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Abstract
Social Force Model is extensively used to represent
pedestrian movements. This model comprises sev-
eral force terms. One of the terms describes the
force that is required to move to the destination.
The manner to select a destination in such a model
is not specified and this model is generally used for
one destination. In the real world, however, the
desired destination of a pedestrian is observed to
change over time. Therefore, in this research, we
formulate a constantly changing destination selec-
tion process and model pedestrian movement when
there are multiple destinations by improving Social
Force model.

1 Introduction
Social Force Model [1][2] is known as a model representing
pedestrian movement in a crowd. In this model, the pedes-
trian movement is formulated by defining a social force that
applies to pedestrians, such as the force required to go to the
destination and the force required to maintain a certain dis-
tance from other pedestrians and obstacles. The destination
is considered to be immutable; however, in reality, the desti-
nation often changes over time. For example, when you go to
workplaces or shopping malls where you visit frequently, the
destination is obvious. Conversely, you cannot determine the
destination accurately when you go to an event for the first
time or in case of sudden evacuation due to a disaster; there-
fore, the destination may change from moment to moment.
In fact, during a large-scale evacuation drill conducted at the
New National Theater in Japan (2014), the choice of desti-
nation of the entire pedestrians was observed to alter owing
to the mistakes of a few people. In this study, we formu-
late an ever-changing destination selection thereby extend So-
cial Force Model and propose a pedestrian movement model
wherein the destination which the pedestrian desired to move
changes over time. In addition, we simulate the phenomenon
that was observed during the evacuation drill at the New Na-
tional Theater.

2 Related Work
Recently, pedestrian movement models have been studied to
examine the crowd behavior for danger avoidance and migra-

tory behavior by primarily using Cellular Automaton Model
[3][4] and Social Force Model.

Cellular Automaton Model divides the space into lattice
cells and considers the movement of pedestrians as to be
movement between the cells. In this model, the cells in which
the pedestrian moves are limited to four directions, referred
to as the von Neumann neighborhood, or to eight directions,
referred to as the Moor neighborhood, surrounding the cell
in which the pedestrian is located. While it is easy to sim-
ulate the behavior of pedestrians in a crowd, it is difficult to
produce human-like movements because the model is simple.
In addition, the destination of the pedestrian is given; fur-
thermore the group to which the pedestrian belongs and the
intentions of each pedestrian are not considered.

Conversely, Social Force Model [1][2] proposed by Hel-
bing et al. assumes that the forces from other pedestrians
and environments act on each pedestrian and the movement
of the pedestrians is formulated using these forces. Several
models have been proposed as an extension of Social Force
Model. For example, Moussaı̈d et al. calculated the trav-
eling direction that does not contain any obstacles, such as
other pedestrians and walls, and that travel without detour-
ing as far as possible to the destination, and incorporates it in
Social Force Model, whereby more natural pedestrian move-
ment is reproduced [5]. However, Social Force Model sim-
ulates unconscious behaviors, such as maintaining a certain
distance from other pedestrians and obstacles, and it cannot
model the pedestrians’ conscious destination selection. Line
of sight can be used as a substitute expression for pedestrian
consciousness. However, estimating the line of sight using
videos is difficult. Some studies have been conducted to es-
timate the directions of the body [6][7] or of the head [8][9];
however, the following questions remain. Does the pedestrian
actually look in the direction in which the body or head is
facing? Even if the pedestrian observes something, does the
pedestrian perceive it? While monitoring large-scale move-
ments, it is costly to have all pedestrians wear a device such
as an eye-tracker to measure the line of sight. Therefore,
using the information concerning the line of sight is diffi-
cult. Another model that expresses conscious behavior has
been proposed by Tamura et al. [10]. They defined the three
pedestrian actions such as free walk, avoid, and follow, and
assumed that the pedestrian decides ’which action to select’
from the relationship with other pedestrians. Even though



Tamura et al. were able to achieve the movement of pedes-
trians more naturally by setting a subgoal in accordance with
the pedestrian’s intention, they considered the final destina-
tion to be immutable. However, in case of events such as
fireworks festivals and evacuations, the destination may be
ambiguous and likely to change. In a study conducted by
Yamaguchi et al. [11], to predict the destinations using the
past trajectory points, a model was proposed that was able
to reproduce the pedestrian behavior even in case of multiple
destinations. However, as the destination varied from mo-
ment to moment, the information that was contained in the
past trajectory points may not be useful at times.

