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Abstract
Multi-scale modelling is a powerful approach that
has been successfully exploited in the context of
simulation of traffic and transportation systems.
While the paradigm allows the simulation of large
cities in a already efficient fashion, the considera-
tion of detailed environments for a precise simu-
lation of pedestrian traffic can be still a demand-
ing task, especially in iterative approaches for the
search of optimal solutions. In this context, the pa-
per proposes the application of a supervised ma-
chine learning algorithm to learn the observables
of a microscopic model of pedestrian dynamics in
the simulated environment. The aim is to gener-
ate a simpler model that (i) is able to describe the
dynamic travel times of pedestrians in the scenario
and (ii) can replace the microscopic model in the
iterative search of optimal solutions. After a formal
description of the approach, the paper provides pre-
liminary results with its application in benchmark
scenarios, aimed at analysing its reliability in con-
trolled conditions.

1 Introduction & Related Works
Designers, planners employ tools for the simulation of pedes-
trians’ and crowd’s movement in the built environment on an
everyday basis, especially in collective transportation facili-
ties and in the urban context in general: decisions related to
the construction or maintenance of specific facilities undergo-
ing crowding situations call for results of the so-called what-if
scenarios, indicating what plausibly happens within a given
geometry subject to certain levels of demand. Even crowd
managers, when already existing facilities must be used for
hosting large numbers of pedestrians, growingly use these
tools to evaluate the crowd management procedures before
they are enacted. Results of research on pedestrian and crowd
simulation has lead to technology transfer (off-the-shelf avail-
able commercial tools are daily used by designers and plan-
ners), but these products are sided by open challenges for re-
searchers in different fields and disciplines, to improve model
expressiveness (i.e. simplifying the modelling activity or in-

troducing the possibility of representing phenomena that were
still not considered) and efficiency of the simulators based on
those approaches.

Despite the substantial effort and significant achieved re-
sults, two aspects that are still object of investigation by the
research community are related to efficiency of the devel-
oped simulators, on one hand, and to the requirements in
terms of modeler’s effort in tailoring a general model to pre-
cisely represent a given scenario, with the related demand
and especially the so-called traffic assignment. A particu-
larly relevant effort, within this framework, is represented
by multi-scale approaches (see, e.g., [Crociani et al., 2016;
2017]) coupling micro-simulation models (often adopting an
agent-based approach) with more coarse grained ones (e.g.
in which the environment is a graph whose vertices are as-
sociated to intersections and edges are associated to paths
connecting them), to couple high precision in the spatial rep-
resentation and management of interactions among pedestri-
ans in some specific parts of the simulated environment with
an overall computational efficiency and adequacy to manage
large scale scenarios.

Still, the need to carry out a substantial number of runs
of micro-scale scenarios limits the practical applicability of
the approach in case of very large scenarios and/or very lim-
ited time-frame for the elaboration of results. The approach
proposed in this paper is based on the idea to substantially
limit the number of the execution of micro-scale models but
at the same time to employ the observable aggregated results
to characterize the meso-scale model, preserving the accuracy
in the management of aspects like interaction among pedes-
trians, but further reducing the computational costs. The ba-
sic idea is to actually learn the how observable aggregated
results emerge from micro-scale simulations: the latter will
therefore be run in plausible contextual conditions, but the at-
tempt is to generalize the achieved results to actually define
functions describing, for instance, the expected travel time of
a pedestrian over an edge of the graph (i.e. a certain passage
in the environment) given precise contextual conditions.

From this perspective, the proposed approach is somewhat
related to those employing computational intelligence tech-
niques for parameter estimation (such as, for instance, Par-
ticle Swarm Optimization [Spolaor et al., 2017]), since the



learned function is surely an important element of the meso-
scale model, but actually something more complicated than
a value (or interval of values) for a parameter. On the other
hand, this approach is surely less demanding than previous
works that are actually aimed at learning pedestrian behav-
ior at the micro-scale (such as [Junges and Klügl, 2012] and,
more recently, [Martinez-Gil et al., 2017]). The latter, as of
this moment, although presenting interesting and encourag-
ing results, still present limitations that hinder their practical
applicability in the short term. The proposed approach, al-
though it still needs improvements and especially a validation
on large scale scenarios it is actually targeted at, is a less am-
bitious attempt that already produced encouraging results in
benchmark scenarios.

