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Abstract
We develop an incentive scheme for a hub-to-
shuttle campus transit system, encouraging riders
to shift travel times to improve system efficiency.
Riders are modeled as agents with loss functions
in order to evaluate social welfare in the incentive
scheme. Incentives are calculated based on a pre-
dictive wait-time model trained via Gaussian pro-
cess regression. Experiments show that the sys-
tem’s total loss decreases, but the average wait time
increases. This leads to the conclusion that there is
room for improvement in the predictive wait time
model.

1 Introduction
In most public transportation systems, particularly bus sys-
tems, uneven ridership leads to an inefficient use of resources.
There are geographic areas and times within a traffic system
that require different resources, but in a bus system the same
vehicles travel the same routes throughout the day. The goal
of the RITMO project [Maheo et al., 2015, To appear] is to
make public bus systems more efficient. This new system
uses shuttles for segments of bus routes with minimal riders,
allowing buses to focus on high-volume routes.

The RITMO project aims to improve the bus system at the
University of Michigan, by using this hub-to-shuttle system
to address uneven ridership. Figure 1 shows the uneven de-
mand across the campus bus system map. The idea of the
hub-to-shuttle system is to connect the populous green areas
with buses, and to use shuttles to drive riders in the sparse
blue areas. It would be inefficient to have a single shuttle ser-
vice all blue areas on the map, therefore the serviceable area
is broken into zones, which can be seen in Figure 2. A shuttle
will not leave its assigned zone, but rather pickup and deliver
riders from hubs whom wish to travel in multiple zones.

Along with some physical routes getting significantly more
attention, some temporal routes getting greater traffic volume
causes problems with inefficiency. While it is inevitable that
there will be uneven ridership throughout the day in a tran-
sit system, this paper addresses the problems created by the
same amount of resources being deployed throughout the day
by developing a solution to spread out traffic. Wait times are
assumed to be important to riders and thus a useful tool to

Figure 1: This heatmap of ridership on the University of Michigan
campus displays the uneven distribution of riders in the system. The
green areas represent spots where more riders want to begin a bus
trip, while the blue area contains fewer riders.

Figure 2: The University of Michigan bus system is broken up into
zones, each containing a hub for buses to run between. Shuttles are
assigned zones to travel less populous routes.

convince them to move to spread traffic. In this paper we de-
fine a wait time to be the time difference between when a rider
requests to be picked up and when she actually boards her first
vehicle. However, in a stochastic transit system like RITMO,
wait times cannot be computed directly at the time the system



would offer an incentive. In this paper, an incentive is defined
as an arbitrary point system that can easily be expanded to
a real quantity. For example, on the Michigan campus meal
points can be allocated to students that alter their requests
times. We specifically use incentives, rather than tolls, be-
cause the RITMO system is for a free campus bus system.
Our goal is to spread riders out over time to reduce the cost
of the system and lower wait times to increase efficiency and
social welfare. Social welfare is the aggregate loss of riders
in the system, plus the cost of providing incentives to riders.

The main contribution of this paper is the creation of an
agent-based incentive scheme which utilizes a learned pre-
dictive wait time model. The incentive schemes aims to in-
centivize riders entering the system to change their departure
time by small intervals. This helps alleviate the number of
riders at a time, while not reducing the satisfaction of rid-
ers, because they still reach their destination on time. The
incentive scheme models the riders as agents, then uses loss
functions for the system and agents, and the expected wait
time to calculate an incentive for each agent to change her
trip starting time, or board time. The incentive model then
decides if an agent should be offered an incentive based on
if the system deems it socially optimal for the agent to move
her travel time. The incentive model is judged by its effects
on the system’s cost and social welfare.

The creation of a learned predictive wait-time model part-
nered with an agent-based incentive model has previously not
been used in transportation pricing. When we first created the
incentive model and did not have a good wait time predictor,
then agents changed their board times to time intervals that
potentially increased their wait times, which decreased the
satisfaction of riders and increased costs to the system. As the
predicted wait time became more accurate the satisfaction and
cost of system improved. Therefore, the design of the predic-
tive wait time model became integral to the success of the
incentive model. Developing a predictive wait time model is
not straightforward in the RITMO problem space because the
shuttles’ paths are volatile. Our predictive wait time model
uses Gaussian Process Regression [Pedregosa et al., 2011,
Rasmussen, 2004] to find expected wait times for agents be-
fore their trips are scheduled, based on current traffic infor-
mation. We evaluate the wait-time model on the accuracy of
its predictions, and whether it helps reduce the average wait
times in the system.

