
Abstract 

We present the design and evaluation of a custom-
made driving simulator, which was conducted 
through an experiment with users. Objective and 
self-reported measures of driving behaviour are 
used to validate the simulator. Objective data in-
clude situation awareness and workload measures, 
quantified with SAGAT and physiological esti-
mates, while self-reported data focused on driving 
behaviour perceptions from a standardised driving 
style questionnaire. To evaluate the simulator, we 
firstly check that the synthetic environment does not 
overload the participants and enable them to have a 
sufficient level of situation awareness.  Secondly, a 
correlation analysis is conducted between observed 
and self-reported driving style to examine the level 
of their covariance and similarity. Results showed 
that participants exhibited a similar driving behav-
iour as that reported with self-reports. This indicates 
that the simulator provides realistic driving condi-
tions that encourage participants to behave in a real-
istic way. 
 

 
1.    Introduction 
Driver related factors, according to the literature [Evans, 
1991; NHTSA, 2015a]  constitute the main cause of accident 
in three out of five crashes, while they contribute to the oc-
currence of 95% of all accidents. The National Highway 
Traffic Safety Administration -NHTSA [NHTSA, 2015a], 
classified driver-related accident causes into recognition er-
rors, decision errors, performance errors, and non-
performance errors [Reason et al., 1990]. The most frequent 
of these errors (more than 40%) are recognition errors which 
include driver’s inattention, internal and external distrac-
tions, and inadequate surveillance. Decision errors, such as 
driving too fast under certain conditions, too fast for given 
curves, false assumption of others’ actions, illegal manoeu-
vres and misjudgement of gap between other vehicles or oth-
ers’ speed, account for more than 30% of accidents 
[NHTSA, 2015b]. Performance related errors such as over-
loading, poor directional control, etc., account for 11% of the 
crashes. Sleep is the most common critical reason among 

non-performance errors that accounts for about 7% of the 
crashes. These categories however, are highly interrelated. 
For instance, overloading will affect decision and recognition 
that could lead to a crash. 
 
Driving style is directly linked to accidents. Many studies 
analyse driving style, and particularly aggressive driving, 
since this is highly related to crashes. Evaluating the effect of 
different driving styles on accidents can be performed in 
different ways, one of which is through driving simulation. 
Alternatively surveys such as the Manchester Driving Style 
questionnaire [Reason et al., 1990] can be used.  Simulation 
can be described as a method of reproducing a situation simi-
lar to reality. To test driving style, it is necessary to design an 
environment with identical stimuli to a real situation. In the 
field of driving, simulations are used to generate situations 
that produce the same response to participants as real-life 
driving, without having the risks of injury. Driving simula-
tors have been developed ranging from small-scale such as 
the NADS miniSim [FHA, 2013] to large scale models such 
as the Daimler-Benz [Kading, 1995]. The advantages of us-
ing simulators as a research tool include the design of exper-
iments that are easily replicated and the dynamic collection 
of relevant drivers’ variables for safety analysis. Driving 
simulators are designed for specific purposes and hence re-
quire validation in order to produce correct results. However 
due to the inherent complexity of such systems the prediction 
of travellers and drivers’ behaviour is becoming increasingly 
harder. For these reasons, agent-based simulation, which 
adopts an individual-centered approach, is one of the most 
relevant paradigms to design and implement such applica-
tions [Mastio et al., 2018]. 
 
Human driver behaviour modelling has been the subject of 
many studies. The car-following model [Reuschel, 1950] has 
been used to describe driver behaviour at the micro level and 
is based on control theory (predictive control, optimal con-
trol, etc.). The model expresses how vehicles follow one 
another on a roadway, the minimum space and time gap be-
tween them and the behaviour of the driver with regards to 
keeping a “safe distance” from the leading vehicle, driving at 
a desired speed, or choosing acceleration pattern to maintain 
a comfortable range from the vehicle in front. The aim is to 
mimic different driving styles, such as:  Aggressive driving, 
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that has high accelerations and deceleration patterns with 
almost no anticipation, eco driving style, where sufficient 
anticipation is evident to avoid unnecessary acceleration and 
braking, and normal driving, an intermediate driving style 
between the above two styles. Alternative driver behaviour 
modelling methods include neural networks, and fuzzy logic. 
The latter models human perceptions by fuzzy sets and fuzzy 
mathematics combined with knowledge-based logic. These 
methods are often used to mimic processes that have compli-
cated mathematical models. Fuzzy logic has gained attention 
in modelling tactical driver behaviour [Khaisongkram et al., 
2010], however, it requires a large number of experimental 
data.  
 
