
Abstract 
This paper illustrates the concept of “co-pilot” as 
an enabling technology for autonomous driving. A 
co-pilot system mixes the features of commercial 
Advanced Driver Assistance Systems (like blind 
spot, forward-collision warning, lane change assis-
tant, overtaking assistant, and others) with human 
factors like driver distraction and intention. The co-
pilot can provide a “suggested action” to the hu-
man driver through a dedicated Human-Machine 
Interface (a set of screens on the dashboard) or, al-
ternatively, can be the enabling technology to build 
effective and user-friendly future intelligent trans-
portation systems (i.e. Autonomous Driving Func-
tions). We illustrate the results achieved by the Eu-
ropean projects HoliDes and the next steps fore-
seen in the EU project AutoMate. 

1 Introduction 
A number of intelligent agents is entering our lives and 

supporting us in a wider variety of tasks; in particular, this is 
definitely true for automotive domain, where automation in 
passenger cars is constantly increasing. In fact, current 
roadmaps of car-manufacturers and suppliers predict auto-
mated vehicles on highways by 2020. The reasons for that 
are threefold:  
• Zero Emission, with the reduction of fuel consumption 

and CO2 emission, as well as traffic flow optimization. 
• Demographic Change, including the support to uncon-

fident drivers and the enhancement of mobility for el-
derly people. 

• Vision zero, which is the potential for more driver sup-
port by avoiding human driving errors (on which our 
paper is more focused). 

 
Research in Intelligent Transportation Systems (ITS) be-

gan in the late ‘80s with the PATH program in the US, the 
PROMETHEUS project in the EU and the ASV projects in 
Japan [Bishop, 2005]. Today, the development of highly 
automated driving is the research focus of many OEMs and 
research institutes, addressing the specific principles of 
smart collaboration between humans and systems (such as 
the studies of [Flemisch, 2003] and [Inagaki, 2008] and [Da 
Lio et al., 2015]), which may include full automation as one 

extreme point of the interaction spectrum. An overview can 
be found in [Li et al., 2012]. 

Open questions regarding highly automated vehicles in-
clude the strengthening of driver’s sensing ability; the in-
formation in case of errors; and the reduction of the driving 
effort as well as an increased usability. Indeed human driv-
ers are limited in recognizing, interpreting, understanding 
and operating in critical situations; moreover, they are prone 
to misbehaviors, drowsiness and distraction [HAVEit, 
2013]. Nowadays, there are already on the market several 
ADAS (Advanced Driving Assistance System) applications 
(e.g. blind spot, lane departure, emergency braking, semi-
automatic parking, etc.) that are designed either to automate 
specific tasks or to provide additional information to the 
driver.  

This research presents an artificial agent, named co-pilot, 
which provides a unique adaptive framework for supporting 
the human driver during critical situations or, alternatively, 
it can be regarded as an enabling technology for the Auton-
omous Driving Functions (ADFs). Indeed, the co-pilot is the 
core of such ADFs, by computing a (sub) optimal maneuver 
that takes into account both the lateral and longitudinal tasks 
under a common view. In addition the co-pilot is adaptive, 
namely the decision accounts for critical human factors, i.e. 
an estimate of the driver status (visual distraction) and inten-
tion. This is crucial to make the system response closer to 
human needs: for example, if the system detects that the 
driver is distracted, then it avoids to suggest more demand-
ing maneuvers (such as a take-over). 

The paper is organized as follows. Section 2 describes the 
technology we have considered and we are still using, inside 
the EU aforementioned projects. Section 3 describes the 
system architecture we adopted. Section 4 gives an over-
view of the current preliminary results. Finally, section 5 
ends the paper, by providing the conclusions and illustrating 
the next steps of our research.  

2 Enabling Technologies 
This section describes the methods and techniques that 

are used to realize the co-pilot, with a specific focus on the 
relevant human factors that enable the adaptation. 

2.1 Models for driver intention recognition 
Driver intention recognition is mainly concerned with the 

recognition of maneuver (e.g. lane change) intentions, and a 
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comparative review of works on maneuver intention estima-
tion can be found in [Börger, 2013],  [Doshi and Trivedi, 
2011], [Kobiela, 2011], [Lefèvre et al., 2014]. The model-
ing landscape is mostly based on Dynamic Bayesian Net-
works (DBNs), Hidden Markov Models (HMMs) and their 
variants, or probabilistic and non-probabilistic discrimina-
tive models. 