2 Related Work
This work is part of the RITMO project, a hub-and-shuttle
public transportation project initiated by Pascal Van Henten-
ryck [Maheo et al., 2015, To appear]. The hub-and-shuttle
system is the basis of this paper, but previous work from Van
Hentenryck focuses on vehicle routing optimization, while
our work focuses on improving social welfare at high rider-
ship times by incentivizing riders to change their travel plans.

Literature on dynamic transportation pricing mostly in-
volves finding optimal prices for lanes or roads to reach an
equilibrium for drivers [Sharon et al., 2017, Yin and Lou,
2009, Zhang et al., 2014]. These attempt to change routes
rather than departure times. Studies more similar to ours

examine a similar problem of tolls for individuals and road
traffic to achieve a socially optimal solution [de Palma et al.,
2005, Joksimovic et al., 2014, Li, 2018, Bui et al., 2012].

Literature on pricing ride sharing systems strongly consid-
ers surge pricing, or pricing during peak travel times [Baner-
jee et al., 2015]. This work studies a two-sided system be-
cause drivers are also part of the pricing scheme, compared
to the RITMO system where drivers are not compensated for
individual trips. There is a study on pricing multi-leg ride
sharing [Teubner and Flath, 2015], but their pricing scheme
relies solely on trip distance and does not study traffic or in-
centivize riders to change requests.

Studies using machine learning to predict the wait time for
public transportation riders mainly focus on arrival of buses
on their predetermined routes [Chien et al., 2002, Yu et al.,
2011, 2007]. Idé and Kato [2009] use Gaussian process re-
gression to predict the travel time of vehicles in a traffic net-
work.

3 Incentive Model
To reduce the number of riders entering the system at high
traffic times, an incentive model aims to incentivize some rid-
ers to change their requested board times by small time inter-
vals. A rider enters the RITMO system by providing a request
to the scheduler on an app interface. Without an incentive
model, a scheduler immediately processes a riders requests
by finding a trip for the rider, which is illustrated in Figure 3.
Scheduling the requested trip is necessarily beneficial to other
riders in the system, so we introduce an incentive model to at-
tempt to increase the social welfare of the system by lowering
the aggregate loss of the riders. Figure 4 illustrates the pro-
cess of how a scheduler uses the incentive model to handle
a rider’s request. This request contains a rider’s desired trip
information, which inform the scheduler how much the rider
values different aspects of the trip, for instance any aversion
about early arrival at destination. After receiving a request,
the scheduler decides whether or not to provide an incentive
to convince the rider to change her board time. This decision
is based on expected wait times for the rider and similar rid-
ers. If the scheduler decides not to offer an incentive, then the
original request processes by scheduling the trip. If the sched-
uler offers an incentive, then the rider decides if she wants to
take the incentive and change her board time, or reject the
incentive and keep her original board time. Once the rider
makes her decision, the scheduler respects the decision and
continues with processing the request.

Figure 3: Without an incentive model, riders enter the system and
send their desired trip to the scheduler. The scheduler immediately
processes requests and schedules the route and vehicles.

Given the information in a request, we model the riders
as agents with loss functions. An agent’s loss increases as



Figure 4: Riders enter the system and send their desired trip to the
scheduler. It considers a request and uses the predictive wait time
model to decide if offering an incentive is socially optimal. If it will
not benefit the system for a rider’s board time to change, then the
it schedules her ride. Otherwise, it offers her an incentive, which
she uses the predictive wait time model to decide if her personal loss
lowers. She then returns her decision, and her trip is scheduled.

wait time increases, and decreases with the addition of an in-
centive. Though every time an agent takes an incentive, the
system endures the cost of that incentive. The entire system
is better off when the agents’ losses in aggregate are lower.
Therefore, the total loss of this system is calculated by the
sum of agent loss plus the incentive costs. This total loss can
be thought of as the negative of social welfare, because the
agents on average are better off with a lower system loss. An
individual agent’s assumed goal is to minimize her own loss.
The goal of the scheduler is to maximize social welfare by
minimizing the total loss of the system.