The use of driving simulation in driver behaviour analysis is 
considered essential due to the difficulty in eliminating con-
founding effects on control measures in field experiments. 
However, unrealistic simulation conditions may affect the 
driving behaviour of participants in experiments which could 
influence the validity of any study. Commercial driving sim-
ulators, on the other hand do not provide the required level of 
customisability necessary for researchers to design experi-
ments. Therefore, most experiments are designed using cus-
tom made simulators. The main limitation of driving simula-
tion studies is that by removing the risk of harm to partici-
pants, their driving behaviour may be altered. Therefore, the 
conclusions made could be inaccurate. This paper contributes 
in resolving this problem by addressing the following re-
search questions: (1) Does self-report driving behaviour of 
participants differ from the observed objective driving be-
haviour in the simulator? The assumption here is that drivers 
should demonstrate similar driving style as their self-report 
in the driving behaviour questionnaire. (2) Does the simula-
tor enable the drivers to have sufficient situation awareness? 
The assumption is that a realistic driving simulator should 
enable drivers to have a minimum situation awareness (SA), 
which is the capability of understanding what is going on 
around them and make decisions accordingly. (3) Is aggres-
sive driving associated with situation awareness?  (4) Does 
the simulation environment overload the drivers? This exam-
ines if the workload of participants is within the accepted 
levels. An indication of overloading in a normal driving sce-
nario could indicate a problem with the realism of the simu-
lator. (5) Do imprudent drivers consume more cognitive re-
sources than prudent drivers? 
The paper is organised as follows. The next two sections 
describe the literature relating to driver behaviour, SA, work-
load and driver simulation. The next section describes the 
process of designing a custom made driving simulator, fol-
lowed by a section that addresses its validation process. The 
paper concludes with the main results of this study. 
 
2. Driving behaviour, Situation Awareness and 
workload 
Driving performance is associated with driving skills that are 
manifested on driver behaviour which, in turn, affects driv-
ing style. Driving skills include information processing and 
motor skills, which improve with experience. Driving behav-

iour describes driving habits that define the way a driver 
chooses to drive [Lajunen et al., 2011]. The Driver Behav-
iour Questionnaire (DBQ) [Reason et al., 1990] is one of the 
most widely used instruments for measuring driving style. 
According to Reason et al. [1990] driving errors and viola-
tions are two different groups of behaviour, which is overall 
categorised into violations, errors, slips and lapses. Viola-
tions are deliberate deviations from practices believed neces-
sary to maintain safe operation of a potentially hazardous 
system, while errors are defined as the failure of planned 
actions to achieve intended outcomes. The research instru-
ment DBQ developed by Reason et al. [1990] considers this 
classification. Slips and lapses refer to attention and memory 
failures such as: attempt to drive away from the traffic lights 
in wrong gear, forgetting where you park the car etc. Viola-
tions are more serious and include close following vehicle 
ahead (tailgating), speeding, risky overtaking etc. Errors re-
fer to behaviours such as failing to notice pedestrians-
crossing, missing Give Way signs etc. A further classifica-
tion [Lawton et al., 1997] divides violations into aggressive 
violations, and ordinary violations, which are deliberate de-
viations without aggressive behaviour. 
 
