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Abstract
This paper provides efficient solutions to maximize
profit for commercial ridesharing services, under a
pricing model with detour-based discounts for pas-
sengers. We propose a greedy heuristic for real-
time ride matching and compare with other heuris-
tics. We study the trade-offs between optimality
and execution time that the solutions offer. Simula-
tions on New York City (NYC) taxi trip data show
that our heuristics are up to 93% optimal and 105

times faster than the exponential-time optimal al-
gorithm.
Commercial ridesharing service providers generate
significant savings by matching multiple ride re-
quests, which are typically shared between the ser-
vice provider (increased profit) and the rideshar-
ing passengers (discounts). It is not clear apriori
how to split, since higher discounts would encour-
age more ridesharing, thereby increasing total sav-
ings, but the fraction of savings taken as profit is
reduced. We simulate a scenario where the deci-
sions of the passengers to opt for ridesharing de-
pend on the discount offered by the provider. We
provide an adaptive learning algorithm IDFLA that
learns the optimal profit-maximizing discount fac-
tor for the provider. An evaluation over NYC data
shows that IDFLA, on average, learns the optimal
discount factor under 16 iterations.
Finally, we investigate the impact of imposing a
detour-aware routing assuring sequential individual
rationality which offers a better ride experience and
increasing the provider’s market share, but at the
cost of decreased average per-ride profit due to the
reduced number of matched rides. We construct a
model that captures these opposing effects, wherein
simulations on NYC data show that 7% increase in
market share would suffice to offset the decreased
average per-ride profit.

Keywords: Ridesharing, Profit Maximization, Adaptive
Learning, Simulation, Heuristics
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1 Introduction
Ridesharing is a key initiative that can curb ever-increasing
congestion on the urban transportation network and is an im-
portant means to move the world towards a sustainable future.
While the term ridesharing has been used to include peer-to-
peer carpooling platforms as well, here we focus on commer-
cial ridesharing service providers such as LyftLine and Uber-
Pool, that hold a significant share of the ridesharing popula-
tion.

While ridesharing is undoubtedly appealing from a sus-
tainability perspective, profit maximization is the primary
goal of commercial providers. Given the emerging literature
on detour-aware pricing and routing policies, e.g., [Jung et
al., 2013; Gopalakrishnan et al., 2016] that enhance the ride
experience, algorithms for profitable ride-matching should
adapt to keep up. Such quality-enhancing policies encour-
age increased adoption of ridesharing, but perhaps at the
cost of reduced average per-ride profit. We study three con-
nected issues centered around profit optimization in commer-
cial ridesharing.

First, it is unclear how to tune real-time ride-matching al-
gorithms to quickly find a near-optimal set of matches that
results in high profit under detour-based discounts (the exact
optimization is an NP-hard problem [Cordeau et al., 2006]).

Second, ridesharing generates significant economic sav-
ings by reducing the driver-miles necessary to serve a set
of passengers, which are split between the service provider
(their profit) and the passengers (as discounts). It is not obvi-
ous how this split should be effected, since higher discounts
encourage more ridesharing, increasing total savings, but the
fraction of savings that constitutes the profit is smaller.

Third, in order to survive in an increasingly competi-
tive market, ridesharing providers adopt additional quality-
enhancing features which do not align fully with the goal of
profit maximization, perhaps resulting in lower profit (due to
the smaller feasible set of quality-compliant rides). It is im-
portant to understand the overall impact on profitability, and
ensure that any resulting increase in market share can counter
the reduced average per-ride profit.

The issues mentioned above are crucial for commercial
ridesharing platforms; however, they are less explored. We
address these issues, give solutions, and provide extensive
evaluation on a real-world dataset.