In this study, we formulate a process to determine the
pedestrian’s destinations without using any information from
the line of sight or the past trajectory points. Further, we ex-
tend Social Force Model to enable the selection different des-
tinations over time. Consequently, our proposed model can
simulate natural pedestrian movement in real situations. Ad-
ditionally, an evacuation guidance experiment was conducted
for 1,300 people, and the validity of the model can be eval-
uated by comparing the measurement data that was obtained
from the trajectories of the pedestrians, which were extracted
from the fixed camera data, with the simulation result.

3 Social Force Model
In [1], Helbing et al. defined four forces that were applied to a
pedestrian: the force required to go to a destination, the force
required to maintain a certain distance from other pedestri-
ans, the force to take a certain distance from an obstacle, and
the force that attracts toward other pedestrians and objects as
illustrated in Figure 1. Helbing et al. proposed Social Force
Model comprising these forces and defined the force Fi(t)
for a pedestrian i at a time t as

Fi(t) = Fi,d +
∑
j ̸=i

Fi,j +
∑
k

Fi,k +
∑
l

Fi,l. (1)

These four forces will be explained in turn below.

3.1 Force required go to the destination
The force that is required to advance at the desired speed to a
destination can be defined by

Figure 1: Forces acting on pedestrians

Fi,d(t) =
v0i ei(t)− vi(t)

τi
, (2)

where ei(t) is the direction vector to the destination, v0i ei(t)
is the desired speed, vi(t) is the velocity vector, and τi is
the relaxation time. When the final destination is r 0

i which
comprises a series of several points, r 0

i can be represented as
r 0
i = {r 1

i , · · · , rG
i }. If the destination at time t is r g

i and the
current position is ri(t), ei(t) can be defined as a unit vector
given by

ei(t) =
r g
i − ri(t)

||r g
i − ri(t)||

. (3)

3.2 Force required to maintain a certain distance
from other pedestrians

When pedestrian i and pedestrian j are close to each other,
a certain distance should be maintained so that they do not
colide with each other. This force can be defined by

fi,j = A1 exp
(−bi,j

B1

)
ni,j , (4)

where A1 and B1 are the parameters, bi,j is the distance be-
tween the pedestrian i and the pedestrian j, and ni,j is the
unit vector of the direction of the pedestrian i from the pedes-
trian j.

A pedestrian i may be less affected by a pedestrian j who is
located behind in the moving direction. The angle threshold
ϕ is constant that used to determine whether the pedestrian
j is behind the pedestrian i. Therefore, the weight w can be
defined as:

wi,j(e,f) =

{
1 (if − e · f ≥ ||f || cosϕ),
c (otherwise, where 0 < c < 1).

(5)

Thus, the following equation can be derived:

Fi,j = wi,j(e,f)fi,j . (6)

3.3 Force required to maintain a certain distance
from the obstacles

Similarly, a pedestrian i maintains a certain distance to avoid
colliding with an obstacle k such as a nearby wall or door.
This force can be given by

Fi,k = A2 exp
(−bi,k

B2

)
ni,k, (7)

where A2 and B2 are the parameters, bi,k is the distance be-
tween the pedestrian i and the obstacle k, and ni,k is the unit
vector in the direction of the pedestrian i from the obstacle k.

3.4 Force that attracts toward to other pedestrians
and objects

A pedestrian may be attracted to other pedestrians such as
friends and family members and various objects, including
shops and tourist sights. This is different from the force that
is required to maintain a certain distance from other pedestri-
ans and obstacles because, the force of attraction weakenes as
time passes.