3.1 Communication Between Scheduler and Agent
An agent wishes to minimize her own loss and to reach her
destination. The scheduler wants to minimize the net-loss of
the system and get all agents to their desired destinations. The
scheduler breaks a day into t-minute time intervals as a way
to measure congestion at different points. Both the agents and
scheduler are aware of traffic in the market.

An agent, xi, initiates an interaction by sending a request
with public and private parameters. We assume the scheduler
has full information from agent xi’s request, that is, the re-
quest the scheduler receives reflects all private information.
Given the request, the scheduler decides if the agent should
be offered an incentive ψi to move the agent’s board time
by t. We calculate the incentive with agent xi’s private loss
function, using values in xi’s request. Once the scheduler
finds ψi, it looks at congestion and a threshold for incentives.
Congestion is determined by the effects of an agent on the
average wait time at different time intervals.

If the scheduler determines that ψi should be given to xi
then it returns her proposal consisting of ψi and a new board
time. If the scheduler does not think that an incentive should
be offered to xi, then it continues on with scheduling xi’s
ride. If the agent is offered an incentive, then she considers
her potential loss with the proposed board time and her orig-
inal requested board time. The agent chooses the board time
that minimizes her loss. Since the scheduler knows the pri-
vate parameters of the agent, it can choose an incentive that
it knows will be sufficient to convince an agent to agree to

a time-shift. The scheduler updates agent xi’s request and
continues with scheduling her ride.

3.2 Details of Interaction
Request
Agents’ requests consist of a set of public and private param-
eters that the scheduler uses to assign routes and incentives.
The public parameters within an agent’s request are a trip ID
(i.e., an identifier for agent xi ∈ X where X is the set of all
agents), the requested board time lower bound ri, the pickup
stop, and the delivery stop. The private parameters are her
willingness to leave early αi, willingness to leave late βi, and
malleability to incentives γi, which determines how much xi
appraises an incentive in proportion to how the system val-
ues it. Her wait time is the difference between her requested
board time lower bound and her actual pickup time.

Agents’ Loss Function
Agents have a loss function to evaluate a ride. The elements
of this loss function consist of the travel time, and the effects
of changing the request time if the agent chooses to change
her board time lower bound. The travel time is broken down
into the wait time and the time an agent spends on the actual
trip. We assume agents want lower wait times. Therefore the
wait time is beneficial in calculating an incentive. We assume
that loss increases if the agent does not leave at her intended
time, but an incentive counteracts this by decreasing loss.

Agent xi’s loss function is formally defined as:

La(xi) = τ(pi)+αi(ri− pi)Ie+βi(pi− ri)I`−γiψi. (1)

The parameters are revealed to the scheduler in xi’s request.
pi is a board time lower bound proposed to agent xi by the
scheduler, where pi ∈ {ri − t, ri, ri + t}. τ(pi) is the trip
time at pi, where trip time is calculated by the time from pi
to when the agent completes her trip. Ie and I` are indicator
functions where Ie = 1 when ri > pi and Ie = 0 otherwise,
i.e. when the proposal time is earlier than the request time,
and I` = 1 when ri < pi and I` = 0 otherwise.

The scheduler and agents cannot know exact travel times
until all rides are assigned trips, so the estimated agent loss is
found by:

L̂a(xi) = E[τ(pi)]+αi(ri−pi)Ie+βi(pi−ri)I`−γiψi. (2)

The expected trip time, E[τ(pi)] = E[w(pi)] + E[vi].
E[w(pi)] is the predictive wait time model’s estimate at pi,
and E[vi] is an optimization of the minimum trip distance.
The calculation of the estimated wait time is discussed in sec-
tion 4.