An important skill that affects driver safety is anticipation of 
events. Experienced drivers can predict the traffic situation, 
hence are ready when a hazardous event occurs. This ability 
is referred to as driver’s situation awareness. Gaining situa-
tion awareness involves perception and pattern recognition, 
attention and comprehension, and decision-making [Ensley, 
2012]. Hence, drivers identify, process, and comprehend the 
critical information cues from the environment to predict 
how future events could unfold. Drivers’ decision-making 
process is not only based on the current environmental state, 
but also extrapolates the current situation to future projec-
tions. Well aware drivers analyse the current state of their 
environment using multiple information sources, then predict 
the next states. Situation awareness is an important feature in 
driver safety. In normal condition an average driver has a 
minimum level of situation awareness, which is required in 
order to navigate the vehicle. This driver property can be 
used as an indicator of the quality and realism of a driving 
simulator, assuming that an unrealistic simulator will not 
enable drivers to maintain minimum situation awareness. In 
this study, self-reports of driver style gives an indication of 
capability to maintain sufficient situation awareness, along 
with driver behaviour.  Therefore, a driver that reports in 
DBQ that he/she is making a few errors and lapses is ex-
pected to demonstrate sufficient situation awareness in the 
simulator. 
 
Amongst the various methods for assessing drivers’ situation 
awareness, this study employs the Situation Awareness 
Global Assessment Technique SAGAT [Endsley, 2004; 
Endsley & Jones, 2012], which is a dynamic query technique  
that  questions participants’ recent memory of the situation 
by freezing the simulation and hiding all information. 
 



Measuring driver workload is of great significance for im-
proving the understanding of driver behaviours and support-
ing the development of driver assistance systems. Workload 
expresses the demands placed on the driver from secondary 
tasks that could potentially interfere with the primary driving 
task. Workload is defined as the competition in driver re-
sources (perceptual, cognitive, or physical) between the driv-
ing task and a concurrent secondary task, occurring over that 
task’s duration. Driving tasks for instance, require physical 
and cognitive resources that are dynamically varied under 
different driving conditions.  
 
There are three main methods to measure cognitive work-
load: subjective, performance-based, and physiological. Sub-
jective knowledge acquisition techniques such as surveys, 
interviews, and observations are commonly used to assess 
cognition workload during tasks [Lehto et al., 1992]. Per-
formance based measures are usually classified as either 
primary task or secondary task performance. Depending on 
the type of secondary task performed, objective measures of 
workload include lane departures, and lateral deviations. 
Additionally, performance based assessments include task 
time, reaction time, accuracy, and error rate. Physiological 
measures encompass audiology, cardiovascular, urodynamic, 
gastrointestinal, respiratory, neurophysiology, and ophthal-
mic physiology [Rusnock, 2018]. Using physiology is advan-
tageous, as assessment occurs continuously in real-time. 
Physiological quantitative data of a subject’s state can be 
linked to complex constructs such as mental workload, fa-
tigue, situation awareness, health, and emotion [Endsley, 
1996; Kelly, 2003]. By assessing a user’s physiological state, 
a designer will receive feedback that cannot be expressed 
verbally or written by the user. 
 
In this study drivers’ workload was measured by electroen-
cephalography (EEG) and lateral deviation. The algorithm 
implemented in the NeuroSky EEG device measures the at-
tentional resources consumed while the participant per-
formed a task. Data from the EEG was monitored on a simu-
lation time-step basis and automatically mapped to road sec-
tions. The optimum level of driver performance is achieved 
with a medium level of workload [Gregoriades et al., 2006], 
which implies an EEG reading around 50%. Hence, as part 
of the simulator validation, it is hypothesised that a normal 
driving scenario should not overload the participants. Over-
loading users in a simple scenario could indicate unrealistic 
driving conditions that require participants to devote extra 
cognitive resources to process unfamiliar task-related situa-
tions (unexpected acceleration, steering etc).  
 
3  Driving simulation 
By definition, driving simulators are complex systems of 
software and hardware which simulate real life environ-
ments, behaviours and physical systems. Driving simulators 
are used in a variety of applications, from training new driv-
ers in a safe environment to testing new car technologies. 
They are often developed as part of traffic modelling and 

driver behaviour research, prototype intelligent transporta-
tion systems validation and training.  
 
