(ϕvel,ϕgap,ϕrel,ϕc−d,ϕc−v,ϕc−g) are listed as follows:

• ϕvel ={slow, middle, fast}
• ϕgap ={next, short, long, not in}
• ϕrel ={depart, track, approach, not in}
• ϕc−d ={near, far, disconnected}
• ϕc−v ={slow, middle, fast, disconnected}
• ϕc−g ={next, short, long, not in, disconnected}
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Figure 5: The fundamental diagram of the GNS model with a pene-
tration rate µ of 30%.

Table 2 lists the details of the elements.
The action a is ppol = 0 or ppol = 1.
Equation (2) determines the penalty as r. The self-driving

vehicle accepts penalty when any of the following three con-
ditions is satisfied; the first condition is when the self-driving
vehicle stops; the second condition is when the self-driving
vehicle has a gap larger than 7 cells; and the third condition is
when the self-driving vehicle has an absolute value of relative
speed more than 1 cell/time.

rt =

{
−1 vi(t) = 0 or gi > 7 or |vreli (t)| > 1
0 otherwise

(2)

6.2 Experimental results

Figure 5 shows a fundamental diagram of GNS model with
a penetration rate µ of 30%. Plots of the traffic flow for
CwP+M (CACC self-driving with policy and manually driven
vehicles) and AwP+M(ACC self-driving vehicle with policy
and manually driven vehicles) indicate that both CwP+M and
AwP+M relieve the traffic jam until vehicle density 44 vehi-
cles/km. CwP+M traffic flow is greater than AwP+M traffic
flow. Note that the meta-stable traffic flow (gray line) is the
optimal traffic flow when all vehicles maintain limited veloc-
ity.

Figure 6 shows a fundamental diagram of the GNS model
with a penetration rate µ of 10%. CwP+M and AwP+M suc-
cessfully relieve the traffic jam for a vehicle density of 42
vehicles/km.

Figure 7 shows a fundamental diagram of the GNS model
with a penetration rate µ is 70%. CwP+M achieves not only
the highest but also near optimum traffic flow among all of
the experiments up to a vehicle density of 60 vehicles/km.

Figure 8 shows traffic flow as a function of the penetration
rate of self-driving vehicles. The traffic flow of C+M and
A+M increases as the penetration rate climbs, but the traffic
flow of CwP+M and AwP+M does not, which is to say that
increasing the number of self-driving vehicles with a driving
policy does not necessarily increase traffic flow.
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Figure 6: The fundamental diagram of the GNS model with a pene-
tration rate µ of 10%.
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Figure 7: The fundamental diagram of the GNS model with a pene-
tration rate µ of 70%.

6.3 Discussion
Measuring the effect of a driving policy for self-driving
vehicles on relieving traffic jams
Table 3 shows the traffic volume and the average number of
vehicles that stop per time unit in a traffic scenario having a
vehicle density of 44 vehicles/km with 30% penetration rate
for self-driving vehicles. The number of stopped vehicles de-
creases with increasing traffic flow, i.e., relieving traffic jams.
There are two reasons for these results: one, a column of
stopped vehicles is prevented from forming, and two, the col-
umn of stopped vehicles is dissolved quickly. When a column
of stopped vehicles is formed because of a traffic jam, vehi-
cles stop/start frequently. When a self-driving vehicle is in-
troduced to the column, it accepts the stop penalty as it moves
through the column as expressed in equation (2). The learner
agent then learns the driving policy for preventing from form-
ing the column, and for solving the column quickly. Conse-
quently, the time during which the column exists on the road
decreases, and all vehicles can smoothly drive without stop-
ping.

The effect of inter-vehicle communication among
self-driving vehicles on vehicle behavior
The difference between AwP+M and CwP+M is the number
of communication parameters ncom

i and states s.
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Table 3: The traffic flow and the average number of vehicles that
stop per time step in case of 44 vehicles/km vehicle density and 30%
penetration rate.

Traffic flow The number of stop
[volume / 5min] [volume / time step]

M 254.1 2.1
A+M 288.4 1.1
C+M 292.4 1.0
AwP+M 308.5 2.7×10−1

CwP+M 326.5 1.9×10−2

The difference between A+M and C+M is the number of
communication parameters ncom

i . A+M and C+M traffic flow
increases with the increase in penetration rate of the self-
driving vehicle. Owing to the characteristics of GNS, the
self-driving vehicle equipped with CACC has more oppor-
tunity to observe the leading vehicle as the penetration rate
of the self-driving vehicle increases. If the self-driving vehi-
cle observes the leading vehicle, the self-driving vehicle cuts
needless deceleration.

However, the traffic flow difference between AwP+M and
CwP+M is larger than the traffic flow difference between
A+M and C+M. We so consider that the states s affects reliev-
ing traffic jam. In case of AwP+M, the features ϕc−d，ϕc−v，
ϕc−g become “disconnected” constantly. In contrast, the fea-
tures of CwP+M become a communication partner’s infor-
mation. Hence, observing the communication partner’s infor-
mation significantly increases the effectiveness of the driving
policy for the purpose of relieving traffic jams.