System’s Loss Function
The system also endures a loss from each agent and the in-
centive it pays her. Therefore, the system’s loss is defined
as the aggregate agents loss, plus the cost of the incentives.
Since the system appraises the incentive at the its true value,
the system’s loss from a rider is defined as:

Ls(xi) = La(xi) + ψi. (3)

The scheduler uses an estimate of (3) to assess the effect an
agent will have on the system, because the agent’s trip is



not scheduled when it uses the loss to calculate an incentive.
Thus, it must use the predictive wait time model to calculate
the expected travel time. The estimation the scheduler uses:

L̂s(xi) = L̂a(xi) + ψi, (4)

After the termination of the simulation, we evaluate the
system by summing agent loss (3),

L =
∑
i=1

Ls(xi). (5)

Incentive
Assuming the scheduler knows each agent’s private parame-
ters, it can find L̂a(xi),∀i, and use this to minimize the sys-
tem’s loss. We find the minimum incentive for xi by solving:

E[τ(ri)]− L̂a(xi) = 0. (6)

E[τ(ri)] is the estimate loss of at ri. We solve for ψi in (6):

ψi =
1

γi

(
E[τ(pi)]+αi(ri−pi)Ie+βi(pi−ri)I`−E[τ(ri)]

)
.

(7)
If the scheduler offers ψi found in (7), then agent xi is guar-
anteed to do as well as her original request time. However,
it is most likely suboptimal to move all agents, so the sched-
uler decides which agents to incentivize the impact on other
agents with similar requests. If the scheduler determines
moving xi to have a positive affect on other agents, then ψi

is offered to xi, in exchange for xi to change her request time
to pi.

Scheduler Decision
Once the scheduler calculates an agent’s required incentive, it
must decide whether to offer this incentive to the agent. The
scheduler’s goal is to maximize social welfare, so it offers xi
an incentive if moving xi positively affects the other agents in
aggregate. We determine this using the wait-time estimator to
find the wait time with and without the agent at the requested
time and time intervals around it. We assume that an agent
affects only those requesting trips at the same stop and time
interval. Therefore, we calculate the average estimated wait
time of the original time interval and the intervals around it.
To find the socially optimal option, we find the average esti-
mated wait when xi is in each time interval. Whichever pro-
vides the lowest average wait time is the interval the scheduler
incentivizes agent xi to move her request time. This decision
is illustrated in Figure 5. We assume lower average wait time
leads to a socially better outcome, because more agents with
requests similar to xi will be better off since a lower average
wait time yields a lower average loss.

Agent Decision
An agent’s goal is to minimize her own personal loss. There-
fore, she will take an incentive if her overall loss lowers when
she moves her request time to the proposed time. How she
makes this decision is illustrated in Figure 6. An agent does
not particularly care about if she enters at rush hour or not,
but rather if she has a low wait time and reaches her destina-
tion on time. Choosing the board time lower bound with the
lowest loss assures that she achieves these goals.

Figure 5: The scheduler decides to offer an agent an incentive if it
will positively affect social welfare. To make this decision, it finds
the average wait time of the desired time interval and those pre-
ceding and following it; this average wait time is defined as E[W ].
Here it offers an incentive to change the board time to ri−t, because
minE[W ] = 1.1.

Figure 6: An agent determines whether or not to take an incentive by
assessing her personal loss. She uses the predictive wait time model
in order to calculate her expected loss, L̂. Here she will choose to
take the incentive because min L̂ = 9.7.

3.3 Agent Manipulation
We also explore the impacts on the incentive model when
agents try to manipulate the system. Agent manipulation de-
fines an agent attempting to lower her own loss by giving the
scheduler an untruthful board time lower bound. Before an
agent submits her request, she is assumed to have full knowl-
edge of the system and can determine if she would be in-
centivized to change an untruthful request time to her true
desired time. This decision happens before a request is sent,
and how it fits into the incentive model is shown in Figure 7,
and details of her decision are illustrated in Figure 8. A ma-
nipulative agent is only untruthful about her requested board
time, and the other parameters in her request are truthful. The
scheduler is unaware that an agent is untruthful, and assumes
that the distribution of traffic throughout the system remains
the same as if all agents were truthful.

3.4 Evaluation
The incentive model is evaluated on its impacts on social
welfare. Our goal is to minimize the system loss (5). This
equation is the sum of the agents’ loss and the incentives pro-
vided to them. Therefore, in minimizing this equation, we
also minimize the agents’ loss, while not providing unafford-



Figure 7: This depicts the same incentive model as Figure 4, except
agents are now trying to manipulate the system. Agents now use
the predictive wait model to determine if they should submit an un-
truthful requested board time to the scheduler. The incentive scheme
proceeds in the same manner as Figure 4.

