
Abstract 

We estimate parking cruising time curves - the 
probability Pi() of longer than  parking search for 
destination Ni located within an area with hetero-
geneous demand and supply. To do that, we esti-
mate cruising time curves for an area of homoge-
neous demand and supply and then average these 
curves based on (1) a model of parking search be-
havior established in a serious parking game; and 
(2) a “Maximally Dense” parking pattern obtained 
for the case where drivers possess full knowledge 
of the available parking spots and are able to park 
at the spot closest to their destination that is vacant 
at the moment they start searching for parking. We 
verify the proposed methods by comparing their 
outcomes to the cruising time curves obtained in an 
agent-based model of parking search in a city. As a 
practical example, we construct a map of cruising 
time for the Israeli city of Bat Yam. We demon-
strate that despite low (0.65) overall demand-to-
supply ratio in Bat Yam, high demand-to-supply 
ratio in the center of the city may result in longer 
than 10 minutes parking search there. We discuss 
the application of the proposed approach for urban 
planning.  

1 Introduction: Demand-to-Supply Ratio as a 

Major Determinant of Parking Search 

Time 

Long parking search time is a perpetual problem of every 
big city, and quantitative estimation of parking cruising time 
is a long-standing challenge for transportation research. 
Given only a moment’s thought, the inherent reason for this 
problem is that demand D exceeds supply S and the demand 
to supply ratio R = D/S > 1. A greater level of detail is nec-
essary to estimate parking search time for a designated area, 
and should include vehicles arrival and departure rates in the 
area, parking occupation rate, spatial distributions of the 
departing drivers, and of destinations of the arriving drivers.  

The analytical study of cruising for parking can be per-
formed with stochastic or deterministic models [Arnott and 
Rowse 1999; 2013; Anderson and de Palma, 2004; 2013; 

Levy et al., 2013], while simulation modeling makes it pos-
sible to estimate parking search time and the distance be-
tween a driver’s place of overnight parking and destination 
[Levy et al., 2013; Levy and Benenson, 2015]. Note that 
simulation models of cruising for parking include car fol-
lowing effects [Levy and Benenson, 2015; Arnott and Wil-
liams, 2017], but we are not aware of analytical models that 
account for this phenomenon.  

Importantly, the analytical and simulation approaches re-
sult in qualitatively different estimates of cruising time, as 
dependent on the occupation rate. According to [Levy et al., 
2013] the average search time in a homogeneous grid-like 
city area remains low in analytical models, even when the 
occupation rate is very high, ca. 98%, whereas simulation 
studies of cruising time for the same area result in essential-
ly higher estimates starting from ca. 90% occupation  (Fig-
ure 1).  

 

 

 

 

 

Figure 1: Cruising time as dependent on occupancy rate in analyti-

cal and simulation models of [Levy et al., 2013]. 

According to [Levy et al., 2013], the reason for the gap in 
Figure 1 is the primarily clustered distribution of vacant 
parking places that inevitably emerges in a parking model 
with stochastic arrivals and departures.  

High occupation rate and above 100% demand-to-supply 
ratio are characteristic of the central part of every large city. 
At the same time, the spatial patterns of demand and supply 
there are always heterogeneous and the level of heterogenei-
ty is dictated by the city: the demand for parking is defined 
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by the size and use of the buildings, while the supply is de-
fined by the parking capacity of street links and off-street 
lots, as well as parking permissions and prices. In this paper 
we demonstrate that this heterogeneity has far-reaching con-
sequences and local mismatch results in the emergence of 
essentially larger areas where drivers have to cruise for 
longer. We investigate this idea in depth with an agent-
based model of parking search, and present a fast and effi-
cient algorithm for estimating parking search time based on 
the patterns of parking demand and supply. The output of 
the algorithm is a map of cruising time that is validated with 
the help of the simulation model. As a practical example we 
construct the map of cruising time for the Israeli city of Bat 
Yam, with a population of 120,000, and discuss the applica-
tion of the proposed approach for urban management and 
planning.   

2 The PARKGRID Agent-Based Model of 

Parking Search 

Cruising is the collective outcome of individual drivers’ 
parking search. In what follows we investigate the problem 
of parking search with the spatially explicit agent-based 
PARKGRID model that is based on the knowledge of park-
ing search behavior obtained in a serious parking search 
game [Benenson et al., 2015]. PARKGRID is a stand-alone 
C# application and can be freely downloaded from 
https://www.researchgame.net/profile/Nir_Fulman.  