Our Contributions: We investigate three important aspects
of profit optimization in commercial ridesharing, resulting in
the following contributions:
• We provide an Integer Linear Program (ILP), and also an

efficient greedy heuristic that quickly matches passen-
gers to rides to approximately maximizes profit under a
detour-based discount policy. We evaluate their perfor-
mance experimentally (Section 3).
• Under a model in which the likelihood of opting for

ridesharing depends on the offered discount, we propose
an adaptive algorithm that learns the profit-maximizing
discount parameter (Section 4).
• We additionally impose a detour-aware routing policy

based on sequential individual rationality, introduced
in [Gopalakrishnan et al., 2016]. Using simulations,
we investigate the minimum increase in market share
needed to offset the reduced average per-ride profit (Sec-
tion 5).

2 Related Work
There is a huge body of literature that studies several opti-
mization problems related to ride sharing [Furuhata et al.,
2013; Agatz et al., 2012; Pelzer et al., 2015], but the prob-
lem of pricing in ridesharing has been relatively less studied,
with profit optimization rarely discussed. [Banerjee et al.,
2015] characterizes the pros/cons of static versus dynamic
pricing. [Jung et al., 2013] provides heuristics for maximiz-
ing profit subject to bounded detours. In contrast, we study
profit maximization over a pricing model that incorporates a
detour-based discount.

[Nguyen, 2013] proposes a dynamic, demand-responsive
ridesharing system using auction mechanisms, where cus-
tomers enjoy additive detour-based discounts. Our model
considers multiplicative detour-based discounts; moreover,
we also provide an algorithm to learn the profit-maximizing
discount parameter under a suitable user choice model.

A closely related problem is that of cost sharing in peer-to-
peer ridesharing or carpooling, which, until recently, received
little attention. Individual passengers are either asked to post
what they are willing to pay in advance [Cao et al., 2015],
to share the total cost proportionately among themselves ac-
cording to the distances travelled [Geisberger et al., 2010;
Agatz et al., 2011], or negotiate their shares on their own
during/after the ride. Such methods ignore the real-time
costs and delays incurred during the ride and are gener-
ally insensitive to the disproportionate delays encountered
during the ride. Fair cost sharing in ridesharing has been
studied [Bistaffa et al., 2015; Kleiner et al., 2011; Zhao et
al., 2014; Kamar and Horvitz, 2009; Gopalakrishnan et al.,
2016], but its impact on profitability is left unexplored. We
fill this gap by studying the trade-off between average per-
ride profits and market share.

3 Matching Rides to Maximize Profit
Ridesharing generates significant profit to commercial plat-
forms such as Uber and Lyft. The profit from a single cab is
the difference between the fare paid by the passengers and the

amount paid to the driver. When compared to assigning each
user their own cab, ridesharing requires fewer cabs to serve
the same set of users, leading to increased profit.

At the core of these platforms is a real-time matching algo-
rithm that runs at regular time intervals, and generates a set of
matched users from a set of waiting users (preprocessed to ac-
commodate other spatio-temporal constraints). Such a system
would maintain a pool of pending requests, and then invoke
the matching algorithm every few minutes to determine op-
timal matches. We provide a matching heuristic that directly
optimizes profit, under a detour-based discount scheme. Any
unmatched requests left at the end of the algorithm either wait
for another round, or, after a certain waiting time threshold
elapses, are assigned fresh, empty cabs. Thus, it is important
to provide a time-efficient matching algorithm for the larger
dynamic ridesharing system to be sufficiently responsive to
incoming user requests.

Moreover, under a detour-based discount policy, shared
rides with smaller detours are more likely to be profitable.
However, such a myopic observation could lead to subopti-
mal solutions, thus rendering the problem nontrivial.

In Section 3.1, we provide an Integer Linear Program (ILP)
that matches n users to shared cabs (each with capacity ζ) to
maximize profit, given a multiplicative detour-based discount
fp(δi, τi), which is a linear function of the distance-wise (δi)
and time-wise (τi) fractional detours experienced by user i.
cb is the “base” (fixed) cost for a ride, cd and ct are the costs
per unit distance and time, respectively. fd is the fraction of
driver earnings taken by the service provider.