Figure 8: To decide if she should lie about her desired requested
board time, an agent wants to know if she will be incentivized to
change her board time to her desired time. She uses the predictive
wait time model to determine her effects on social welfare, which are
calculated the same way as Figure 5, with average wait time E[W ].
If she finds that the system will be worse off if she has a different
board time, then she changes her request. Here she changes her
request to ri + t because maxE[W ] = 1.4.

able incentives. Minimizing the agents’ loss should result in
maximizing the social welfare. The baseline for total system
cost is the value of (5) when no incentive scheme is used with
the model.

4 Predictive Wait Time Model
The goal of the incentive scheme is to convince an agent to
alter her request before the actual trip takes place. To deter-
mine an incentive to provide the agent, the scheduler uses (7).
Thus at the creation time of the request, the scheduler needs
to know the wait time at the requested board time.

Finding the wait time at a future time step is nontrivial
because the state of the system can change. In the interim,
other agents may enter and alter a shuttle’s path, potentially
affecting the predicted route of an agent at her creation time.
Shuttles may also leave and enter the system in a stochastic
manner.

4.1 Gaussian Process Regression
We estimate wait times using a model trained with Gaussian
process regression (GPR). GPR generates a nonlinear and

nonparametric model to predict output values. It works by
measuring the distance between points using a kernel func-
tion, and constructing predictions based on a distance-based
weighting of those points. The training is governed by a set
of hyper-parameters [Rasmussen, 2004].

We chose GPR for its superior performance using the fea-
tures available in the stochastic RITMO system. GPR train-
ing requires time cubic in samples, which limited the size of
training sets we could employ in experiments. We use a ra-
dial basis kernel function, k(x, x′) = cexp(− 1

2` (x − x
′)2),

with white noise. We assume that small changes in features
causes only small changes in a wait time, which makes the
smoothing quality of the radial basis kernel ideal. All of the
features are standardized during training, and data is split be-
tween testing and training sets.

4.2 Feature Selection

All of the selected features are independent of an agent’s pri-
vate variables and pertain to the current state of riders, vehi-
cles, and stop network: number of agents expected to request
board times in the same zone and time interval; distance of
the predicted closest vehicle; whether requested board stop is
a hub; whether the agent’s pickup and drop-off stops are in
different zones; whether the agent is at a hub and changing
zones (i.e., waiting for a bus rather than shuttle).

4.3 Training Loop

The training loop begins by running the incentive model once
to generate features and wait times used to train the predic-
tive wait time model. The training loop and final model se-
lection is illustrated in Figure 9. Once data is collected from
this initial simulation run, it is split into testing and training
data. The training data is used to train the Gaussian process
regression model. The trained model’s generated parameters
are plugged into the simulation, and used to calculate the ex-
pected wait time on future runs. Next, the simulation runs
again with a smaller proportion of agents offered incentives.
This proportion is determined by offering incentives only to
agents that the scheduler is sure with benefit the system. The
scheduler determines which agents will benefit other agents
more by altering their requests in Section 3.2. Then the same
data extraction and training process are repeated. The data is
extracted and trained until are desired proportions are tested.
After this training loop completes, all wait time models are
used on the incentive model when either the corresponding
proportion of agents are offered incentives, or no agents are
offered incentives. The chosen final model is the combination
of the predictive wait time and incentive models that yields
the lowest total system loss, L, found by (5).

4.4 Evaluation

The predictive wait time model is evaluated on the accuracy
of its expected wait times and its effects on the actual wait
time. The model is therefore evaluated by its success in low-
ering aggregate wait times. The baseline for this comparison
is the system with no incentive scheme.



Figure 9: The model begins by generating data by running the incen-
tive scheme once. Then the wait time model trains using this data,
and this trained model is saved for later. Next the model is trained
with a smaller proportion of agents offered incentives. Next these
wait time models are used in the incentive model. The final model
is chosen by the minimum system loss, L.

5 Results
5.1 Data
We use a RITMO dataset provided by the RITMO project in
our experiments. This dataset represents bus traffic on the
University of Michigan campus. University bus drivers man-
ually recorded the number of riders that boarded a bus at each
stop three different months, which then was turned into a rep-
resentative distribution of agent requests. There are also sets
of shuttles, buses, and stops to create the University of Michi-
gan RITMO system.