Intention recognition based on DBNs is usually organized 
as follows: for each addressed maneuver, a distinct DBN is 
learnt from a sequence of observations (training). The DBN 
therefore models the dynamic evolution of the vehicle state 
and/or position for the specific maneuver. Given a new se-
quence of observations, the actual maneuver intention is 
estimated by comparing the likelihood of observations for 
each DBN (for details, see for example [Oliver and Pent-
land, 2000], [Kumagai and Akamatsu, 2006], [Liebner et al., 
2012], [Tay, 2009]). For instance, in [Oliver and Pentland, 
2000] seven distinct HMMs are used to recognize seven 
driving maneuvers, evaluating four different combinations 
of feature vectors (i.e. vehicle data, lane position, and driver 
gaze information). On average, the resulting models were 
able to recognize the addressed maneuvers one second be-
fore “any significant (20% deviation) change in the car or 
contextual signals” took place.  

For intention recognition based on discriminative models, 
commonly used techniques are Support Vector Machines 
(SVMs), Multi-Layer Perceptrons or Logistic Regressions 
(see [P. Kumar et al., 2013], [Garcia-Ortiz et al., 2011]). To 
the best of our knowledge, the most sophisticated model 
implemented in a real vehicle up to date is the discrimina-
tive model described by [Morris et al., 2011]. They used 
Relevance Vector Machines for learning a model for online 
recognition of lane-change intentions, which can be seen as 
a Bayesian alternative to SVMs, in that they provide a prob-
abilistic classification. The resulting model is able to predict 
lane change intentions of human drivers up to approx. three 
seconds prior to the actual crossing of the lane. 

Due to the sound foundation of machine-learning meth-
ods and the direct interpretability of their structure and pa-
rameters, we use DBNs for modeling driver intention recog-
nition used in the co-pilot. In contrast to the afore-
mentioned approach, we refrain from modeling the dynamic 
evolution of the vehicles state and position for different ma-
neuvers in favor of a more direct representation of the statis-
tical relationships between driver intentions and the com-
plex traffic situation. We believe that this approach will 
provide for an earlier recognition of intentions solely based 
on the current environment (traffic, speed, car position) 
without the need for a lane change to have already started 
(i.e. without relying on the light indicators). 

2.2 Machine learning for distraction recognition 
Driver distraction is a critical human factor with signifi-

cant safety concerns [Regan et al., 2011]. Deriving 
knowledge on the human operator status can be very valua-
ble for the operative system conditions. In this work we 
consider the following definition for driver’s distraction: 
“the diversion of attention toward a competing activity, 

which may result in insufficient or no attention at all to ac-
tivities critical for safe driving”. Such a definition is quite 
general, and at the same time it allows us to capture the key 
elements of distraction, together with the important notion 
of insufficient or no attention being given to activities that 
are critical for safe driving. In practice, distraction can be 
split into visual and cognitive aspects. In this work we 
mainly consider the visual distraction, which is the diver-
sion of attention toward a competing activity that requires 
the driver to look at a secondary target inside the vehicle 
instead of looking at the road. 

In the literature several studies proved that visual distrac-
tion can be successfully inferred using Machine Learning 
(ML) approaches, that usually outperform other analytical 
methods (see [Liang et al., 2007] for more details). We in-
vestigated different ML techniques and, in particular we 
used neural networks. As for DBNs, they are learned from 
observations and used to classify new observations. Single 
Layer Feed-forward Neural Networks (SLFN) are the most 
common class of neural networks, where neurons are orga-
nized in stratified layers (inputàhiddenàoutput), and con-
nections are weighted. SLFN training typically involves 
iterative algorithms, which perform some learning step 
aimed at minimizing the error function, over the space of 
network parameters. The Extreme Learning Machine (ELM) 
algorithm introduced in [Huang et al., 2006] works by train-
ing a neural network in a single step without using an itera-
tive procedure. This notably reduces the computational cost 
while preserving a good generalization. With ELM, the out-
put connection weights are determined by the Moore-
Penrose generalized inverse (or pseudo-inverse) of the hid-
den layer output matrix. In particular, SLFN networks have 
been chosen because of their tradeoff between the imple-
mentation simplicity and their capacity to satisfy hard real-
time constraints for the evaluation. 