4 Extended Social Force Model
4.1 Pedestrian movement model
The pedestrian movement model proposed in this study is an
extension of the multiple destinations selection that is based
on Social Force Model. The force that attracts toward to
other pedestrians and objects that are mentioned in Social
Force Model is assumed to influence the destination selec-
tion; therefore, we integrate the multiple destinations selec-
tion into the term of the force required to go to the destination.
In summary, in this study, we consider the following three
forces: the force required to go to a destination, the force re-
quired to maintain a certain distance from other pedestrians,
and the force required to maintain a certain distance from
an obstacle. The proposed model includes a formulation of
the process that is used to determine the destination as de-
picted in Eq. (8). This model separately considers two forces:
1) the force required to go to the destination in accordance
with the intention of the pedestrian, “Which destination to se-
lect”, and 2) the force required to maintain a certain distance
from other pedestrians/obstacles, which causes unconscious
behavior that is irrelevant to the intention of the pedestrian.
Therefore, this model can express movements that reflect the
pedestrians’ intent with a “simple” model.

Fi(t) = Fi,d +
∑
j ̸=i

Fi,j +
∑
k

Fi,k. (8)

Di(t) ∈ {d1,d2, · · · ,dN} is the destination selected by
pedestrian i at time t. To apply this to Social Force Model,
Eq. (3) is extended to Eq. (9).

ei(t) =
Di(t)− ri(t)

||Di(t)− ri(t)||
. (9)

The equations of the other forces are the same.

4.2 Formulation of multiple destinations selection
The probability that the pedestrian i selects the destination dn

is pi,n and the final destination Di(t) can be represented by

Di(t) = dn̂, n̂ = max
n

{pi,n, n = 1, 2, · · · , N}, (10)

where pi,n comprises two terms. The first term, xi,n, rep-
resents the confidence of the pedestrian i to go to dn. The
second term, yi,n, represents the confidence to go to the des-
tination dn when influenced by other pedestrians. αi is the
degree of to be influenced by other pedestrians and pi,n can
be expressed by

pi,n = (1− αi)xi,n + αiyi,n(t), (11)
where xi,n and yi,n(t) satisfy the following conditions:

xi,1 + xi,2 + · · ·+ xi,N = 1, (12)
yi,1(t) + yi,2(t) + · · ·+ yi,N (t) = 1. (13)

While xi,n is a constant that does not change with time,
yi,n(t) changes according to the relationship with other
pedestrians with time, and can be defined by the following
equation:

(a) Angle weight (b) Distance weight

Figure 2: Positional weight

ȳi,n(t) =
∑
j ̸=i

βi,jγi,j(t)hj,n(t), (14)

yi,n(t) =
ȳi,n(t)∑
n ȳi,n(t)

, (15)

where βi,j is the degree of familiarity of pedestrian i with
pedestrian j that takes a maximum value of 10 if pedestri-
ans i and j are intimate, but is otherwise 1, and γi,j(t) is a
weight defined by the positional relation, such as the angle
and the distance between pedestrians i and j. For the angle,
we define f(θi,j(t)), which returns the value that depicted in
Figure 2a for the angle θi,j(t) of pedestrians i and j. As the
angle thresholds, 60◦ for both left and right, depicts the range
that is simultaneously visible, whereas right and left 100◦ is
the threshold that is required to consider the weak influence
from other pedestrians who are located as behind a pedestrian
defined in Helbing’s document [1]. In addition, we consider
that the influence of the direction of movement will increase,
and we set the weight to 2 times for left and right 10◦. For
the distance, we define the sigmoid function g(bi,j(t)) that is
represented in Eq. (16) for the distance bi,j between pedestri-
ans i and j. In [12], the range of the social space that affects
people is defined as 3.6[m]; therefore, the sigmoid is set so
that the weight is halved in 3.6[m]. The inclination is set so
as to gradually decrease depending on the distance.

g(bi,j(t)) =
1

1 + exp(bi,j(t)− 3.6)
. (16)

Using these relations, γi,j(t) is defined as the product of
the weights f(θi,j(t)) on the angles and the weights g(bi,j(t))
on the distance as follows:

γi,j(t) = f(θi,j(t))g(bi,j(t)), (17)

where hj,n(t) is 1 if the pedestrian j goes to the destination
dn and is 0 otherwise.

5 Experiments
5.1 Datasets
Data measured in an evacuation drill of 1,300 people that
was conducted at the New National Theater in 2014 were
used to evaluate the proposed model. The pedestrians’ move-
ments were measured with RGB-Depth cameras using the
method of [13]. Figure 3 and Figure 4 depict the examples of



pedestrian movements at two locations. In this study, we use
two-dimensional coordinate data projected from the three-
dimensional coordinates onto the floor plane, as depicted in
Figure 5.