3.1 ILP Formulation
Each user i is associated with a source-destination pair
(Si, Di). We consider n initially empty cabs and construct
a complete directed graph G = (V,E) with 2n vertices
that represent all the sources and destinations, that is, V =
{Si, Di}ni=1. Each directed edge e = (u, v) represents the
best route from location u to v, and weights wd(e) and wt(e)
denote the corresponding distance and time, respectively.

The ILP seeks values to assign to a set of optimization
variables in order to maximize an objective function subject
to a set of constraints.

Optimization Variables: Let xi,j,e ∈ {0, 1} denote whether
or not user i is served by cab j along edge e. Let yj,e ∈ {0, 1}
denote whether cab j travels along edge e while serving one
or more users. Let zj ∈ {0, 1} denote whether cab j serves
at least one user. We set xi,j,(u,v) = 0 if (u, v) /∈ E.

Objective Function:

For each user i, we have:
(a) Distance travelled, di =

∑n
j=1

∑
e∈E xi,j,ewd(e).

(b) Time in travel, ti =
∑n

j=1

∑
e∈E xi,j,ewt(e).

(c) Distance-wise fractional detour, δi = di−wd(Si,Di)
wd(Si,Di)

.

(d) Time-wise fractional detour, τi = ti−wt(Si,Di)
wt(Si,Di)

.

(e) Fare, Ci=(1−fp(δi,τi))(cb + cdwd(Si,Di)+ctwt(Si,Di)).



For each cab j, we have:
(a) Distance traveled, σj =

∑
e∈E yj,ewd(e).

(b) Time in travel, ηj =
∑

e∈E yj,ewt(e).

(c) Driver earnings, Ej = (1− fd)(cbzj + cdσj + ctηj).

Thus, the objective function to be maximized is the total
profit, given by p =

∑n
i=1 Ci −

∑n
j=1Ej .

Constraints:
(i) yj,e = 1 if and only if xi,j,e = 1 for some i:

yj,e ≥ xi,j,e ∀i, j ∈ {1, 2, . . . , n} ∀e ∈ E

yj,e ≤
n∑

i=1

xi,j,e ∀j ∈ {1, 2, . . . , n} ∀e ∈ E

(ii) zj = 1 if and only if yj,e = 1 for some e:
zj ≥ yj,e ∀j ∈ {1, 2, . . . , n} ∀e ∈ E

zj ≤
∑
e∈E

yj,e ∀j ∈ {1, 2, . . . , n}

(iii) Each user is picked up by exactly one cab:∑
u∈V

n∑
j=1

xi,j,(Si,u) = 1 ∀i ∈ {1, 2, . . . , n}

(iv) Each user is dropped off by exactly one cab:∑
u∈V

n∑
j=1

xi,j,(u,Di) = 1 ∀i ∈ {1, . . . , n}

(v) Each user is not served before pickup:∑
u∈V

n∑
j=1

xi,j,(u,Si) = 0 ∀i ∈ {1, . . . , n}

(vi) Each user is not served after dropoff:∑
u∈V

n∑
j=1

xi,j,(Di,u) = 0 ∀i ∈ {1, . . . , n}

(vii) Each user is served by a single cab, only between pickup
and dropoff:∑
u∈V

xi,j,(u,v) =
∑
u∈V

xi,j,(v,u) ∀v ∈ V \ {Si, Di} ∀i ∀j

(viii) Each cab serves at most ζ users along any edge:
n∑

i=1

xi,j,e ≤ ζ ∀j ∈ {1, . . . , n} ∀e ∈ E

(ix) Each cab’s overall route is not disjoint, i.e., there are
no gaps between serving users during which the cab is
empty. Equivalently, if a cab serves a total of k ≥ 1
users, then it must do so using exactly 2k − 1 edges:∑

e∈E

yj,e ≥ 2

(
n∑

i=1

∑
u∈V

xi,j,(Si,u)

)
− 1

The inequality (≥) is to allow empty cabs (k = 0).
Computing the optimal solution to the ILP takes a lot of time
and memory, and is unsuitable for real-time ride matching,
which requires fast, near-optimal techniques. However, it is
a handy benchmark against which to experimentally evaluate
the performance of our proposed methods (Section 3.3).