 

Figure 1: prototype architecture implemented in the demonstrator. 

3 Implementation of the co-pilot 
A critical aspect needed to design adaptive autonomous sys-
tems is the decision making task, which has to weight sev-



eral possibly conflicting data sources in order to decide a 
safe driving plan.  

3.1 System Architecture 
Errore. L'origine riferimento non è stata trovata. 

shows the main building blocks of the car architecture, 
where the co-pilot manages the automated functions accord-
ing to the situation and the driver needs, also taking into 
account the environment constraints. The central point for 
any automated systems is the ability to assess perception 
and decision performance under a given condition in a cer-
tain situation. With reference to the perception-cognition-
decision process, as defined in [Stiller et al., 2007], input is 
received from sensors (considering several aspects and 
sources, e.g. internal camera for gestures and eye move-
ments, from maps, from the environment and so on) over 
several processing steps via a geometrical-symbolic repre-
sentation of the current traffic environment to the generation 
and control of suitable behavior. In this context, robustness 
is essential: one successful method to obtain it is to consider 
data-fusion from several sensors. This may happen on a sub-
symbolic or symbolic level, in order to generate more robust 
hypothesis. Thereby, it is crucial to not only propagate 
knowledge through the cognition scheme but to augment 
this knowledge with confidence measures, which are con-
sistently processed at each step of the cognition chain, con-
sidering the confidence of previous processing steps along 
with additional noise introduced by sensors and the uncer-
tainty introduced by the individual algorithms. Given that, 
the co-pilot plans the safe maneuvers considering all these 
factors and then distribute the shared maneuver execution to 
driver and automation, including handing-over tasks to the 
driver or accepting/rejecting tasks assigned by the driver to 
the automation. In order to maintain the common frame of 
reference (see the “meta-cooperation” in Hoc’s framework 
[Hoc et al., 2009]), the system has always to “explain” ma-
neuvers, situation and task distribution to the driver. The 
following three subsections describe the three main compo-
nents of the prototype architecture in Figure 1. 

3.2 The co-pilot module for decision-making 
The co-pilot module is designated to support the maneuver 
decisions of the human driver, using a Bounded Markov 
Decision Process (BMDP) for the decision process. [Givan 
et al., 2000]. Figure 2 depicts the logical flow of the module. 
It starts by building the initial BMDP state s0 using the sen-
sor data (world representation).  
The set of actions Act considered in the prototype are: 
• Keep Your Lane (KYL): the EV (ego vehicle) contin-

ues following the current lane at the current speed. 
• Brake (Brk): the EV will try to brake (considering a 

span of possible decelerations). 
• Change Left Lane (CLL): the EV moves to the next 

lane on the left (considering a span of possible lateral 
accelerations) to start an overtake maneuver. 

• Change Right Lane (CRL): like before for the right 
lane, usually to conclude an overtake maneuver. 

• Slowdown (Slw): the EV decelerates following the cur-
rent lane. 

The projection function F↕ ︎(s, act) produces a new BMDP 
state s′ starting from state s and simulating the consequence 
of action act. This function follows the formulas of Errore. 
L'origine riferimento non è stata trovata., and involves 
vehicle dynamics and object kinetics. The projection func-
tion propagates uncertainty of the state parameters. 
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Figure 2: logic-flow of the co-pilot module for decision-making. 

The set of states is generated using a variation of an Online 
Sparse Sampling Algorithm (OSSA) for BMDP solution: 
Starting from s0, a tree of possible states is generated using 
F↕, evaluating all the actions up to time T. Each path in the 
tree is a trajectory. A sequence of actions (i.e. a policy) is 
mapped into a set of multiple trajectories, due to the uncer-
tainty encoded by F↕. Step (2) assigns a reward to each tra-
jectory, taking into account a safety measure of the state 
based on the standard time-to-collision measure: 

R↕(s, act)  =  ramp(ttc, rmin, rmax) 

Where ramp(value, min, max) is a linear ramp function, and 
the reaction times used in the prototype are rmin=3, rmax=4 if 
the driver is not distracted, rmin=4, rmax=6 otherwise (hence 
distraction raises the human reaction time). In step (3) tra-
jectories that exceed a safety threshold value are considered 
not safe. Step (4) considers the feasibility of the estimated 
driver intention, which could result in two outcomes: 
• Intended action is safe: this generates a (positive) suggestion 

in the HMI of doing that action, like: “you may change left”. 
• Intended action is not safe: this generates a (negative) indica-

tion in the HMI that the action is dangerous, like: “slowdown” 
because there is a vehicle ahead, or “do not change right” 
since the other lane is occupied. 