The paper breaks down as follows: the following section
more formally introduces the above mentioned multi-scale
approach, whereas Sect. 3 more thoroughly presents the pro-
posed learning model for micro-scale aggregated results. The
experimental application of the proposed approach is then
presented, discussing achieved results achieved in a uni and
bidirectional corridor, and in a more complex paradigmatic
benchmark scenario in which paradoxical effects can be ob-
served. Conclusions and future developments end the paper.

2 A Multi-Scale Simulation System for Urban
Traffic

The machine learning based approach proposed in this paper
is applied to the multi-scale simulation system described in
previous works by the authors [Crociani and Lämmel, 2016;
Crociani et al., 2016]. For completeness and to allow a clear
understanding of the presented results in Sec. 4, fundamental
mechanisms of the model will be now briefly described.

The simulation system is composed of two models with
two different scales of detail: (i) a 2d discrete microscopic
model for a detailed yet efficient reproduction of environ-
ments crossed by pedestrian flows; (ii) a queue model used
to simulated a larger part of the transportation network, host-
ing heterogeneous forms of traffic. The integration between
these two models composes a quite powerful approach, ca-
pable of performing analysis in metropolitan scenarios, by
considering multiple modes of transportation and performing
simulations in relatively short times.

Keeping the computational costs relatively low is very im-
portant for this model, since the multi-scale system applies
an iterative approach to manage the agents’ strategic model,
for which agents iteratively adapt their choice of route on the
basis of a cost function applied to experienced travel times
from the previous simulation. Overall this workflow makes
the system converge either towards a Nash Equilibrium (NE)
or to the system optimum (SO), depending on the chosen cost
function. In this way the user of the simulation system is able
to provide an estimation of the traffic in the scenario on a nor-
mal day (NE approach) or to have information about the min-
imum average travel time of the population of agents (SO).

2.1 The Discrete Microscopic Model
The model is a 2-dimensional Cellular Automaton with a rep-
resentation of the space as a grid of square cells. The 0.4×0.4

Figure 1: Sample scenario with its network representation. Cyan
cells describe intermediate targets, while external arrows connect
the outside network, simulated with the mesoscopic model.

m2 size of the cells describes the average space occupation
of a person [Weidmann, 1993] and reproduces a maximum
pedestrian density of 6.25 persons/m2 which covers the val-
ues usually observable in the real world. Basically, a cell of
the environment can be one of two types, walkable or obsta-
cle, meaning that it will never be occupied by any pedestrian
during the simulation.

Intermediate targets can also be introduced in the environ-
ment to mark the extremes of a particular region (e.g. rooms
or corridors) which act as decision points for the routing
choice of agents. Final goals of the discrete environment are
its open edges, i.e., the entrances/exits of the discrete space
that will be linked to roads. Since the concept of region is
fuzzy and the space decomposition is a subjective task that
can be tackled with different approaches, their configuration
in the scenario is not automatic and is left to the user.

Employing the floor field approach [Burstedde et al., 2001]
and spreading one field from each target –either intermediate
or final– allows to build a network of the environment. In this
graph, each node denotes one target and the edges identify
the existence of a direct way between two targets (i.e. passing
through only one region). To allow this, the floor field diffu-
sion is limited by obstacles and cells of other targets. An ex-
ample for an environment with the overlaid network is shown
in Fig.1. The open borders of the microscopic environment
are the nodes that will be plugged to the other network of the
mesoscopic model.

To integrate the network with the one of the mesoscopic
model and to allow the reasoning at the strategic level, each
edge a of the graph is firstly labelled with its length la, de-
scribing the distance between two targets δi, δj in the discrete
space. This value is computed using the floor fields as:

la(δ1, δ2) =
(FF δ1(Center(δ2)) + FF δ2(Center(δ1)))

2
(1)

where FF δ(x, y) gives the value of the floor field associ-
ated to a destination δ in position (x, y); Center(δ) describes
the coordinates of the central cell of δ. The average is com-
puted to provide a unique distance value. Together with the
average speed of pedestrians in the discrete space (explained
below), la is used to calculate the free speed travel time of the
link T freea = la

sa
.

With a simple probabilistic choice, similar to the one pro-
posed in [Burstedde et al., 2001], the pedestrian movement



towards one target is reproduced with the floor fields values.
This allows to avoid obstacles and other pedestrians in a very
simple way, but it is not enough to generate plausible dynam-
ics, i.e. by respecting the fundamental relation about local
density and flow.