To model loss, we added personal preference data ran-
domly to each agent. These preferences are not meant to
be a realistic model, but rather reasonable values for eval-
uation. Using uniform distributions, we generated prefer-
ences, αi, βi,∼ U [0, 0.1] and γi∼ U [0.5, 1.5], which spec-
ify, respectively, willingness to travel early and late, and
how the rider values an incentive proportionally to the sys-
tem. We also perturbed the baseline request set to test the
incentive and predictive wait time models on different traf-
fic spreads on the Michigan campus. Specifically, we added
noise ∼ U [−20, 20] minutes to each rider’s request-creation
time and requested board time.

5.2 Environment Settings
We consider the RITMO and perturbed datasets, which con-
tain 37,724 rider requests in the University of Michigan bus
system. This dataset takes place over a 22 hour period. The
system is split into three zones, with between 17 and 31 shut-
tles in each zone. There are four bus lines with a total of 17
buses.

For both the incentive and predictive wait time models, we
vary the proportion of agents offered incentives to determine
if this affects the total loss and average wait time. We do
this by only offering agents whom the scheduler is more con-
vinced will benefit the system by moving. This is determined
by setting a limit on the change in predicted average wait
time, and the scheduler will only offer incentives to agents
that it is more convinced will benefit the other agents around
them. We then evaluate the system by the total loss and av-
erage wait time at the different proportion of agents offered
incentives.

In the incentive model we test all non-manipulative agents,
and all manipulative agents. We train the predictive wait time
model on a set of 1,000 requests. Each experiment is run with

10 different random seeds to produce 95% confidence inter-
vals on the following graphs. Lastly, the baseline is defined
as the total loss or wait time of the system when no incentives
are offered.

5.3 Incentive Model Results
The incentive model is evaluated by the total system loss for
non-manipulative and manipulative agents. The goal is to
lower these from their initial baseline values. The results of
the total system loss with the predictive wait time model on
the RITMO and perturbed data are presented in Figures 10
and 11, respectively.

Figure 10: The total loss of the system increases if we offer more
agents incentives. The bottom figure is a closer look at the total
loss when a smaller proportion is offered incentives. The total loss
lowers, but not by a significant amount. The loss slightly rises when
agents are manipulative.

Figure 10 shows for non-manipulative and manipulative
agents the total system loss initially decreases by an insignif-
icant amount from the baseline value, depicted by the black
line, then dramatically increases. The difference in propor-
tion of agents offered incentives is determined by a threshold
placed on the certainty of the scheduler that moving an agent
will benefit the system. Therefore, when more agents are of-
fered incentives, there is a lower threshold on the certainty
of the scheduler, and the maximum proportion in Figure 10
occurs when any agent may potentially benefit the system by
moving. The result that the loss increases as more agents
are offered incentives demonstrates an inaccuracy in the sys-
tem, because ideally the scheduler should not be offering that
many agents, if any at all, incentives that would cause the to-
tal loss to increase. This is mainly an issue because the goal
of the system is to lower the loss of the agents in aggregate, a
goal which is clearly not being achieved. The loss slightly in-
creases when agents are manipulative, but not by a significant
amount compared to non-manipulative agents.

Figure 11 shows the total loss of the perturbed data set.
The perturbed data yields a similar result to RITMO data, but
when a lower proportion of agents are offered incentives the
total loss lowers by a significant amount. One more thing
to note is that the confidence intervals are tighter on the per-
turbed data compared to the RITMO data, and there is less
variation between the cases with and without manipulation.



This is most likely caused by the method of perturbation
making the traffic spread more stable and have slightly lower
peaks at high traffic times.

Figure 11: The total loss lowers by a significant amount when in-
centives are offered to a smaller proportion of agents, and the loss
is higher than the baseline when more agents are offered incentives.
The loss remains the same when agents are manipulative.

5.4 Predictive Wait Time Model Results
The predictive wait time model is evaluated by the average
wait time at the end of the simulation. The results of the av-
erage wait time for the RITMO and perturbed data are shown
in Figures 12 and 13, respectively.