(a) Movement to destination 1 (b) Movement to destination 2

Figure 3: Location 1

(a) Movement to destination 1 (b) Movement to destination 2

Figure 4: Location 2

(a) Location 1 (b) Location 2

Figure 5: Two-dimensional space of the measurement environment.
The obstacles are indicated by black lines. The number represents
the distance, and the unit is[m]

At location 1, it is accurate to select destination 1. Two
people mistakenly selected destination 2; however, the en-
tire pedestrian flow did not alter. At location 2, it is accu-
rate to select destination 1. However, several people in the
front mistakenly selected destination 2; consequently, almost
all the following people were influenced and selected desti-
nation 2. We examine whether these two phenomena can be
reproduced using the proposed model.

5.2 Simulation of datasets
Here are the parameters used in the experiment. v0i is the
average value of the speed of each pedestrian calculated from
the measurement data, A1 = 4, B1 = 0.4, ϕ = 100, c = 0.2,
A2 = 3, and B2 = 0.2.

The relaxation time τi, confidence xi,n, degree of to be
influenced αi, and familiarity βi,j were determined from the
captured video and the measurement data. In this situation,
there are two destinations, so there are xi,n and yi,n for each
of the two destinations.

For the primary pedestrians who chose the wrong destina-
tion, the actual measurement data were used. The initial po-
sitions of all the pedestrians were the same as the coordinates
of the measurement data. While the probability of selecting
a destination is approximately 0.5, a pedestrian is set to go
to an intermediate point that is located between destination 1
and 2.

Location 1
Figure 6 depicts the measurement data for the primary pedes-
trian who chose the wrong destination at location 1. The
parameters of each pedestrian are presented in Table1. The
measurement data of a representative pedestrian and the sim-
ulation results of the proposed model are depicted in Figure
7.

Pedestrian ID38 is familiar with pedestrian ID37; there-
fore, pedestrian ID38 followed pedestrian ID37 and selected
destination 2. Additionally, for a while, pedestrian ID45
could not decide which destination to selecte but finally se-
lected destination 1. According to a visual evaluation, our
proposed model was able to reproduce all 49 of the pedes-
trians’ movements (100%), including the above mentioned
phenomena.

Figure 8 depicts the flows of the measurement data and
the simulation results at a particular time. It is possible to
reproduce the fact that the flow moving to destination 1 does
not alter even if there is a pedestrian who selects destination
2.

Figure 6: Measurement data of the primary pedestrian who selected
the wrong destination at location 1

Table 1: parameters of each pedestrian at location 1
ID 9 38 45 52
τ 0.5 0.5 0.1 0.5
α 0.5 0.5 0.13 0.5
x1 0.5 0.5 0.45 0.5
x2 0.5 0.5 0.55 0.5

β (friendly pedestrian’s ID) 1 10 (37) 1 1



(a) Measurement data

(b) Simulation results

Figure 7: Measurement data and simulation results of the represen-
tative pedestrians at location 1

(a) Measurement data

(b) Simulation results

Figure 8: Measurement data and simulation results of the pedestrian
flow at location 1

Location 2
Figure 9 depicts the measurement data for the main pedes-
trians who chose the wrong destination at location 2. The
parameters of each pedestrian are presented in Table2. The
measurement data for the representative pedestrians and the
simulation results of the proposed model are depicted in Fig-
ure 10.

Pedestrian ID4 is familiar with pedestrian ID5; therefore,
pedestrian ID4 changed destination from destination 1 to
destination 2 when pedestrian ID5 moved to destination 2.
Pedestrian ID8 was influenced by the other pedestrians and
changed destination from destination 1 to destination 2. Fur-
thermore, pedestrian ID11 selected destination 2 owing to
the influence of pedestrian ID10, who was moving nearby.
Pedestrian ID13 selected destination 2 due to influence of the
high familiarity with pedestrian ID10. According to the vi-
sual evaluation, our proposed model can reproduce the move-
ment of 42 out of 44 pedestrians (95.5%).