PARKGRID continues the tradition of PARKAGENT 
[Levy et al., 2013; Levy and Benenson, 2015] and is a GIS-
based application that is based on the layers of streets, desti-
nations, and parking places. In this paper, we consider an 
abstract grid city for estimating basic dependencies, and 
then apply our results to a real city.  

2.1 Urban Street Network in PARKGRID 

PARKGRID simulates on-street parking in an abstract grid 
city where the street network is represented by two-way 
links Li and junctions Nj (Figure 2). The length of a street 
link is 100 m. To avoid boundary effects, the grid is folded 
into a torus - the right ends of its rightmost links in Figure 
2a are connected to the leftmost junctions and the top ends 
of the top links are connected to the junctions at the bottom. 
In this way each junction has exactly four incident links. For 
further simplicity, we set drivers’ destinations at the junc-
tions. 

In the current version of the model, we assume that driv-
ers’ destinations are located at the junctions and each desti-
nation junction Ni is characterized by its demand Di that can 
vary between buildings. Each link contains 20 parking plac-
es of 5m length on each of its sides, 40 parking spots alto-
gether. This entails the ratio of the total number of destina-
tions to the total number of curb parking spots equal to Rcity 
= 80.  
 
 
 
 

 

 

 

 

 

Figure 2: Torus 20x20 grid city (a); zoom to a city block (b). 

Street links and junctions are stored as GIS layers, with 
the demand being an attribute of a junction, and the number 
of parking spots an attribute of a link. Model experiments 
are performed on a 20x20 grid with N = 400 destinations 
(junctions), L = 800 links and P = L*40 = N*80 = 32,000 
parking places. We do not consider off-street parking lots in 
the current version of this model. 

2.2 PARKGRID Basic Assumptions 

PARKGRID agents - drivers are explicitly considered from 
the moment they reach their destination and start cruising 
for parking; whereas drivers en route to their destinations 
are ignored. While cruising, a model driver either finds a 
vacant parking spot and parks, or leaves the system after a 
long unsuccessful cruise. We assume that a driver cruises at 
a constant speed of 12 km/h [Carrese et al., 2004] that is, it 
takes a driver 30 seconds to traverse a 100m link. We thus 
consider 30 sec as a model time unit - tick. At each model 
tick, the list of cruising and due-to-depart drivers is con-
structed, randomly re-ordered, and each driver acts in its 
turn. 

Driver Types, Arrivals, Departures  

Each model driver c is assigned a destination Ni; c appears 
at Ni and starts its parking search driving along a randomly 
chosen link that is incident to Ni. Each driver is also as-
signed a parking time, the distribution of which is uniform 
on the [TPmin, TPmax] time interval. Drivers that aim at Ni are 
generated according to a Poisson process with a per-hour 
average λi that depends on whether a driver is an employee 
or a visitor to the destination, and is proportional to the des-
tination’s Ni’s demand Di. The car vacates the spot after the 
parking time is over. 

We consider two types of drivers: employees who park in 
the city and do not leave until the end of the simulation 
(TPmin = 8 hours); and visitors with TPmin = 1 hour, TPmax = 
2 hours. Employees arrive to the city in the morning, and 
their arrival time is uniformly distributed on the time inter-
val [9:00, 10:00]. Visitors arrive to the city and leave it be-
tween 9:00 and 16:00. The simulation starts at 9:00 with an 
empty city and stops at 16:00. 
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Drivers’ Cruising Behavior  

The parking search behavior that we implement in the mod-
el is based on the results of the PARKGAME serious game 
[Benenson et al., 2015] and is formalized as a biased, to-
wards destination, random walk [O’Sullivan and Perry, 
2013]. Visually, a driver cruises around the destination until 
finding a free, on street parking spot, repeatedly approach-
ing the destination and driving further away from it (Figure 
3a). Drivers’ turn decisions  at junctions depend on two pa-
rameters: the distance between the junction and destination, 
and the decision taken at the previous junction – to approach 
the destination or drive further away from it. The probabili-
ties to turn closer to/further away from the destination, as 
dependent on the distance to destination and the decision 
made at the previous junction, were based on more than 200 
PARKGAME game sessions with 35 participants (Table 1). 
Given a driver’s destination Ni, the biased towards destina-
tion random walk model of parking search determines the 
driver’s search neighborhood U(Ni) and, for each link l ∈ 
U(Ni), the probability wl of traversing this link during a pe-
riod of search (Figure 3b). PARKGAME experiments 
demonstrate that these probabilities do not depend on a 
driver’s characteristics (risk-taker or risk avoider) and park-
ing occupation rate around the destination. 
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Figure 3: Driver’s parking search as a biased random walk. Typical 

search path (a); U(Ni) and probabilities to visit links in it (b). 