3.2 Heuristic for Real-Time Ride Matching
Given a set S of users matched to a cab, the driving distance
and time for the best route for serving all the users i ∈ S are
denoted by d(S) and t(S), respectively. For each user i ∈ S ,
di(S) and ti(S) denote the driving distance and time from Si
to Di along that route, respectively. Thus, the profit from a
cab serving a set of users S can be computed as follows:
• User Cost: The cost of the ride to user i ∈ S,

Ci(S)=(1−fp(δi(S), τi(S))) (cb+cddi({i})+ctti({i})) ,
(1)

where δi(S)=di(S)−di({i})di({i}) , and τi(S)= ti(S)−ti({i})ti({i}) .

• Driver Earnings: The earnings to the driver from the ride,
E(S) = (1− fd) · (cb + cdd(S) + ctt(S)) . (2)

• Profit: The profit to the service provider,

p(S) =
∑
i∈S

Ci(S)− E(S). (3)

The incremental profit of merging two cabs (combining the
users matched to two cabs into one and removing the other
cab from the system), serving sets of users Sj and Sk is:

∆p(Sj ,Sk) = p(Sj ∪ Sk)− p(Sj)− p(Sk). (4)

The above framework for real-time ride matching is more
general than that of the ILP. A limitation of the ILP is that
fp(·) is restricted to be a linear function. Moreover, it may
not be possible for an ILP to explicitly incorporate additional
detour-aware routing constraints and user preferences. How-
ever, during performance evaluation of our proposed meth-
ods, we limit the scope to the constraints listed in Section 3.1,
in order to compare against the optimal ILP solution.

Greedy-Max-Profit-Based Method
We now describe a greedy method for profit-maximizing real-
time matching. We begin by assigning each of n input users
to their “own” cab, i.e., no two users are assigned to the same
cab.1 We maintain two collections of cabs, namely, a set of
unavailable cabs U and a current pool of cabsA. We initialize
A with the n single-user cabs and U = ∅. We repeatedly
perform the following steps until A is empty, at which point,
we return U as the output:
(a) For every two cabs j and k in A, if it is feasible to merge

them subject to the capacity constraint (and any other op-
tional constraints), compute the corresponding incremen-
tal profit pjk = ∆p(Sj ,Sk).

(b) Find two cabs j∗ and k∗ such that pj∗k∗ is maximum. If
pj∗k∗ < 0, terminate and return U ∪ A as output. Other-
wise, merge them and replace the individual cabs j∗ and
k∗ in A with the merged cab. If the merged cab has ζ
passengers, move it from A to U .

Note that each iteration either terminates the method, or de-
creases the size of A by at least one; therefore, the method
terminates after at most n − 1 iterations. The time complex-
ity of this method is O(n2 log n).

1We assume that all cabs are initially empty; however, our meth-
ods extend to a more general case where some cabs already have
passengers in them with their own constraints to begin with.



(a) Total profit by different methods with small-sized
set of trip requests.

(b) Time taken by different methods with small-sized
set of trip requests.

(c) Total Profit earned using various methods on a large
dataset of about 19000 trip requests.

Figure 1: Comparison of various heuristic matching methods according to the total profit and running time.

3.3 Experimental Performance Evaluation
In order to compare the performance of our proposed greedy
method, we evaluate them against the optimal solution com-
puted by solving the ILP of Section 3.1. Since the ILP takes
more than 2 hours on an average (even with only 22 requests)
to output the optimal solution, we first evaluate the near-
optimality of our methods using a small dataset, and then use
a larger dataset for demonstrating the scalability and compar-
ing the speed-optimality trade-off of our proposed heuristic
and order-based greedy heuristics mentioned in [Biswas et
al., 2017]2. To compare these order based methods with our
proposed method, the orderings that we consider are:
(a) Distance Order: Decreasing order of d(S).
(b) Profit Order: Increasing order of p(S).