There are different categories of driving simulations. Micro-
simulation is widely considered as a method to study drivers’ 
behaviors, as in the example of parking choice simulators 
PARKIT and PARKAGENT [Bonsall and Palmer, 2004]. 
Among micro-simulation programs, multi agent-based mod-
elling simulation environments, such as NetLogo [Sklar, 
2007] and Archisim [Doniec et al., 2008], allow researchers 
to investigate the connection between micro-level behaviors 
of individuals, and macro-level patterns coming from their 
interactions. Intelligent agents in multi agent systems per-
form three functions: they perceive the dynamic conditions 
from their environment, they perform actions, and reason to 
interpret perceptions, solve problems, draw inferences, and 
determine best course of actions. 
 
Traffic models are also classified into microscopic and mac-
roscopic models. The latter analyse traffic flow as a whole, 
while the former focus on specific actions of the driver and 
the physical laws of motion. Thus, in the case of macroscop-
ic models, overall shockwaves are analysed but do not con-
sider each car individually. Macroscopic models are not suit-
able for driving behavior modeling since they do not exam-
ine individual vehicle behaviours. Microscopic approaches 
are more suitable for driving behaviour analysis and are 
based on the models of: car-following [Brackstone and 
McDonald, 1999], intelligent agents [Hidas, 2002], fuzzy 
logic [McDonald et al., 1997], and cell transmission [Da-
ganzo, 1993] for simulation of traffic. Car-following theory 
is an effective method to study the interaction between vehi-
cles in a microscopic simulator. The method used in this 
work is based on a microscopic model utilising the agent-
based approach, with each vehicle represented by a software 
agent having autonomy to behave based on some predeter-
mined rules that define basic driving styles.  
 
The aim of this work is to provide a simulation environment 
that is fully customisable. This is necessary to eliminate the 
effects of confounding variables from a driver behaviour 
experiment due to unfamiliarity with the infrastructure. 
Hence, it was necessary to model the road network in the 
simulator prior to the analysis.  
 
4 Designing the driving simulator 
Much effort has been put in implementing driving simulators 
in the last years [Biurrun-Quel et al., 2017; Rossetti et al., 
2013; Almeida et al., 2013; Gonçalves et al., 2012, 2013; 
Alves et al., 2013]. These methods and tools allow the repre-
sentation of complex, realistic traffic situations for evaluat-
ing specific traffic situations or testing new technological 
applications and their influence on the driver.  The simulator 
was implemented using UNITY game engine which apprais-
es rapid application development through a component-based 
software engineering approach. The driving environment 
was designed using generic models that make up driving 
conditions and road infrastructure. The modelling of the road 



network was achieved by extracting a section of the Nicosia 
road network from OpenStreetMap to generate a 3D model 
of the cropped area in UNITY. The selection of the road 
network was based on identified accident black spots [Gre-
goriades, 2013] on the road network: roads suffering from 
high accident rates. The assumption is that drivers consume 
more cognitive resources at these locations hence they are 
more susceptible to accidents. The selection of the car mod-
els was based on car types and brands currently used in Cy-
prus, in order to enhance the realism factor of the simulated 
environment. Traffic conditions were specified though the 
use of autonomous agent-based vehicles that are able to nav-
igate independently in the network based on pre-set driving 
behaviours. The vehicle behaviours were based on a prelimi-
nary analysis of traffic routing in the modelled traffic net-
work. The accident time statistics of the modelled section of 
the road network were used to pinpoint the most critical time 
on the selected black spot and accordingly replicate the traf-
fic conditions in the simulator.  
 

 
Figure 1: Screenshot of the virtual road design (bottom) and 
the first-person-view from the driver’s seat (top) 
 
 
 
 
 
 
 

Interactivity between the user and the simulator was realised 
in Unity through C# scripting languages. Finally, the simula-
tor was designed with the capability to record in log files the 
driving behaviour of users in real-time. Specifically, for each 
simulation time-step the simulator records drivers’ headway, 
lateral deviations, speed, acceleration and deceleration. Thus, 
it enables the analysis of the data collected on a section-by 
section basis. A screenshot of the simulator’s user interface 
from the driver’s perspective is depicted in Figure 1 along 
with the road network under study divided into 63 sections.  
  