For the achievement of a realistic microscopic model, the
idea of [Flötteröd and Lämmel, 2015] has been extended to
2-dimensional models. The model works on the basis of 3
simple rules that allow the calibration to fit the fundamental
diagram of 1-directional and 2-directional flow. The move-
ment rules are summarized as follows: (i) movement rule: a
pedestrian cannot change his/her position before τm seconds;
(ii) jam rule: if a cell is occupied at time t by the pedestrian
p, every pedestrian p 6= p cannot occupy that cell before time
t + τj ; (iii) counter-flow rule: if two pedestrian in two con-
secutive cells at time t are in a head-on conflict, then they will
swap their position at time t+ τm + τs.

The first rule describes the minimum time that a pedestrian
needs to move forward one cell, thus τm is the duration of the
time-step. The second rule manages the dynamics in pres-
ence of jamming, implying additional time to move in case
of congestion. In particular, this rule has been implemented
by letting the agents produce a trace in their previous posi-
tion, which will keep the cell occupied for τj seconds. This
mechanism is able to translate back the effects of congestion
as observed, generating the so-called density waves. The third
rule defines an agents position exchange mechanism for man-
aging counter-flow situations. In case of two agents moving
in opposite direction and deciding to swap positions, this ac-
tion needs τm+ τs seconds. In [Crociani and Lämmel, 2016]
it is shown how, by varying the value of τm and τs with the
local density, it is possible to calibrate this model to precisely
fit fundamental diagrams of 1-directional and 2-directional
pedestrian flow.

In summary, these rules enable the model to produce feasi-
ble simulations of pedestrian motion in planar environments.
Nonetheless, the simulation of a complex environment needs
to consider particular elements, such as stairs and ramps,
which implies at least a lower speed of the agents. To over-
come this issue, the definition of the environment has been
enriched by introducing the possibility to mark the borders
of stairs, which will affect the agent’s speed by multiplying
their τm times a parameter κslow , i.e. they will not move
every time-step of the simulation while they are inside.

Finally, in order to respect the dynamics among the meso-
scopic and microscopic models, the connection at the borders
of the two models are managed with so-called transition ar-
eas. These ones temporarily host agents before entering in the
actual environment, sharing their occupations in both models
and, thus, allowing them to have a temporary double presence
to spread the influence in both models [Lämmel et al., 2014].

The presented model is validated against fundamental dia-
grams related to 1-directional and 2-directional flows in pla-
nar scenarios, using empirical data from laboratory experi-
ments described in [Zhang et al., 2011; 2012] and for 1-
directional flow in staircases. For a thorough discussion of the
properties and calibration of the model, it is referred to [Cro-
ciani and Lämmel, 2016; Crociani et al., 2016].

2.2 The mesoscopic model
The overall system is implemented within the MATSim
framework1. The standard simulation approach in MATSim
is based on the queueing model discussed in [Simon et al.,
1999]. Originally, the model was designed for the simulation
of vehicular traffic only, but later it has been adapted for the
additional consideration of pedestrians [Lämmel et al., 2009].
The network is modelled as a graph with links describing ur-
ban streets and nodes describing their intersections. In the
pedestrian context, “streets” also include sidewalks, ramps,
etc. Links behave like FIFO queues controlled by the follow-
ing parameters: (i) the length of the link l; (ii) the area of the
link A; (iii) the free flow speed v̂; (iv) the free speed travel
time tmin, given by l/v̂; (v) the flow capacity FC; (vi) the
storage capacity SC.

Thus the dynamics follow the rules defined by these pa-
rameters. An agent is able to enter a link l until the number
of agents inside l is below its storage capacity. Once the agent
is inside, it travels at speed v̂ and it cannot leave the link be-
fore tmin. The congestion is managed with the flow capacity
parameter FC, which is used to lock the agents inside the
link to not exceed it.