Experimental Setup
We evaluate our methods using publicly available New York
City (NYC) taxi trip data [Whong and Monroy-Hernández,
2013]. The 19GB dataset has logs for all NYC trips taken in
2013. Each trip in the dataset specifies pickup and dropoff co-
ordinates, pickup time, dropoff time, trip distance and travel
time. Each trip is considered as a “user” for our simulation.
We assume that each cab serves at most ζ = 3 users.

We discretize the underlying NYC map into grids of
100m2 area and select 2543 representative landmarks using
the methodology of [Rajasubramaniam et al., 2017]. We pre-
compute the inter-landmark distance and time using Open
Trip Planner [OTP, 2016]. For each user, we map their
source and destination coordinates to their nearest represen-
tative landmarks and use the precomputed values for comput-

2For completeness, we now briefly describe the greedy heuristics
which are parameterized by an order protocol (originally proposed in
[Biswas et al., 2017]). An ordered list L of the initial n single-rider
cabs is created according to a certain order, and the set of unavailable
cabs U = ∅ is initialized. At each iteration, the cab at the top of the
list (say j) is picked and merged with the first cab k down the list
such that pjk > 0, subject to the capacity constraint (and any other
optional constraints). Then, the individual cabs j and k are removed
from L and the merged cab is inserted at the appropriate position
in L. If no such cab k exists, then j is moved from L to U . If the
merged cab is full to its capacity (that is, it has ζ passengers), it
is moved from L to U . These methods have a time complexity of
O(n logn).

ing necessary metrics such as profit, detour, driving distance
and time. The values cb, cd, ct, and fd are taken from publicly
available Lyft user pricing and driver payment for NYC [Lyft-
Line, 2016a; LyftLine, 2016b].

Experimental Results
We select NYC taxi trips on randomly chosen days of 2013,
between 7:45 - 8:00 pm. We intentionally choose the rush
times, since many shared rides would be possible, and it
would be interesting to see how our proposed heuristic per-
forms. We run our method on several subsamples by consid-
ering a different number of users each time (5, 8, 10, 15, 20,
and 22). We compare the total profit generated (Figure 1a)
and the total time taken (Figure 1b) across each method, av-
eraged over the small-sized subsamples of users. We observe
that the total profit obtained by the Greedy-Max-Profit-Based
method is up to 93% optimal and runs 105 times faster than
the optimal algorithm on a machine with a quad Intel Core i7
processor with 32GB RAM. The optimal algorithm becomes
intractable for instances where the number of users exceeds
25 (terminated after over 14.22 hours due to lack of memory).

Our proposed algorithm scales to a larger input set
with ∼19000 users (obtained from a one-hour slot). The
Greedy-Max-Profit-Based method takes ∼35 minutes while
the Distance-Order-Based and Profit-Order-Based methods
take 7 and 4 minutes, respectively.3 However, figure 1c shows
that the performance of the former is significantly better than
that of the latter methods in terms of the total profit. Thus, the
speed-optimality trade-off becomes important in choosing the
method that best suits the needs of a service provider. Finally,
we also observe that the Greedy-Max-Profit-Based method
matches ∼19000 users into 6701 cabs (reducing the opera-
tional cost significantly), obtaining a profit of ∼$134, 500.

4 Learning the Optimal Discount Policy
In the previous section, we laid out efficient ride-matching
heuristics to maximize profit under a fixed detour-based dis-
count for users. In this section, our goal is to learn the opti-
mal detour-based discount policy, under a fixed ride-matching

3If the matching algorithm is invoked once per minute, in NYC,
there are only ∼300 requests per minute on an average, for which all
the greedy methods finish in less than a second.



algorithm. For simplicity, we assume that the detour-based
discount is a linear function of the fractional distance-wise
detour. Thus, the discount to a user i ∈ S is given by

fθp (δi(S)) = tan(θ)δi(S) + b, (5)

where b is a constant denoting the minimum discount given
to a user (to incentivize them to opt for ridesharing in the
first place), and the discount parameter θ ∈ [0◦, 90◦) governs
how steeply the discount increases with the detour. Figure 2
plots (5) for various values of θ, assuming b = 10%.