Figure 9: Measurement data of the primary pedestrian who selected
the wrong destination at location 2

Table 2: parameters of each pedestrian at location 2
ID 3 4 8 11 13 23 32
τ 0.5 0.1 0.1 0.5 0.5 0.5 0.1
α 0.5 0.5 0.6 0.5 0.5 0.5 0.3
x1 0.5 0.4 0.35 0.2 0.5 0.5 0.8
x2 0.5 0.6 0.65 0.8 0.5 0.5 0.2

β (ID) 1 10 (5) 1 1 10 (10) 1 1

The two pedestrians whose movements could not be repro-
duced were pedestrians ID8 and ID32.

The trajectories of the measurement data of pedestrian ID8
and the simulation result are similar. However, for a long
time, this pedestrian stopped and thought about the destina-
tion that should be selected. Changes in the coordinates x, y
with respect to time t are depicted in Figure 11. During the
time from t = 100 to t = 200, the value of x, y in the mea-
surement data did not change. This indicates that the pedes-
trian could not rapidly decide about the destination. How-
ever, during the simulation, it was impossible to reproduce
this movement of not being able to determine the destination
for a long time.

Pedestrians ID32 changed its destination from destination
2 to destination 1 en route; however, this situation could not
be reproduced by the simulation. Figure 12 depicts the results
while changing the degree of be influenced α. Even when α
is changed, pedestrian ID32 in the simulation selected only
destination 1 or 2, and the situation of changing destination
could not be reproduced. According to the video recorded
with RGB-D cameras, pedestrian ID32 was influenced by
the movement of the other pedestrians to destination 2 and
moved toward destination 2. However, for some reason, the
pedestrian’s confidence in going to destination 1 increased,
and pedestrian ID32 switched destinations. In the proposed
model, the confidence of the pedestrians to move to their own
destinations does not change with time, and it is set to re-
main constant. Considering that confidence is a function of
time, it is possible that the variation in confidence could be
reproduced; however, in this case, the model would become
complicated.

Figure 13 depicts the flow of the measurement data and of
the simulation results at various times. The model can repro-
duce the fact that the flow that was moving to destination 1
switched midway and finally changed to destination 2.



(a) Measurement data

(b) Simulation data

Figure 10: Measurement data and simulation results of the representative pedestrians at location 2

(a) Measurement data

(b) Simulation results

Figure 11: Measurement data and simulation results of pedestrian
ID8

(a) Measurement data (b) α = 0.3 (c) α = 0.4

Figure 12: Measurement data and simulation results of pedestrian
ID32

(a) Measurement data

(b) Simulation results

Figure 13: Measurement data and simulation results of pedestrian
flow at location 2



Figure 14: The proportion of the pedestrians who finally moved to
destination 1

5.3 Difference in pedestrian movement with
confidence

Experiment 1 demonstrated that the movement of pedestrians
could be reproduced with high probability using the proposed
model. At location 2, several pedestrians chose the wrong
destination that influenced the pedestrians behind them to
also select destination 2. Therefore, we examined the manner
in which pedestrian movement changes when the confidence
is changed. We changed pedestrian’s confidence to destina-
tion 1 from 0 to 1. For the remaining parameters, we used the
parameters of the model used in Experiment 1.

The percentage of pedestrians who finally moved to desti-
nation 1 while changing the pedestrian’s own confidence to
destination 1 from 0 to 1 is depicted in Figure 14. While
the certainty exceeds a certain value (0.48), nearly all the
pedestrians were observed to select destination 1. Therefore,
if all the pedestrians have a confidence higher than a half,
nearly everyone selects the accurate destination even if there
are some people who mistakenly select the inaccurate desti-
nation. Therefore, it is necessary to increase the confidence
degree via guides such as signboards.

6 Conclusion
In this study, we formulated an ever-changing destination-
selection process and extended Social Force Model to model
the movement of pedestrians when the destination changes.
The proposed model reproduced the phenomenon of the
changing destination-selection process during the evacuation
drill of the New National Theater. If it is possible to increase
the confidence via the guidance of a signboard or an assis-
tant, an evacuation from a large facility can be accurately per-
formed using the correct route. Therefore, it should be possi-
ble to realize optimal pedestrian navigation by examining the
manner in which the design of a signboard and the position
of a guidance member affects the degree of confidence.
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