2.3 Strategic model
At the strategic level, agents plan their paths through the en-
vironment. Normally, the aim of the strategic planning is to
emulate the real-world pedestrians’ behavior. A reasonable
assumption is that pedestrians try to minimize the walking
distance when planning their paths. In the simulation context,
the shortest path solution is straightforward to compute e.g.
by Dijkstra’s shortest path algorithm [Dijkstra, 1959]. How-
ever, it is well known that the shortest path solution neglects
congestion and thus the shortest path solution is not necessar-
ily the fastest one. In particular, commuters who repeatedly
walk between two locations (e.g. from a particular track in a
large train station to a bus stop outside the train station) often
try to iteratively find faster paths. If all commuters display
that same behavior, they might reach a state where it is no
longer possible to find any faster path. If this is the case, then
the system has reached a state of a NE [Nash, 1951] w.r.t.
individual travel times. This approach can be emulated by
applying an iterative best-response dynamic [Cascetta, 1989]
and it has been widely applied in the context of vehicu-
lar transport simulations (see, e.g, [Raney and Nagel, 2004;
Krajzewicz et al., 2012]), but in the pedestrian context it is
rather recent.

NE is an interesting concept, but it is generally different
from the SO, which does not minimize individual travel times
but the overall system (or average) travel time. Like the NE,
the SO can also be achieved by an iterative best response dy-
namic, but based on the marginal travel time instead of the
individual travel time. The marginal travel time of an in-
dividual traveler corresponds to the sum of the travel time
experienced by her/him (internal costs) and the delay that
he/she impose to others (external costs). While it is straight-
forward to determine the internal costs (i.e. travel time), the
external cost calculation is not so obvious. An approach for

1http://www.matsim.org



(a) (b)

Figure 2: (a) The logic of the machine learning approach: the model learned for one link provides the travel time for entering agents at the
current time-step and it can be used in substitution of the microscopic model in the iterative process. (b) Set of links (grey) considered as
neighbours of the link li.

the marginal travel time estimation and its application to a
mesoscopic evacuation simulation is discussed in [Lämmel
and Flötteröd, 2009]. Based on this, [Crociani and Lämmel,
2016] propose an adaption of the approach to microscopic
simulation models. In the present work, the external costs
are estimated in the same way as proposed in [Crociani and
Lämmel, 2016]. The following gives a brief description of
the approach. As discussed, both the mesoscopic and the mi-
croscopic model are mapped on the same global network of
links and nodes. A link can either be in a congested or in
an uncongested state. Initially, all links are considered as un-
congested. A link switches from the uncongested state to the
congested state once the observed travel time along the link is
longer than the free speed travel time. Vice versa, a link in the
congested state switches to the uncongested state as soon as
the first pedestrian is able to walk along the link in free speed
travel time. Every pedestrian that leaves a given link while it
is in the congested state imposes external costs to the others.
The amount of the external costs corresponds to the time span
from the time when the pedestrian under consideration leaves
the congested link till the time when the link switches to the
uncongested state again.

In this work, the iterative search of equilibrium/optimum
follows the logic of the iterative best response dynamic and is
described by the following tasks:
(1) Compute plans for all agents
(2) Execute the multi-scale simulation
(3) Evaluate executed plans of the agents
(4) Select a portion of the agents population and re-compute
their plans
(5) Jump to step 2, if the stop criterion has not been reached

The stopping criterion is implemented as a predetermined
number of iterations defined by the user, since the number
of iterations needed for the system to reach a relaxed state
depends on the complexity of the scenario and is not known
a priori, but empirically one hundred iterations represents a
good compromise between relaxation and run-time.

Initial plan computation is performed with a shortest path
algorithm. In the subsequent iterations, the agents try to find
better plans based on the experienced travel costs. Depending
on the cost function, the agents learn more convenient paths

either for them individually (relaxation towards a NE) or for
the overall population (relaxation towards the SO).

3 Learning Observables of a Microscopic
Model

The multi-scale model discussed above represents a valuable
framework for the analysis of the heterogeneous traffic that
circulates in metropolitan cities, by estimating the conges-
tions and travel times that could affect the network in a nor-
mal day (with the NE approach) or with an optimal configura-
tion of flows which brings useful information to optimize the
network. The implementation in MATSim allows to simulate
large road and transportation networks (considering buses,
trains and other forms of mass transportation). On the other
hand, the microscopic model is a rather efficient approach to
simulate the detailed pedestrian dynamics inside transporta-
tion facilities or other pedestrian environments that are con-
sidered interesting from the users of the system.