Let P(θ) denote the probability of a user opting to
rideshare, a nondecreasing function of θ. A larger θ would
lead to a larger population of users who are willing to
rideshare, and potentially more shared rides; however, the
profit from each shared ride would be smaller. Since the ex-
pected total profit depends on the number of users opting to
rideshare, as well as the per-ride profit, it is important to find
a value of θ that provides the optimal balance to maximize the
expected total profit. We propose a method, which we call It-
erative Discount Function Learning Algorithm (IDFLA), that
learns such a θ over a period of time.

Each day, a value of θ is declared by the service provider.
In response, the users who opt for ridesharing are then
matched throughout the day using one of the heuristics from
Section 3.2. The total profit earned is computed at the end
of the day. IDFLA (Algorithm 1) learns the expected daily
profit earned using different values of θ, and eventually con-
verges to the best θ∗ that maximizes this quantity. This
kind of sequential decision making in stochastic environment
can be categorized as a stochastic multi-armed bandit prob-
lem [Bubeck and Cesa-Bianchi, 2012], where the θ values
are the arms, and the daily profit earned by using a certain θ is
the reward earned by pulling the corresponding arm. IDFLA
uses a popular technique for solving stochastic multi-armed
bandit problems, called UCB1 [Auer et al., 2002].

Algorithm 1 IDFLA
1: Input: A finite number of θ values in an array Θ
2: Ph stores the total profit with Θ[h]
3: kh stores the number of days Θ[h] is declared
4: for t← 1 to |Θ| do
5: Choose Θ[t] on tth day and observe profit earned p;
6: Set Pt ← p; Set kt ← 1;
7: Find h∗ = arg maxh

(
Ph +

√
2 ln |Θ|

)
;

8: for t← |Θ|+ 1, |Θ|+ 2, . . . do
9: Choose Θ[h∗] on tth day and observe profit earned p;

10: Update Ph∗ ← Ph∗ + p; Update kh∗ ← kh∗ + 1;

11: Find h∗ = arg maxh

(
Ph∗
kh∗ +

√
2 ln t
kh

)
for (t + 1)th

day;

4.1 Performance Evaluation of IDFLA
We evaluate our learning method IDFLA under the Greedy-
Max-Profit-Based ride-matching heuristic. We take Θ =
{10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦}, and run IDFLA to

find near-optimal discount parameter, Θ[h∗]. The value of op-
timal discount parameter depends on P(·) which is the prob-
ability of opting rideshare. For simulating the user-behavior,
we need to assume P(·) to be any non-decreasing function
of θ. In practice, this probability P(θ) is estimated while the
optimal θ is learnt (step 14 of IDFLA). This corresponds to
the fraction of times (kθ) the users have opted for ridesharing
whenever the discount parameter was θ. The P(θ) function
that we have assumed for our simulation, is shown in Fig-
ure 3.

Figure 2: Various discount functions. Figure 3: Acceptance probability.

Taxi trips in NYC between 7:45 - 8:00 pm of the 52
Wednesdays of 2013 were used to compare the performance
of IDFLA with an “oracle” method (BDF) that knows the
Best Discount Function apriori. Figure 4 shows the average
daily profit obtained by declaring the same discount function
everyday. We observe that the best discount function is ob-
tained when θ = 40◦; therefore, BDF chooses θ = 40◦ every-
day. Figure 5a shows that the discount parameter selected by
IDFLA converges to that of BDF in 16 days.

Figure 4: Average daily profit obtained by various discount functions over 52 days

(a) Comparing daily profit obtained by
IDFLA and BDF.

(b) Average daily profit of IDFLA con-
verging to that of BDF.

Figure 5: Comparing IDFLA and BDF

We also observe (Figure 5b) that the average daily profit,
that is, the cumulative total profit over t days divided by t,
converges to that of the best discount function BDF. We show



that after 52 days, the difference4 in average daily profit ob-
tained by IDFLA and BDF is just $9.58, or 2.67%. Thus,
IDFLA quickly learns the optimal discount parameter that
can help the service provider maximize profit while keeping
users sufficiently happy by providing suitable discounts.