7 Conclusion
We proposed a driving policy for self-driving vehicles to help
relieve traffic jams. A learner agent learned the driving pol-
icy, which was done via reinforcement learning with the data
collected from the self-driving vehicle, which, in turn, were
used to update the driving policy. This approach to devel-
oping a driving policy reduced the amount of time and labor
that go toward designing driving policies for various traffic
situations or changes in traffic situations. Our traffic flow
simulation experiments under periodic-boundary conditions

confirm that the use of the driving policy helps relieve traf-
fic jams. Increased penetration rate of self-driving vehicles
further reduces traffic jams and enhances traffic flow.

There are two issues that we intend to address in future
studies: first, we intend to design a reward function and state
feature to increase traffic flow with 100% penetration rate of
the self-driving vehicle. Second, we plan to evaluate traffic
flow using a road under an open-boundary condition which
enables inflow, thereby changing vehicle density.

A Generalized Nagel–Schreckenberg Model
We used a modified GNS model [Ishikawa and Arai, 2015]
for modeling traffic flow. In the unmodified version of the
model, the number of communication parameters ncom

i is
common for all vehicles. However, to more accurately model
traffic flow where manually driven and self-driving vehicles
are present, the GNS model was modified to be able to set
the number of communication parameters ncom

i and the max-
imum communication distance dcomi for individual vehicles.

A.1 GNS for vehicle i

At time t, all vehicles determine the next velocity simultane-
ously using Algorithm A·1. We explain Algorithm A·1 below.

Determine velocity: Vehicle i calculates the vehicle
ihead ← i + ncom

i , which is the leading vehicle with respect
to maximum communication and maximum communication
distance xmax ← xi(t) + dcomi . Following Algorithm A·2
MaxV , vehicle i determines the velocity for the next time
increment: vi(t+ 1).

Decelerate: In case of the manually driven vehicle, in
which dcomi is 0, the velocity of vehicle i becomes vi(t +
1) ← max(0, vi(t + 1) − 1) with perturbation probability
p within the perturbation section of the road. For the self-
driving vehicle, the velocity of vehicle i becomes vi(t+1)←
max(0, vi(t+ 1)− 1) with driving policy probability ppol.

Move: Vehicle i determines the next time coordinate xi(t+
1)← xi(t) + vi(t+ 1).

A.2 MaxV
We explain the MaxV that is showed at Algorithm A·2.

Accelerate: Vehicle i sets its own velocity vi(t + 1) ←
min(vi(t)+1, vlimit). If vehicle i has an adequate gap for ve-
locity vi(t+a) after acceleration, vehicle i completes MaxV .

Adjust the number of communications: Vehicle i mod-
ifies vehicle ihead in accordance with front vehicle i + 1’s
number of communication parameters ncom

i+1 . If vehicle i + 1

has ncom
i+1 > 0 and satisfies ihead− (i+1) > ncom

i+1 , then ihead

becomes ihead−ncom
i+1 . If vehicle i+1 has ncom

i+1 == 0, which
has no communication ability, then ihead becomes i.

Communicate: If front vehicle i + 1 exists behind ihead

and within xmax, then vehicle i calculates the predicted front
vehicle’s velocity vpredi+1 by applying MaxV . This is in case
of communication with front vehicle i+ 1.

Maximize velocity: In case of no communication, vehicle
i determines the predicted front vehicle’s velocity vpredi+1 ←
max(0,min(vi+1(t), v

limit−1, gi+1−1)), even if the pertur-
bation probability p = 1 is taken into account.



Algorithm A·1 GNS for vehicle i
Determine velocity
1: ihead ← i+ ncom

i

2: xhead ← xi(t) + dcomi

3: vi(t+ 1)←MaxV (i, ihead, xhead)
Decelerate
4: vi(t+ 1)← max(0, vi(t+ 1)− 1) probability p or ppol
Move
5: xi(t+ 1)← xi(t) + vi(t+ 1)

Algorithm A·2 MaxV (i, ihead, xhead)
Accelerate
1: vi(t+ 1)← min(vi(t) + 1, vlimit)
2: if vi(t+ 1) ≤ gi
3: return vi(t+ 1)
4: end if

Adjust the number of communications
5: if ncom

i+1 > 0 and ihead − (i+ 1) > ncom
i+1

6: ihead ← i+ 1 + ncom
i+1

7: else if ncom
i+1 == 0

8: ihead ← i
9: end if

Communicate
10: if i+ 1 ≤ ihead and xi+1 ≤ xhead

11: vpredi+1 ← max(0,MaxV (i+ 1, ihead, xhead)− 1)
Maximize velocity
12: else
13: vpredi+1 ← max(0,min(vi+1(t), v

limit − 1, gi+1 − 1))
14: end if
15: return min(vi(t+ 1), vpredi+1 + gi)

Finally, MaxV returns min(vi(t + 1), vpredi+1 + gi) as the
maximum velocity.
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