However, it must be noted that even if the microscopic
model is very efficient, the simulation of large scenarios com-
posed of many detailed representations of pedestrian environ-
ments might result in long computation times. The iterative
nature of the overall approach requires the run of a undeter-
mined number of iterations and this makes the system still
computationally demanding.

The idea behind this paper is to apply supervised machine
learning algorithms for data regression, in order to construct
a macroscopic model from some observables of the micro-
scopic simulation at the first iterations. The learned model,
that we denote as ETT, will be used in the successive iter-
ations as substitute of the microscopic one in the search of
NE/SO, allowing to save time and computations.

A first peculiarity of this approach is that a high degree of
reliability (close to 100%) of ETT is not completely neces-
sary since it will only help the convergence in iteration pro-
cess, but on the other hand its precision will also affect its
effectiveness in saving computational time.

The objective of ETT is to approximate the dynamics of
the microscopic pedestrian model in a detailed environment
in terms of travel times. The geometry and the congestion



Figure 3: Workflow of the simulation using the ETT model.

arising from the configured pedestrian flows, in fact, affect
the time employed by pedestrians to carry out a given route.
Moreover, as described in Sec. 2.3, the travel time is the in-
formation used by the routing algorithm in the iterative search
of equilibrium.

Hence, ETT is defined to provide an estimation of the
travel time tt needed by pedestrians to cross the portions of
space between two destinations, depending on the congestion
conditions. In the high-level representation of the environ-
ment (see Sec. 2.1), the space between two targets is repre-
sented by a directed edge l connecting the nodes respectively
mapped to the destinations. We therefore define ETT as a
set of functions tt i, each one calculating the travel time of
the link li for an agent, given the current state of the network:

ETT = {tt1, . . . , ttn} (2)
We must now clarify the meaning of “current state” of the

network, that is, what is the input of each tt function. The
dynamics in this model is mainly affected by the static con-
figuration of the geometry and composition of the environ-
ment (e.g. presence of staircases) and by the dynamic evo-
lution of the pedestrian flows (possibly leading to the emer-
gence of congestions). Hence we define tt i, associated to the
link li, as a function taking as input a vector ~o(i,t) and re-
turning a number ∈ R describing the time needed to arrive at
the next destination by entering at the current time-step (see
Fig. 2(a)). ~o(i,t) is composed by numbers ∈ N and provides
an abstraction of the number of pedestrians currently (i.e. at
time t) present in the area referred by the link and its direct
surrounding. It must be noted, in fact, that a certain area of
the environment can be crossed by agents following different
paths (i.e. with their positions mapped in different links of the
graph), so considering only the occupation of the link li will
not lead to a good estimation of tti.

To overcome this issue we define the neighbourhood of
a link l, denoted as nh(l), as the set of links starting from /
leading to the destination node of li (an abstraction of the area
forward to the agent). The logic is graphically exemplified in
Figure 2(b). According to nh(l), the occupation vector ~o(i,t)
considered as the domain of tt(l) is formally defined as:

~o(i,t) =
(
occ(l̂, t)

)
|l̂ ∈ nh(li) ∪ {li} (3)

The problem of the computation of ETT can be now for-
mally stated: given the travel times y(i,t) achieved with the

microscopic model in the link li (for every link li of the net-
work simulated in the detailed way) and with associated oc-
cupation vector ~o(i,t), find the function h such that:

h(i,t)(~o(i,t)) ≈ y (4)
The additional consideration of the time-step of simulation

t allows the framework to potentially learn also systematic
variation of pedestrian speeds over a simulated time window
of a full day (e.g. higher speed in time windows related to
commuting). This feature, however, will not be analysed in
this work because its aim is to study the feasibility and per-
formances of the learning framework in simple benchmark
scenarios. The machine learning algorithm applied to this
problem and its configuration will be now described.

3.1 Support Vector Regression for the
computation of ETT

The problem of regression of a series of training data
{(x1, y1) , . . . , (xm, ym)} ⊂ X × R, where X is the multi-
dimensional domain of inputs, can be dealt with any algo-
rithm that have been proposed in the supervised machine
learning field. In this context we apply the Support Vector
Regression (SVR). Despite SVR dates back to 1995 [Drucker
et al., 1997] and it could be considered as an old approach in
favour of the deep neural network architectures applied nowa-
days in numerous domains, the introduction of the Radial Ba-
sis Function (RBF) kernel have redefined its robustness and
versatility in classification and regression tasks [Fernández-
Delgado et al., 2014]. Moreover, despite a neural network can
theoretically lead to a higher precision in the regression task,
the large amount of data needed to train such model would
represent an issue for the problem in question.