 

In the model, a driver parks on the first street link that is 
not fully occupied. If, during a 30 sec iteration, a driver 
parks on a traversed link that had f free parking places at the 

previous time step, then its search time on this link is esti-
mated as 30/(f + 1) sec.  

Maximum cruising time M in all investigated scenarios is 
set to M = 20 min; during this time a model driver traverses 
40 street links and 1,600 parking places. We assume that 
drivers that fail to find curb parking during the maximum 
search time, park at a “distant off-street parking lot” that 
always has vacant spots. We ignore them when estimating 
average cruising time.   

3 Model Study 

3.1 Homogeneous Demand and Supply Patterns 

In the basic scenario we consider a homogeneous city in 
which the average number of drivers who aim at destination 
Ni is Di = q*Rcity, q < 1. Note that q is an average over the 
city occupation rate in this case.  

Let a fraction e of drivers who arrive to the city in the 
morning be employees who stay there until the end of the 
day. For a city with N destinations this means that 
e*q*Rcity*N drivers arrive, uniformly, to the city between 
9:00 and 10:00, search for parking, park (if successful) and 
the car stays at the parking spot until 16:00, the end of the 
model day. The rest of the drivers that arrive throughout the 
day and depart the same day, are visitors whose parking 
time is uniformly distributed on the [1, 2] (hours) time in-
terval. The average parking time of a visitor is thus 1.5 
hours and to compensate visitors’ departures, we assume 
that visitors’ arrival rate λ is (1 – e)*q*Rcity*N per 1.5 hour 
that is, λ = ((1- e)/1.5)*q*Rcity*N per hour.  

All drivers in the basic scenario employ the biased ran-
dom walk search tactic, with the parameters presented in 
Table 1. We start with investigating the dependency of park-
ing search time in a city with a homogeneous distribution of 
demand and supply, that is, Di, λi and [Ti,min, Ti,max] are iden-
tical for every destination, and estimate the probability p(q, 

τ) to find parking in time less than τ (“cruising time curve”), 
as dependent on q.  We then extend these results to the case 
of heterogeneous demand.  

3.2 Homogeneous Scenario Outcomes 

We start with the case of relatively low demand, q = 0.85 
and e = 0.85. That is, the average number of employees that 
aim at each destination equals to e*q*Rcity = 0.85*0.85*80 = 
57.8 cars, while the visitors arrive during the whole day at 
an average rate ((1-e)/1.5)*q*Rcity = 0.1*0.85*80 = 6.8 
cars/hour/destination.  

Decision at  a previous 

junction 

d < 100, 100 ≤ d < 200 200 ≤ d < 300 d ≤ 300 < 400 d ≥  400 

Closer Further Closer Further Closer Further Closer Further Closer Further 

Closer 0.00 1.00 0.65 0.35 0.85 0.15 0.90 0.10 Irrelevant 

Further Irrelevant 0.00 1.00 0.80 0.20 0.85 0.15 1.00 0.00 

Table 1: Probability to choose a link that takes a driver closer to/further away from a destination, as depending on a distance d between a 

junction and a destination and the decision made at the previous junction [Benenson et al., 2015]. 
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Figure 4: PARKGRID basic scenario, q = 0.85, e = 0.85. Dynam-

ics of the total arrivals and departures (a), and the fraction of occu-

pied spots (b). 
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Figure 5: Model output for the basic scenario of homogeneous 

demand for q = 0.85, e = 0.85. Percentage of time the link is fully 

occupied (a), cruising time curve (b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6: Cruising time curves (fraction of driving cruising for a time t before finding a vacant parking) for q varying between 

0.950 – 0.995 and e = 0.85  



As presented in Figure 4, the average occupation rate in 
the city stabilizes, as expected, at q = 0.85 towards 11:00 
and from then on remains steady, fluctuating around 0.85 
with the STD of 0.0025. In what follows, we consider the 
steady period 11:00 - 16:00 only. 