The main components of the simulator are: i) the Unity game 
engine that controls the physical and environmental aspects 
of the simulation; ii) the host vehicle controller that enables 
the navigation of the host vehicle using the pedals and steer-
ing wheel; iii) the data-logger that records the driving behav-
iour of participants in experiments, along with additional 
data relating to the traffic conditions; iv) the Multi screen 
controller, that is responsible for the synchronization of the 4 
screens in the cave automatic virtual environment (CAVE) 
facility; v) the autonomous multi agent vehicle controller, 
that controls the vehicle-agents in the simulation. This com-
ponent is responsible for recreating different traffic condi-
tions depending on the scenarios that need to be modelled.  
Each autonomous vehicle agent dynamically decides its 
route, avoids obstacles in its way and alters its speed depend-
ing on the traffic. vi) The final component, is the road infra-
structure manager component is the facility used for the de-
velopment of the road network and the surrounding envi-
ronment.   
 
4.1   Autonomous vehicle agents 
In order to mimic a real driving experience, it is essential to 
model all external environmental factors such as surrounding 
vehicles dynamics, traffic lights and so on. The behaviour of 
vehicles around a car is modelled based on the car-following 
model and using the agent-based paradigm. The goal here is 
for participants to experience the same feelings as if they 
were in the real vehicle in naturalistic settings. This is 
achieved by embedding each agent with a driving behaviour 
model with the following features: path finding, speed selec-
tion, obstacle avoidance, and acceleration and deceleration 
models.  Each vehicle agent interacts with other vehicle 
agents and with infrastructure and traffic control agents as 
shown in Figure 3. The exchanged messages enable each 
agent to achieve its goals which are to avoid colliding with 
other vehicles or the infrastructure, maintain a normal speed, 
abide to the traffic regulations (drive on left lane etc.). The 
route followed by each agent is dynamically defined, howev-
er collectively all agents device routes that mimic realistic 
traffic conditions.    



Figure 2: Multi agent system architecture 
  

 
Figure 3: Vehicle Path finding component 
 

 
Figure 4: Waypoints on the infrastructure, for vehicle path 
finding 
 
Path finding refers to the process of finding the path to fol-
low in order to reach a destination or an objective. For in-
stance, an agent might be seeking the shortest path to a desti-
nation, or the path with the smaller number of obstacles or 
traffic. Path finding agents analyse all available paths, and 
based on their objectives and restrictions, decide which one 

to follow in a similar way as Navmesh method [He et al., 
2016]. Agents choose their path at runtime, hence deciding 
the path based on what is currently happening around them. 
For this study vehicle agents had no specific destination. 
Their role is to move autonomously, in a non-predefined 
path, in the road network under study, to mimic the traffic 
condition at the specific network. The driving behaviour 
model used was the car-following and the traffic volumes for 
the particular part of the road network was specified based 
on results from a previous study using the VISTA macro-
scopic simulation model [Gregoriades et al., 2013].   
 
For the path finding model to be operational, the road net-
work was modelled using waypoints (Figure 3). This enables 
vehicle agents to know their location on the network, the 
number of lanes at each point and the flow direction at each 
lane. Waypoints represent all the possible paths a car can 
take on the network. Waypoints are connected in a way that 
each road lane has a predefined direction. Two types of way-
points were used: simple and connector waypoints. Simple 
waypoints are used by the vehicle agents as targets to follow 
on a path, which resembles the road lane they are currently 
on (Figure 4). Connector waypoints are used as simple way-
points, with the added functionality to connect two different 
road sections. For example, in an intersection, you exit the 
road section you are currently on to enter a different section 
on your path. In this case, these two sections are connected 
with connector waypoints. 
 