As thoroughly discussed in [Smola and Schölkopf, 2004],
a kernelized SVR applied to a dataset withm inputs and using
the kernel function k can be formulated using the Lagrangian:

maximize


−1

2

m∑
i,j=1

(αi − α∗
i )
(
αj − α∗

j

)
k(xi, xj)

−ε
m∑
i=1

(αi + α∗
i ) +

m∑
i=1

yi (αi − α∗
i )

(5)

subject to
m∑
i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C]



(a)

(b)

Figure 4: The two test environments and their superimposed net-
work. Names of origin links are emphasized in red, while other
links are named with ids of linked nodes (e.g. 0→ 1).

Where αi, α∗
i are the Lagrangian multipliers and C is the

parameter controlling how much deviation from the input
dataset is tolerated. We apply the RBF kernel function, also
known as the Gaussian kernel, which is defined with param-
eter γ as:

k(xi, xj) = exp

(
−||xi − xj ||2

γ

)
(6)

In our context, each input xi of the dataset is represented
by an occupation vector ~o(i,t), while the yi is denoted as y(i,t)
and represents the time needed by an agent to travel between
the two destinations mapped by the link i, starting at time
t. In the next section we will discuss the application of this
approach in benchmark tests scenarios.

4 Application and Analysis of the Approach
The SVR based approach to learn the ETT model is
tested with two benchmark scenarios representing simple but
paradigmatic settings. The aim is to evaluate the effective-
ness and reliability of the model in learning and reproducing
results of microscopic simulations in controlled situations.

For each simulation campaign we perform the following
workflow, as also graphically depicted in Fig. 3:

1. run few iterations of the microscopic simulation and
build the training/test dataset2;

2. train the ETT model with the dataset. Cross-validation
with the test dataset is here performed, using Mean
Squared Error (MSE) for the evaluation and calibration
of parameters of the SVR for each link associated to
some observation;

3. simulate the same scenario using the ETT model to pre-
dict the travel times of links for the agents.

The last point is performed to validate ETT over the dy-
namics previously generated with the microscopic model. In
particular, we simulate the evolution of the occupation and
travel time of links in the network by configuring the same

2The dataset is subdivided in the typical proportion 70/30 %.

Figure 5: Comparison of observation (blue and cyan) and simulation
(red) results regarding the links 0→ 2 (left) and 3→ 2 (right) from
the simulation of the corridor scenario.

initial population of agents, the same routes and the same fre-
quency of generation on the initial links (see Fig. 3-center).
At each time-step of the simulation (Fig. 3-right), active
agents asks the travel time t̂ to the model tt l∗ associated to
the next link l∗ of their plan, and update the occupation in-
formation in the link right after. They then remain un-active
for t̂ time-steps, and repeat the life-cycle until they reach the
last link of their route. To guarantee some non-determinism
in the system, a 5% random noise is added/subtracted to the
output t̂ of tt functions.

The two scenarios used for the evaluation are shown in
Fig. 4 and they represent respectively: (i) a corridor of
24x4m2 crossed by uni and bi-directional flows; (ii) an im-
plementation of the Daganzo paradox [Daganzo, 1998] for
a pedestrian environment, crossed by a uni-directional flow
from left to right and where the iterative re-routing of agents
affects their travel time. For simplicity, we will refer to the
results achieved with the microscopic model as observation,
while we will call simulated data the results of ETT.

4.1 Uni- and Bi-directional flow in a Corridor
The corridor environment is configured with both uni-
directional and bi-directional flows, to generate a training
dataset of totally 10 simulation iterations: 2 iterations are
generated with a unique flow of 600 pedestrians from one of
the origin links (inW or inE in Fig. 4(a)) and 8 iterations are
run with a balanced bi-directional flow of 300 pedestrians per
side. In all cases the incoming rate is 4 ped/s per starting side.