As should be expected, a street link’s occupation rates are 
symmetrically distributed around 85% average, with an 
STD = 1%. On average, a link is fully occupied during ca. 7 
minutes per hour that is, 13% of the time (Figure 5a). High 
parking availability results in an average cruising time of 17 
seconds, with only 12% of drivers cruising for longer than 
30 seconds, a consequence of not finding a vacant spot 
along the first link after the destination (Figure 5b). With an 
increase in q, the expected search time becomes longer and 
longer (Figure 6).  

The cruising time curves in Figure 6 enable estimating 
the average search time as dependent on the occupation rate 
and Figure 7 merges between Levy et al [2013] outcomes 
presented in Figure 1 and the PARKGRID estimates of the 
average cruising time as dependent on occupation. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: PARKGRID search time vs Levy et al [2013] results. 

As can be seen, the PARKGRID average search time is 
higher than obtained in Levy et al [2013] analytical model, 
while lower than the estimates obtained in simulations for 
the occupation rates below ~99.5% and higher for higher 
average occupation rates. Several explanations can be pro-
posed: Levy et al [2013] (1) artificially preserved a constant 
number of drivers in the system, substituting one driver that 
leaves the system by one driver that enters it; (2) accounted 
for the parking search on the way to the destination; and (3) 
accounted for the car-following and the time that it takes a 
driver to occupy a vacant spot. In PARKGRID, the arrival 
and departure processes are independent, parking search 
starts after a destination is reached, and car-following and 
the time that it takes a driver to occupy a spot are ignored.   

3.3 The Case of Heterogeneous Demand 

To investigate the consequences of heterogeneous demand, 
we consider a city with two neighborhoods H and L, where 
the demand differs from the average over the city. We as-
sume that in the neighborhood H the demand is higher than 
q*Rcity, while the demand in L is lower and adjusted to the 
demand in H, to preserve the overall q*Rcity. Formally, for 

each destination Ni  H the demand is set equal to Di = (q + 
α)*Rcity, while for destinations in L, Di = (q – α)*Rcity. 
 Figure 8 presents the case of α = 0.5 and H and L as 5x5 
neighborhoods. The demand Di of every destination in H is 
equal to Di = (q + α)*Rcity = (0.85 + 0.5)*80 = 108 and, to 
compensate, the destination’s demand in L is equal to Di = 
(q – α)*Rcity = (0.85 – 0.5)*80 = 28. For the rest of the des-
tinations we preserve the demand Di = q*Rcity = 0.85*80 = 
68. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Demand patterns for the heterogeneous scenario, q = 

0.85, e = 0.85, R = 80, α = 0.5. 

The effects of the H and L neighborhoods on the city 
parking pattern are different. The capacity of the links inside 
H is insufficient for absorbing all drivers who aim to park 
there and some of them eventually park beyond H, increas-
ing parking occupation in H’s surroundings. The L neigh-
borhood hardly influences the parking pattern, because the 
demand there is far below parking capacity.  

To reflect the effect of spillovers generated by drivers 
who aim to park at H, we apply the PARKFIT algorithm 
(Levy and Benenson [2015]) that, based on the PARKGRID 
demand and supply patterns, generates a Maximally Dense 
(MD) parking occupation pattern.   

3.4 PARKFIT Algorithm and Maximally Dense 

Parking Pattern 

The PARKFIT algorithm aims at estimating the parking 
pattern in a “city of autonomous vehicles”. Its major as-
sumption is that each car “knows” the vacant parking place 
that is closest to its destination when starting its parking 
search, “books” it when entering the system, and drives 
there directly, meanwhile the spot cannot be occupied by 
other drivers. 

Let k, k = 1, 2, 3, …, K be destinations of the Dk demand, 
and drivers (i.e., autonomous cars) know distances between 
each of the parking spots in the area and their destinations.  



The steps of the PARKFIT algorithm are as follows: 
(1) Build a list L of all <driver, destination> pairs (the 

length of this list is D1 + D2 + D3 + … + DK) and randomly 
reorder it. This list defines the order of drivers’ arrival to the 
area  

(2) Loop by drivers in L. For each driver consider the 
parking spot closest to its destination that is vacant at a 
moment of the driver’s arrival to the system and assign it to 
the driver. 

(3) Randomly release spots in respect to the departure 
rate per time period that, on average, is necessary to traverse 
the link. 