Vehicle agents follow waypoints, to create a path to follow. 
As mentioned before, the path is not specified at the begin-
ning of an agent’s life. Instead they start by defining the first 
two target waypoints and each time a target is reached, the 
agent changes its target to the next waypoint it had already 
selected before, while choosing a new “next” target. The 
selection of a target waypoint is done randomly, based on 
where the target waypoint is connected to, along the direc-
tion of the car. All possible connections from each waypoint 
are stored in an array, and are dynamically accessed by the 
vehicle agent at each time-step of the simulation. 
 
To implement this functionality, all waypoints were pre-
specified on the network model in the form of invisible 
event-based UNITY objects (Figure 4). Waypoints’ objects 
act as placeholders of infrastructural information that auto-
nomic cars utilise. Vehicle agents access this information 
when targeting a waypoint, or when they are in the process 
of selecting a new target waypoint. In order to mimic the 
driving conditions of the road network under study, the au-
tonomous agents’ controller assesses the number of vehicles 
that are on the road at each time-step of the simulation and 
accordingly increase or reduce the traffic volume so as to 
replicate the expected traffic conditions. 
 
Vehicle steering and acceleration is performed after the vehi-
cle has selected its next target. As soon as a car has a new 
target to reach, it starts calculating the steering angle and 
acceleration required to effectively reach the target waypoint. 
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The steering angle is adjusted dynamically depending on the 
position of the vehicle, its desired destination, and speed. 
The steering functionality also addresses issues with regards 
to obstacles or bottlenecks. In case of obstacles, the steering 
to be applied is calculated based on the direction the car 
needs to follow in order to avoid the obstacle. Acceleration 
and speed are calculated based on distance to the preceding 
vehicle. Lane change behaviour is stochastic. 
 
5.   Validating the Simulator 
To be confident that the driving simulator correctly mimics 
reality, two validation studies were conducted: a preliminary 
validation and a more extensive human factors validation. 
For the former, a number of professional taxi drivers were 
asked to drive in a modelled road section in the VR settings 
using the virtual host vehicle. Experts tested vehicle’s steer-
ing sensitivity, acceleration and deceleration, and evaluated 
the realism factor of the virtual environment. Initially, sever-
al problems were identified with regards to vehicle steering, 
acceleration and deceleration behaviours. In addition, the 
early versions of the driving simulator suffered from low 
refresh rate that led to motion sickness. In order to overcome 
these issues, several modifications were performed to the 
simulation scripts until a satisfactory vehicle behaviour was 
achieved. The revised version of the simulator was revalidat-
ed by 5 taxi drivers who all agreed that its behaviour was 
realistic.  
 
The main simulator validation study aimed to identify the 
suitability of the developed synthetic environment for human 
factors analysis. Therefore, for this purpose an experiment 
was conducted with participants in a hypothetical driving 
scenario of a replica road section of Nicosia, with the same 
infrastructure, traffic control and similar traffic conditions. 
The simulation was performed in the VR cave with physical 
steering wheel and petals. The research was conducted in 
three stages: before, during and after the experiment. Before 
the experiment, participants completed the Manchester Driv-
ing Style questionnaire [Reason et al., 1990] and after the 
driving experience questionnaire.  
 
Seventeen participants from the local population, with a val-
id driver’s licence and either 20/20 vision or wearing correc-
tive glasses or lenses were involved in all stages of the ex-
periment. Given that driving skill is a significant factor in the 
visual search strategies of drivers, and subsequently SA [Un-
derwood, 2007], the subjects selected had at least seven 
years’ driving experience and were under 55 years old. Prior 
to the experiment, participants were screened for colour 
blindness. They were introduced to the various simulator 
controls, made adjustments to the seat and were given a five-
minutes training session in a road section other than the sec-
tion used in the experiment. The average age of participants 
was 37.1 years and the gender distribution was 55% female 
to 45% male. 
 