The reward of a policy is the minimum of the rewards of 
that policy trajectories. The BMDP solution of step (5) con-
sists in selecting the policy with the maximum reward func-
tion. The first action of the optimal policy is passed to the 
HMI module, after a hysteresis step (6). 



3.3 Driver Intention Recognition (DIR) 
In order to take an optimal decision, as illustrated in Fig-

ure 2, two blocks are also taken into account: the Driver 
Intention Recognition (DIR) and the Driver Distraction 
Classification (DDC). 

The DIR module is the software component designed to 
provide context-dependent estimates of the hidden lane-
change maneuver intentions of the human driver. The hope 
is to be able to detect the intention prior to the turn indica-
tors. This is an important aspect for the co-pilot, because – 
for example – it can learn the driver preferences during the 
“normal” driving and then adopt this during the automated 
driving task. 

At runtime, the module receives input from the vehicle 
sensors (actuator states, current velocity, position data pro-
vided by a lane detection camera, surrounding obstacles as 
seen by the LIDARs). Within the DIR module, the available 
sensor information is first synchronized. An internal world-
model based on particle filters [Koller and Friedmann, 
2009] then augments the available information with better 
estimates of the environment and vehicle position and clas-
sifies surrounding vehicles according to predefined roles 
(e.g., the lead vehicle, the vehicle behind on the left lane, 
etc.). For actual intention recognition, the DIR module uti-
lizes a DBN that describes the statistical relations among the 
intentions, the behaviors, and the information of the vehicles 
state and traffic situations: the DIR model. The details of the 
DIR module can be found in [Eilers et al., 2016] and in 
[Yan et al 2016]. 

3.4 Driver Distraction Classification (DDC) 
The purpose of the DDC module is to classify the visual 
driver distraction based on vehicle dynamics data and inter-
nal camera, using the machine learning techniques described 
as following. This module provides information about the 
operator’s degree of distraction. 
DDC consists of two components: the first component 
learns the classifier from a stream of sensory data. The se-
cond component uses the classifier to make prediction on 
the distraction status of the driver. The classifier can be 
trained either offline or online during its use. In this proto-
type, the classifier has been trained offline from system dy-
namics data collected from the prototype vehicle during 30 

driv-

ing 

sessions. The 30 subjects drove for about 1 hour on normal 
and highway roads and they had to perform a SURT (surro-
gate task) while driving, in order to induce distraction.  
The vehicle dynamic variables considered in this study are: 
Speed [m/s] 
Time To Lane Crossing [s] 
Time To Collision [s]  
Position of accelerator pedal [%] 
Heading Angle [deg]  
Position of the brake pedal [%] 
Steering Angle [deg] 
Turn indicators [on/off] 

Lateral Position [m] 
X,Y coordinates of front car (if any) 
Lane Width [m]  
Speed of car in front (if any) 
Road Curvature [%] 
Output of the monitoring system  
  (head position and eyes tracking) 
 

These values are directly available from the vehicle sensor 
data, or can be derived from those (e.g., time to collision is 
computed using the LIDAR data). The frequency of data 
collection is 20 Hz (1 data-point each 0.05s). Each of the 
continuous input variables above generates five input chan-
nels, namely the average, minimum, maximum, standard 
deviation and first derivative in a sliding window of given 
width. Discrete variables enter directly as input channels. 
The DDC module employs a SLFN network with 63 input 
neurons (one for each input channel), 100 hidden neurons 
and 2 output neurons. Weights are determined offline using 
ELM algorithm, and are loaded by the DDC module at run-
time. The two output neurons generate the distracted/non-
distracted probability distribution, which is then discretized 
to obtain the distraction classification used as input for the 
decision module. 