Figure 12: On the RITMO dataset, the average wait time shows the
same patterns as the total loss in Figure 10. The average wait time
is lower when a smaller proportion of agents are offered incentives,
and the average wait time increases by a small amount when agents
are manipulative.

Figure 12 shows the average wait for the RITMO data and
training sets of non-manipulative and manipulative agents.
This shows the exact same pattern as Figure 10, demon-
strating that the loss and average wait times are directly re-
lated. This allows us to conclude that the inaccuracies with
the scheduler’s decision that an agent will benefit the system

Figure 13: The average wait time is higher for all tested proportions
of agents offered incentives, even though the total loss lowers in
Figure 11. The average wait time remains the same when agents are
manipulative.

are from problems with the predictive wait time model. If
the predictive wait time model accurately calculated expected
wait times for agents, then the average wait time would lower
when agents took incentives, and as a result the total loss
would lower as well. It also shows that the incentive model
is behaving how we would expect because there is a direct
relationship between the average wait and total loss. There-
fore, we can come to the conclusion that to improve the entire
model, we need to improve the predictive wait time model.

The average wait time of the perturbed data is shown in
Figure 13. Like the RITMO data, the average wait time shows
a similar pattern as the total loss. While the increase in wait
time as the proportion of agents that take an incentive in-
creases is similar, the average wait time is always lower when
agents take incentives. This shows that the predictive wait
time model works better on the perturbed data, which is most
likely a result of the stabilization of the perturbed data dis-
cussed in the previous section. Therefore there is potential in
the incentive scheme and predictive wait time model, but we
should proceed in attempting to improve the predicted wait
time model for all datasets.

6 Conclusion
We developed an incentive scheme for the RITMO transit sys-
tem with a predictive wait-time model. The incentive model
aims to minimize system loss and improve social welfare,
which is defined as the aggregate loss of agents in the sys-
tem. In experiments with non-manipulative agents, the total
system loss is successfully lowered compared to the loss in
an unincentivized model. However, the average wait time is
consistently higher for all incentive schemes. Therefore, the
predictive wait time model can be improved.

The main contributions of this work are the creation of
the agent-based incentive model and learned predictive wait
model. Using learned wait times to calculate incentives for
agents in a stochastic system is an innovative idea because
riders in a transportation system value their time, and thus



want lower wait times. This idea could expanded to a useful
tool for dynamic pricing in any stochastic road network.

One potential way to improve the predictive wait time
model is to look at traffic at an individual stop, rather than
the entire zone. We could also switch from Gaussian pro-
cess regression to a deep neural network, which could better
estimate the unknown, underlying structure of the RITMO
system. Given the relationship in experiments between the
mean squared error and average wait times, improving the
predictive wait time model will greatly improve the success
of the incentive model. Other extensions are to not assume
the scheduler knows private information, and to assume an
estimated distribution of riders, rather than the exact number
of riders. These extensions would make this model more de-
ployable.

References
T. Arda, Y. Crama, D. Kronus, T. Pironet, and P. Van Henten-

ryck. Multi-period vehicle loading with stochastic release
dates. EURO Journal on Transportation and Logistics, 3:
93–119, 2014.

S. Banerjee, R. Johari, and C. Riquelme. Pricing in ride-
sharing platforms: A queueing-theoretic approach. In 16th
ACM Conference on Economics and Computation, page
639, 2015.

K. T. Bui, V. A. Huynh, and E. Frazzoli. Dynamic traffic
congestion pricing mechanism with user-centric considera-
tions. In 15th International IEEE Conference on Intelligent
Transportation Systems, pages 147–154, 2012.

S. I.-J. Chien, Y. Ding, and C. Wei. Dynamic bus arrival
time prediction with artificial neural networks. Journal of
Transportation Engineering, 128:429–438, 2002.

A. de Palma, M. Kilani, and R. Lindsey. Congestion pricing
on a road network: A study using the dynamic equilibrium
simulator METROPOLIS. Transportation Research Part
A: Policy and Practice, 39:588–611, 2005.

D. Guimarans, D. Harabor, and P. Van Hentenryck. Simu-
lation and analysis of container freight train operations at
Port Botany. Eprint arXiv:1512.03476, 2015.
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