In the areas where destinations’ demand is lower than the 
parking supply around, as in the neighborhood L, PARKFIT 
algorithm generates patches of 100% occupation around 
each destination with intervals of vacant spots between 
patches. In cases where destinations’ demand is higher than 
the supply nearby, as in the neighborhood H, PARKFIT 
spreads the excess demand beyond the area of the high-
demand destinations (Figure 9). In both cases, the occupa-
tion rate of the link within highly occupied patches is equal 
to 100% minus departure rate per the time unit necessary for 
traversing the link (30 seconds for the grid city that we con-
sider).      

 
                
 
 
 
 
 
 
 
 
 
 
 
        a                 b 
 
 
 
 
Figure 9. MD patterns generated by PARKFIT for q = 0.85, Rcity = 

80, α = 0 (a) and α = 0.5 (b).  

3.5 Cruising Time as Dependent on Local De-

mand-to-Supply Ratio 

A driver’s search conditions are very different depending on 
whether its destination Ni is located within H, L or over the 
rest of the area. The success of a driver’s parking search is 
defined by the overlap of the search neighborhood U(Ni) 
and the MD pattern. For drivers with destinations Ni that are 
close to the center of H, the only chance to park is to occupy 
a spot that is freed by a departing driver. Drivers whose des-
tination is close to the boundary of the MD-extension of H 
have a significantly higher chance to find a free spot beyond 

the border of this extension, where the links’ occupation rate 
is lower than 100%. Drivers whose destinations are not 
within H and its MD extension will cruise over a neighbor-
hood with an average or even lower than average occupation 
rate.  

The average occupation rate ri,ave over the driver’s search 
neighborhood U(Ni) can be estimated as 

ri,ave = lU(Ni){wl*rl}    (1) 

Where U(Ni) is the driver’s random walk search neigh-
borhood, wl is the probability of traversing each link 
lU(Ni) during its search as presented in Figure 3b, and rl is 
the average occupation rate of link l in the maximally dense 
pattern. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Directly simulated vs obtained according to (2) cruis-

ing time curves for three selected destinations within and outside 

H.  

Consequently, we can roughly estimate the cruising time 
curve Pi(τ) for the destination Ni located within the hetero-
geneous neighborhood (according to the demand and sup-
ply) U(Ni) based on ri,ave. The simplest approximation is as 
follows: 

α = 0.5 α = 0 



Pi,1(τ) = p(ri,ave, τ)       (2)  

Instead of (2) that is based on the average occupation rate 
(1), we can directly average cruising time curves p(rl, τ) that 
are characteristic of the links of the MD pattern: 

Pi,2(τ) = lU(Ni){wl*p(rl, τ)}    (3) 

We have verified approximation (2) by comparing cruis-
ing time curves Pi(τ) that are estimated directly in simula-
tions and Pi,1(τ) for locations within and outside (yet close 
to) H, and for which U(Ni) neighborhoods are heterogene-
ous. We employed the weights wl as presented in Figure 3b 
and cruising time curves for the homogeneous case as pre-
sented in Figure 6. Figure 10 presents Pi,1(τ) and directly 
estimated Pi(τ) curves, and the fit is very good. 

Figure 11 presents the results of systematic comparison 
between aggregate properties of the Pi(τ) and its Pi,1(τ) ap-
proximation for all 400 destinations Ni of the demand pat-
tern presented in Figure 8. As can be seen, direct and ap-
proximate estimates of the average search times as well as 
the probability to cruise for over 3 minutes strongly corre-
late with R

2
 ~ 0.95.      
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Figure 11: Pi,1(τ) estimates according to (2) versus direct estimates 

with the PARKGRID. Average search times (a); Probability to 

cruise longer than 3 minutes (b). 

4 Predicting Cruising Time in Bat Yam 

As a practical example, we estimate the time of residents’ 
search for overnight parking in the Israeli city of Bat Yam. 

4.1 Parking Demand and Supply in Bat Yam 

Our estimates are based on the demand and supply data of 
2010, when Bat Yam’s population was ca. 130,000, total car 
ownership 35,000, and the total number of residential build-
ings 3,300 with 51,000 apartments. These data as well as 
layers of streets, off-street parking facilities and buildings 
were supplied to us by the Bat Yam municipality. Residen-
tial buildings in Bat Yam provide their tenants a total of 
17,500 dedicated parking places that should be excluded 
from the demand and supply data. We associate destinations 
of the overnight parking with residential buildings and esti-
mate the demand for parking in each as (35,000 – 17,500) / 
51,000 = 0.34 times the number of apartments (i.e. house-
holds) in the building.  