3.5 The system in action 
Figure 3 shows how the system works in practice on the 
prototype vehicle with two small examples. These examples 
are extracted from a test drive done with the prototype vehi-
cle on a highway near Torino, Italy. The purpose is to illus-
trate the adaptation on the driver intention/distraction in the 
decision process of the whole system. In example A the 
driver is fast approaching a slower car on the right lane. The 
DIR module infers that the most probable intention of the 
driver is to overtake that car, and the DDC considers the 
driver to be attentive. With this setting, the co-pilot module 
verifies that the overtake is safe (no obstacles), and suggests 
the driver with 7 seconds in advance that (s)he may over-
take, supporting all the maneuvers. The suggestion does not 

A.1: time 0 sec.
Approaching a slower vehicle,
left lane still occupied.

A.2: time +4 sec.
DIR anticipates the intention
of overtaking, CLL is suggested.

A.3: time +7 sec.
The driver performs the 
suggested maneuver.

A.4: time +11 sec.
DRI anticipates intention of
changing back, CRL not doable.

A.5: time +14 sec.
AD determines CRL doable
and suggest it to the human.

B.1: time 0 sec.
Approaching a slower vehicle,
at a much higher speed.

B.2: time +2 sec.
AD detects unsafe KYL and 
CRL, DDC detects distraction.

B.3: time +4 sec.
The driver slows down to the
speed of the front vehicle.

B.4: time +6 sec.
DRI anticipates intention of
overtaking, no more distraction.

B.5: time +10 sec.
Driver performs the overtake.

Figure 3: Two examples of the system on the prototype vehicle, showing the external camera view and the HMI. 
 



depend on the turn indicators of the car. At stage A.4 in 
Figure 3 the DIR module infers that the driver should return 
to the right lane. The co-pilot module first shows a “keep 
your lane” enforcement signal until the right lane is occu-
pied (A.4), and finally, shows the CRL message to support 
the reentrance. Note that a forward-collision-warning and a 
blindspot will behave differently. They would both signal 
the longitudinal and lateral dangers (FCW at A.3 and blind-
spot at A.5), because they are not adaptive to the overtake 
intention. 
Example B shows a similar scenario where the driver is 
again fast approaching a slower truck, but the left lane is 
occupied by another car, and the DDC module considers the 
driver to be inattentive. In this case the co-pilot module de-
termines that the safest (highest reward) policy is a slow-
down action, and it emits a “slowdown/do not change left” 
warning to the driver. If the driver does not respond quickly, 
an emergency brake signal would appear. After having ad-
justed the speed to follow the truck, the DDC module de-
termines that the driver is attentive again (unclear whether 
attention is deduced because the speed has been reduced or 
because the module says so and in this scenario we consider 
the case in which the driver is attentive again at this point in 
time, and a CRL message is shown to suggest overtaking. 

4 Experimental Phase 
A prototype has been developed to test the feasibility of 

the co-pilot. The prototype addresses the driving in a high-
way scenario, which is adequate since the focus of the pro-
ject is the adaptation to the human behavior more than the 
adaptation to the environment. The prototype has been real-
ized in two forms: a vehicle and a simulator. Both runs the 
same software stack built on the RT-Maps 4 framework1. 

 
 
 
 
 
 
 
 
 

 

Figure 4: vehicle and driving simulator prototypes used for 
evaluation phase. 

 

4.1 Overview of the experimental prototype  
In order to test the feasibility of the system, including the 

co-pilot, DIR and DDC modules, we have considered one 
prototype (as illustrated in Figure 4), which is adequate for 
the adaptation to the human behavior and to the environ-
ment. The prototype has been realized in two forms: a vehi-

                                                
[1] 1 RT-Maps framework. https://intempora.com/.  

cle and a simulator. Figure 4(left) shows the sensors used 
for the data collection: 1) an external camera used by the 
lane-detection algorithm (to build the road model); 2) an 
internal camera used to scan the human driver face; 3) four 
LIDAR sensors that detect environment obstacles. Figure 
4(right) shows the setup of the simulator environment, 
which includes 4) the distributed co-pilot HMI; 5) the 
SURT used to distract the users. The simulator runs the 
SCANeR II software. 