To evaluate the effectiveness of the proposed approach we
analyse the links occupation along the simulation time. This
allows a direct comparison between results of the simulation
using the ETT model and using the the microscopic one.
For sake of space, a selection of results related to two links
for the bi-directional scenario is proposed in Fig. 5 (sufficient
to evaluate the performances since results for other links are
similar). The diagrams show the comparison of two observa-
tions with a simulation using ETT. The learning framework
was able to successfully identify the relations between the oc-
cupation of links and their travel times, leading the simulated
data being in the range of observations for all cases. In par-
ticular, the trend of the datasets appear to be quite similar,



(a) (b)

(c) (d)

Figure 6: Comparison of observation (blue) and simulation (red)
results of links 7 → 8 ((a) for first and (c) for tenth it.) and 8 → 9
((b) first and (d) tenth) from the simulation of the second scenario.

despite the link 3→ 2 provides a more variable and quite os-
cillating trend for the simulated data. On the other hand, the
simulated data are inside the range provided by observations
and the emptying times of links is also close.

4.2 An Environment with a Bottleneck
The second scenario represents an implementation of the Da-
ganzo paradox [Daganzo, 1998], where a long initial corri-
dor is connected to a bifurcation where a short way is inter-
ested by a narrow bottleneck, while the other way is sensibly
longer. At the first iteration, all agents are choosing the short
route experiencing congestion and long travel times, but iter-
ating the scenario leads the congestion to partially dissipate
and the agents to choose the longer route. We computed the
dataset with 20 iterations (with re-routing active) so that the
ETT model is able to learn the travel times for all links in
the scenario: at the first iteration links in the southern part of
the environment are not used. We trained ETT with the full
dataset and then we evaluate the results based on the routes of
the first iteration (all agents configured with the shortest path)
and the tenth (many agents takes the detour).

Results in Fig. 6(a) and (b) represents the occupation of
links 7 → 8 and 8 → 9 at the first iteration, while (c) and
(d) show the comparison achieved using the routes of agents
of the tenth iteration. In all cases the simulated occupation
respects quite well both trend and range of the observation

Figure 7: Computation times (left) and speedup (right) related to
the simulation of a single time-step of the bottleneck scenario using
ETT.

data. In particular, two points must be highlighted: (i) the
ETT model reproduced well the maximum occupation of the
bottleneck link (8 → 9) and the link before without having
been trained on data about this; (ii) the congestion generated
on the bottleneck spreads back to the link 7 → 8 and also to
the link describing the initial corridor, meaning that the model
fitted the occupation-travel time data of links successfully.

4.3 Computation Times
A preliminary evaluation of computation times is now pre-
sented. The analysis is performed using the second scenario,
because it can host a higher number of agents simultaneously:
a unique simulation is configured with 4000 agents crossing
the environment and having to pass through the bottleneck,
with the aim to produce a sensible congestion. The simulation
has been performed on a laptop with CPU Intel i7-4712HQ
2.3 GHz and RAM 16 GB.

Times for the computation of single time-steps with the
ETT model, dependent on the number of agents simulta-
neously present in the simulation, are shown in Fig. 7. The
speedup is calculated with the ratio simulated time

computation time , where
the simulated time for a single time-step of ETT is config-
ured as 0.1s in this implementation. These results highlight
the efficiency of the model: with 1000 simulated agents it dis-
plays a speedup of about 30, while it is less than 5 with the
microscopic model (see [Crociani and Lämmel, 2016]). De-
spite this very encouraging result for this approach, it must
be noted that the training of the SVR for all links of this sce-
nario still represents a bottleneck, having required a dataset
composed of travel times of 20 simulation iterations with the
microscopic model and needing about 6 minutes for the train-
ing phase with cross validation. We are already working to
reduce the burden of this initial cost, by means of: (i) pre-
processing of data to reduce the variability of travel times
provided by the discrete microscopic model; (ii) reducing the
set of parameters used for the training with cross validation of
the SVR, searching for a smaller combination of values that
generally work with a high number of scenarios.

5 Conclusions and Future Works
The paper has presented an approach for learning and exploit-
ing micro-scale pedestrian simulation aggregated results to



support effective and efficient meso-scale simulation, within
a multi-scale simulation framework. The currently achieved
results are encouraging, but the analysed scenario are so far
too simpler (both in scale and structural complexity) than the
real world situations it is targeted at. Next steps are related
to facing situations closer to real world scenarios, evaluat-
ing both the effectiveness and efficiency of substituting the
micro-scale model with ETT in the overall iterative process,
in addition to reduce the initial cost provided by the training
phase of the new model.
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