Parking supply data is based on two GIS layers - a layer 
of streets and a layer of off-street parking facilities. Based 
on the layer of streets, 27,000 spots for curb parking were 
constructed automatically, 5 meters apart on both sides of 
two-way street links, and on the right side of one-way links, 
with a necessary gap from the junction. In addition, 1,500 
spots are available for the city’s residents in its parking lots 
and in the evening Bat Yam residents can park at these spots 
free of charge. The average overnight demand/supply ratio 
is thus very low (35,000 – 17,500) / (27,000 + 1,500) ≈ 0.61 
car/parking spot.  

However, the distribution of demand and the road net-
work that characterizes the supply in Bat Yam are both 
highly heterogeneous, and the demand in the center of Bat 
Yam is high and significantly exceeds the supply there 
(Figure 12). 

4.2 Maps of Parking Search Time in Bat Yam 

We estimate cruising time in Bat-Yam assuming, as 
above, an 85:15 ratio between the numbers of parking resi-
dents and visitors that come to visit Bat-Yam residents in 
the evening. Starting from the building-based estimates of 
demand, and the link and lot-based estimates of supply, we 
have (1) transferred buildings’ demand to the nearest junc-
tion; (2) established Bat Yam MD pattern for 85:15 ratio of 
residents and visitors (Figure 13a); and then (3) estimated 
the cruising time curve for every destination applying for-
mula (3), assuming that a driver’s area of search and cruis-
ing behavior is the same as revealed in the experiments pre-
sented in Figure 3b and Table 1. Figure 13b presents esti-
mates of the average cruising time in Bat Yam, while Figure 
14 presents the probability to cruise for parking for more 
than a certain time as dependent on driver’s destination. 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       a               b                     
        
 

 

 

 

 

 

              c 
 
Figure 12: Bat Yam: Parking demand by buildings (a), road net-

work (b) Demand/Supply ratio by Transport Analysis Zones (c).  
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Figure 13. Bat-Yam MD (a) and average cruising time (b) maps. 
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Figure 14. Bat-Yam maps of the probability to cruise longer than 

2.5 and 10 minutes. 

5 Conclusions 

The surplus of demand over supply is critical for parking 
search in the city. We investigate the dependence of the 
parking search time on the local demand-to-supply ratio and 
propose an algorithm for estimating search time based on 
static demand and supply patterns.  

We apply our model to the Israeli city of Bat Yam and 
show that despite a low, ca. 61%, average demand to supply 
ratio, spatial heterogeneity of the demand and supply pat-
terns results in lengthy parking searches for a significant 
fraction of drivers.  

The proposed method can be applied to every city where 
the patterns of parking demand and supply are known at a 
resolution of buildings, roads and parking lots. We consider 
our approach as a fast and efficient approximation for direct 
estimates of the cruising time, which can also be obtained in 
a dynamic agent-based model simulation, such as 
PARKAGENT [Levy et al., 2013]. This approach can be 
applied to any city of arbitrary size. 

It should be stressed that the perspectives of agent-based 
modeling of human-driven systems such as parking, critical-
ly depend on our knowledge of agents’ behavior. In this 
respect, we consider serious games as a method to account 
for the dynamic nature of the system that is missed in the 
stated and revealed preferences surveys. In the same time, 
the conditions of serious games are fully controlled by the 
researcher and can be used to create situations that cannot 
be observed. To the best of our knowledge, the biased ran-
dom walk search tactic that is revealed in the game and em-
ployed in the PARKGRID model is the first example of a 
successful merge between a serious game and a parking 
agent-based model.  

From a practical point of view, the estimates of parking 
search times presented in this paper should serve as initial 
information for an urban planner who aims at assessing the 
consequences of construction of, for example, a new office, 
commercial or residential building. If parking supply in the 
area is insufficient for the planned demand, a planner can 
choose to increase supply by adding parking lots. Our meth-
od can be applied for predicting the decrease in the search 
time and its spatio-temporal extent. 



The policy maker can also attempt to decrease demand by 
rigid limitations on vehicular entrance to a designated area 
to certain groups of drivers, or by increasing parking prices, 
or even introducing flexible prices that are adapted to the 
expected demand for parking [SFMTA, 2016]. Incorpora-
tion of drivers’ reactions to prices when cruising for parking 
is thus the extension of our approach, and the first step in 
this direction is presented in [Fulman and Benenson, 2018].  
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