4.2 Evaluation of the Classification modules 
A large number of experiments was carried out to test the 

DDC module, by varying the learning algorithm parameters, 
such as the number of neurons, learning rates, number of 
training instances, etc. Moreover, the collected data have 
been averaged over a period of time that varies, in the vari-
ous experiments, between 1s and 2s. In order to be con-
sistent with the target variable (distracted or not-distracted), 
data have been labelled distracted when the driver was not 
looking at the road for the whole considered period (using 
the internal camera of the vehicle), not distracted otherwise. 
Table 1 shows the main results: 

 
Accuracy 

Learning Set 
Accuracy 
Test Set 

False Positive 
Rate 

False Negative 
Rate 

98.99+/-0.04 87.52+/-1.37 0.07+/-0.02 0.18+/-0.02 

Table 1: classifier performances on the test-set. 

 The table reports the average classification rates (accura-
cy, false negative rate and false positive rate) obtained by 
training the DDC module using a leave-one-out strategy. In 
detail, we selected 25 drivers out of the 30 ones for which 
we collected data (5 were discarded due to a small number 
of distraction cases). In turn, one of these dataset has been 
used for testing while the other 24 have been combined to-
gether to form the learning set, and the process repeated for 
every dataset (25 runs in total). 
 In details, the first two columns report the average accu-
racy on the training sets and test set, respectively. The accu-
racy on the test cases shows good generalization ability to-
wards new drivers. For what concerns the false negative 
rate, it should be noted that in practical situations there are 
many more cases of driver not distracted than there are cas-
es of distraction, and the latter are more difficult to identify, 
in general, because good drivers tend to drive safe even 
when partially distracted. 
 The evaluation of the DIR module has been the subject of 
a separate analysis. Interested readers can find it in [Eilers et 
al., 2016] and in [Yan et al 2016]. 

4.3 Evaluation results of the system prototype 
The aim of the system experimental assessment was to ob-
jectively measure its performance against a state-of-the-art 
baseline system. The assessment was done on the driving 
simulator, for safety reasons. The baseline system includes 
both a blindspot and FCW systems for lateral and longitudi-
nal warnings.  



The test involved 30 subjects (15 men, 15 women; average 
age: 39 years; average years of driving license: 20; average 
km/year: 15.660) on five tracks, without anticipating the 
kind of support system that they would have seen while 
driving. After a warm-up track (to get confidence with the 
simulator), the test is performed two times on two tracks (5 
minutes each), with the baseline and with the prototype sys-
tem. Half of the participants see the system after the base-
line, while the other half see it before (to randomize and 
avoid bias). 
The two test tracks are two-lane highway scenarios designed 
to create specific dangerous situations to the driver, like: a 
preceding vehicle that brakes unexpectedly, a slow preced-
ing vehicle with an incoming car on the left lane, … Details 
on the tested situations can be found in [HoliDes, 2016] 
(D9.9). Drivers were requested to perform a SURT task that 
activated at random every 30/45 seconds on a secondary 
screen that is located on the side of the simulator screen (to 
trigger a visual distraction). 
The following Performance Indicators where considered: 
PI1. Number of accidents occurred during the test. 
PI2. Percentage of driving time where the TTC of the pre-

ceding vehicle is less than 2 seconds. 
PI3. Number of times the driver presses the brake strongly, 

achieving a sudden hard braking (deceleration of more 
than -8m/s2). 

PI4. Average distance to the preceding vehicle when the 
user performs the lane change. The purpose is to 
measure if the new system increases safety, avoiding 
the Peltzman effect [Peltzman, 1975] (inducing confi-
dence in making risky maneuvers). 

PI5. Average TTC when the driver starts pressing the brake, 
to measure the impact of slowdown/brake suggestions. 

Table II shows the average PI values obtained from the user 
tests, and the statistical significance. The values show fa-
vorable performance of the new system over the baseline. 

 PI1 PI2 PI3 PI4 PI5 
Baseline 0.1724 0.0126 1.3103 73.5552 2.7134 
co-pilot 0.0862 0.0069 1.3793 82.1026 3.3742 
Signif.  <0.0001 <0.0001 0.0011 0.5461 0.0085 

Table II: PI results of the evaluation. 