5 Impact of Detour-Aware Routing
In conjunction with desirable pricing schemes for ridesharing
users, recent work has proposed detour-aware routing poli-
cies that impose upper bounds on the total detour [Jung et al.,
2013] (static) or incremental detours [Gopalakrishnan et al.,
2016] (dynamic). Such detour-aware routing policies work
together with detour-based discount policies in order to en-
hance the quality of the ride experience for ridesharing users.
This induces a similar trade-off as the one in Section 4: im-
posing additional quality-enhancing constraints into the ride-
matching process incentivizes greater adoption of ridesharing
and increases the market share of the ridesharing population,
but could result in reduced average per-ride profit. In this sec-
tion, we consider the impact of one such detour-aware routing
policy, based on the concept of Sequential Individual Ratio-
nality (SIR), introduced by [Gopalakrishnan et al., 2016].

SIR guarantees that the disutility to existing users (sum of
the monetary cost and an “inconvenience cost” due to de-
tours) in a shared ride is non-increasing as additional users
are picked up. A parameterized version of SIR, called SIR-
γ, ensures that the incremental benefit (decrease in disutility)
to an existing user upon picking up a new user is at least γ,
where γ ≥ 0. Imposing SIR-γ results in a reduced set of
feasible matched rides, leading not only to reduced average
per-ride profit, but also a potential loss due to the “up-front
discounts” (the parameter b in (5)) given to the passengers
who opt for ridesharing, but end up being unmatched. How-
ever, the resulting detour-aware routing policy improves the
quality of shared rides, thereby increasing the market share
of ridesharing users, which could offset these negative ef-
fects. Unlike [Gopalakrishnan et al., 2016] that looks at the
detour-aware routing policy from the user perspective (espe-
cially fairness), in this work we answer such a scheme’s im-
pact on the service provider’s profit.

We investigate this phenomenon by performing experi-
ments to address the following questions:

(a) What is the trade-off between fewer matched rides and
increased market share, compared to a scenario where no
SIR-γ is imposed? How does this affect the profit?

(b) How sensitive is the profit to the fraction of additional
users who opt for ridesharing in response to the adoption
of detour-aware routing by imposing SIR-γ?

5.1 Experimental Setup
As before, we use the NYC taxi trip data for our experiments.
We randomly select a weekday of 2013 and a one hour time

4The difference between the average reward of a learning algo-
rithm to that of the optimal is called regret. An upper bound on the
regret of UCB1 after T iterations is O(log T ) [Auer et al., 2002],
when each arm’s reward is a bounded random variable.

slot on that day. We then split the hour into 60 one-minute in-
stances, and collect the sources and destinations for the users
who initiated trips in each instance. The average number of
users per instance is 210.85. While reporting our results, we
take an average across these 60 instances.

The parameters cb, cd, ct, and fd are taken from pub-
licly available Lyft user pricing and driver payment for
NYC [LyftLine, 2016a; LyftLine, 2016b]. We select “detour-
sensitivities” αi (higher values imply more aversion to de-
tours) randomly from [$0, $5] per mile.We assume that each
cab serves at most ζ = 2 users, so that the profit maximiza-
tion problem can be solved optimally in polynomial time us-
ing Edmond’s algorithm [Edmonds, 1965].5 The driving dis-
tance and time between locations are obtained by querying
Open Trip Planner [OTP, 2016]. The parameters of the linear
detour-based discount policy (5) are θ = 40◦ and b = 10%.
To begin with, before imposing SIR-γ, we assume that the
service provider’s initial market share is 60%, within which
each user opts for ridesharing with a probability directly pro-
portional to θ and b, and inversely proportional to αi.