For the number of accidents, they are strongly reduced: in 
the baseline, there are 10 accidents in the test cases, while in 
the new system there are only 5 accidents. This means the 
co-pilot was able to halve the number. A similar improve-
ment has been achieved also for PI2, where the time spent 
by the drivers in potentially critical situations has been re-
duced by around 50%.  
The higher value of the system on the indicator PI5 means 
that, when the driver starts braking, the TTC is greater in the 
new system than it is in the baseline, meaning that the co-
pilot increases the awareness of the driver to dangerous situ-
ations.  The number of hard brakings is almost equal, which 

could be caused by the fact that the scenarios make these 
braking necessary due to the critical situations that happens. 
PI4 takes into account the effect of the recognition of driver 
intention: when the DIR module infers the intention of over-
taking, the system suggests the maneuver; suggesting the 
lane change maneuver in advance seems to modify the atti-
tude of the users in changing the lane in advance, increasing 
the safety distance. 

Out[184]=

CellMeans Ø

Model@143.639D 189.025
Model@158.554D 79.4342
Model@161.441D 49.7959
Model@217.364D 91.9665

>

In[44]:= Grid@88BoxWhiskerChart@PI2D, BoxWhiskerChart@PI4D, BoxWhiskerChart@PI5D<<D
Grid@88BoxWhiskerChart@PI2, "Outliers"D,

BoxWhiskerChart@PI4, "Outliers"D, BoxWhiskerChart@PI5, "Outliers"D<<D
Grid@88DistributionChart@PI2D, DistributionChart@PI4D,

DistributionChart@PI5D<<D
Grid@88Histogram@PI1D, Histogram@PI3D<<D

Out[44]=

Out[45]=

Out[46]=

Out[47]=

4     Untitled-1

PI2 PI4 PI5

baseline   AdCoS baseline   AdCoS baseline   AdCoSbaseline       system baseline       system baseline       system  
Figure 5: Box-plots of the continuous PIs. 

Figure 5 shows the box-plots of the three continuous PIs 
(left is baseline, right is new system). The statistical test 
shows that all PIs have enough samples to assess for a sta-
tistical difference, except for PI4 (even if it is showing 
slightly different distributions), which requires more sam-
ples. 

5 Discussion and Conclusions 
In the European co-funded project HoliDes [HoliDes, 

2016], a first version of the co-pilot has been implemented 
and used in a limited form to produce a comprehensive pre-
ventive safety system capable of giving information and 
warnings only. However, this concept of the co-pilots are 
potentially suited to more sophisticated applications, such as 
the ones developed in the EU project AutoMate 
(http://www.automate-project.eu/). In fact, if necessary, the 
driver could “loosen” control and let the system autono-
mously navigate, or can “tighten” control and reclaim au-
thority. On the other way around, if necessary, the system 
may be programmed to completely take over from the driver 
in certain conditions. 

In all cases, the important aspect is that the co-pilot will 
be adaptive and cooperative, thus the driven vehicle should 
appear to be driven by a human, being easily interpretable to 
other human road users. In this context, the co-pilot is the 
enabling technology for implementing ADFs, with the ca-
pacity to improve the human–vehicle interactions, by con-
sidering and exchanging intentions between co-driver-
equipped vehicles, as well as by taking into account the 
driver state (i.e. visual distraction). 

In this paper, we have attempted to set out a viable 
roadmap for producing the co-pilot enabling technology, 
making significant use of recent developments in cognitive 
systems, in order to address the adaptation and continuous 
support to the human driver. This system is realized using a 
decision process that balances multiple action outcomes 
with the inferred human status (intention, distraction). This 
produces contextualized strategies that are shown as graph-
ical messages through a dedicated HMI on the vehicle dash-
board, or alternatively, can be regarded as a “virtual driver”, 



able to take the vehicle control and thus implementing the 
ADFs. 

Moreover, other achievements will need further research 
at the intersection between cognitive sciences and intelligent 
vehicles. In particular, we plan to investigate the impact of 
introducing a human-like behavior of the co-pilot, sharing 
experience and roles with human drivers. In this context, the 
system could use its emulation capacity (in a way similar to 
human rehearsing of possible experiences) to discover and 
learn higher-level behaviors that might prove more effec-
tive. This enables the co-pilot to become an expert driver 
without directly needing training examples from expert hu-
mans. In this sense, reinforcement-learning techniques 
would probably also allow to better tailor such a system to 
each human driver. 
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