For each instance, we keep the following fixed: user ori-
gins, destinations, whether they are part of the initial market
share, and if so, whether they opted for ridesharing. Then, we
generate 30 realizations, where each user reacts to the adop-
tion of a detour-aware routing policy (SIR-γ), by flipping bi-
ased coins parameterized by cin, which is a measure of how
strongly users value a quality-enhancing detour-aware rout-
ing policy. This participatory behavior is one of many that
can be used. For any behavior model, our primary interest is
the fraction of users who end up opting for ridesharing, and
not the generative process itself. In the coin-flip-based pro-
cess, the first group of users, who are in the initial market
share but did not opt for ridesharing, flip with bias pin that
is directly proportional to θ, b, and γ, and inversely propor-
tional to αi, with cin denoting the constant of proportionality.
The second group of users, who are outside the initial mar-
ket share, flip with bias 0.5pin (the factor 0.5 is hand-picked).
The users who had already opted for ridesharing remain so.
For consistency, we ensure that as we increase the value of γ,
only users who have previously not opted for ridesharing flip
again.

We calculate the profit obtained by matching users in the
new market share. The parameter cin is varied from 100 and
1000, while γ is varied from 0 to 0.9.

5.2 Experimental Results
Figure 6 shows profitability as γ increases for various values
of cin. The baseline profit, without SIR-γ, is shown as a hor-
izontal line. For any value of cin ≥ 200, there is a range of γ
for which a higher profit can be obtained by imposing the ap-
propriate SIR-γ policy. Moreover, when γ is high, the profit
declines, because too many users remain unmatched.

Figure 7 shows a different visualization by plotting prof-
itability as a function of cin, for different values of γ.

Figure 8 plots the minimum increase in market share that
is necessary to meet a given lower bound on the profit, as

5The experiments can be carried out for ζ > 2 as well, by using
one of our proposed heuristics from Section 3.2 instead.



Figure 6: Profit versus γ.

Figure 7: Sensitivity of profit to cin.

a function of γ. For instance, to be 5% more profitable, a
13% increase is needed, as shown by the green curve. Al-
ternatively, Figure 9 shows the maximum possible increase
in profit (over all γ), as a function of the increase in market
share. The key takeaway here is that a 7% increase6 in market
share is sufficient to recover from the negative effects (on the
profit) of adopting a detour-aware routing policy.

Figure 8: Marketshare versus γ for a given profit lower bound.

6 Concluding Remarks
In this paper, we adopt a profit-centric view of real-time
ridesharing system design, and undertake an empirical in-
vestigation of three key elements that impact profit, namely

6A 7% increase in market share in response to a quality-
enhancing policy is not unrealistic. Lyft’s market share increased
by over 70% in 2016, owing in large part to better quality of ser-
vice, resulting in Lyft’s customers being happier than those of their
primary competitor, Uber [Swan, 2016].

Figure 9: Profit versus marketshare increase.

(a) real-time ride matching, (b) user discounts, and (c) detour-
aware routing, by using NYC taxi trip data.

An optimal ride matching algorithm, even on a small set
of 22 requests, can take up to 2 hours, however, our greedy
heuristic generates near-optimal profit in less than 1/105 of
the time, and scales well — it is able to match 18794 trip re-
quests into 6701 cabs — while offering different trade-offs
between optimality and running time. Our adaptive learning
algorithm called IDFLA learns the optimal detour-based dis-
count parameter that achieves the right balance between the
number of passengers who opt for ridesharing and the portion
of savings taken as profit from each shared ride, within 16 it-
erations. Finally, we demonstrate that even a small market
share increase of 7%, in response to other restricted detour-
aware policies such as sequential individual rationality, is suf-
ficient to counter the reduced per-ride profit due to the re-
stricted constraints. Thus, one of our contributions is also a
holistic treatment of the framework for detour-aware policies.

Given the encouraging empirical results of our proposed
solutions for profit optimization, future work should pro-
vide approximation guarantees for the proposed greedy ride-
matching heuristics, and a formal mathematical analysis to
characterize the dependence between profit under a detour-
aware routing policy. Another interesting direction to explore
is the interplay between these different elements, e.g., how
does a detour-aware routing policy affect the performance of
the ride-matching heuristics and the convergence of the learn-
ing algorithm?
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