The main variables of interest in this study were workload 
and Situation awareness (SA), hypothesising that a realistic 

driving environment would enable participants to have ade-
quate level of SA and workload. During the experiment par-
ticipants were informed to drive in their normal driving style 
in a pre-specified path in the road network. During the exper-
iment the simulator was collecting data regarding their 
speed, acceleration, deceleration, EEG, headway, lateral 
movements and breaking patterns. Upon completion of the 
experiment participants completed the post-test questionnaire 
about their driving experience in the simulator. Post-
experiment questionnaire addressed the following dimen-
sions: realism of the simulator’s general features, user inter-
face, ease of learning, capabilities, usefulness, ease of use, 
how the simulator supports their situation awareness. Each 
dimension was assessed on a 1-7 point response scale with 1 
being negative ratings and 7 positive (figure 5). Results show 
percentage of positive scores (scores of 5 and above). 

 
Figure 5. Percentages of positive responses above 4, in each 
of the measured dimensions 
 
Participants’ post-test response shown as percentage of posi-
tive responses (above 4) in Figure 5, reveal that overall the 
simulator was perceived as satisfactory in mimicking a real-
istic driving situation. Moreover, the level of realism was 
adequate (71%). However, in one case the participant suf-
fered of a minor incident of motion sickness. 
 
During the objective SA assessment, the simulator was 
stopped at different points and participants were asked a 
number of questions relevant to the driving situation to the 
freezing point. Questionnaire responses from this process 
were assessed on a 0-100 score and analysed by comparing 
the actual situation with what the participants reported in 
their results for the 3 freezing points. Answers from these 
questions were analysed and an average collated score for all 
questions designated the level of SA. Results showed that all 
participants maintained an adequate level of SA with an av-
erage score of (69.6%) in 3 freezing points. This was slightly 
less than the subjective rating of participants as shown in 
Figure 5 which was about 72%. However both indicate a 
satisfactory level of SA. An additional evaluation of SA was 
conducted using objective data from lateral deviations as 
recorded by the simulator for all 63 road sections. These 
were analysed to identify points of reduced SA due to sharp 
lateral movements. This is phenotype behaviour related to 
both overloading and low SA.  From the diagram in Figure 6 
it is evident that the deviations are relatively smooth which 



indicates an acceptable level of SA. This, in turn, shows that 
participants were actively engaged with the driving task. 
Moreover, smooth deviations also indicate a relatively easy 
task undertaken by participants. The three points with high 
deviations (sections 23, 47 & 58) represent the points with 
the pre-set obstacles. 

Figure 6: Workload (bottom) and Lateral deviations (top) of 
all participants per road section 
 
Driver Style Analysis 
To answer the first research question it was necessary to in-
vestigate the extent of the association between participants’ 
self-reported and observed driving style. The assumption is 
that, if self-reported and observed driving behaviours are 
similar then the simulator provides the means for participants 
to behave in a realistic manner and hence is considered as 
valid.  
 
For the self-report stage, participants were asked prior to the 
experiment, to fill in the Manchester Driving Style question-
naire [Reason et al., 1990]. This aimed to elicit the driving 
style of participants, along with demographic information. 
Their observed driving style data were collected by the simu-
lator for each time-step of the simulator and assigned to rele-
vant road sections.  
 
Collected data underwent pre-processing and subsequently 
analysed in SPSS to investigate the magnitude and signifi-
cance of the link between observed (simulator) and self-
report (questionnaires) behaviours. Results in Table 1 indi-
cate that aggression variable is correlated positively (and 
significantly) with the variables “serious violation”, “errors”, 
“lapses” and “aggressive acceleration”. Observed aggressive 

acceleration was positively correlated with “errors”, “lapses” 
and negatively correlated with “SA”. This means that ag-
gressive driving reduces drivers’ SA while it increases errors 
and lapses. Essentially, our initial assumptions regarding 
self-report driver behaviour and observed driver behaviour 
were met. Specifically, self-reported aggressive behaviour 
was found to be positively related to increased speed and 
acceleration patterns in the simulator, hence indicating that 
the simulation environment provides a realistic setting that 
enables participants to drive in the same manner as they do 
in their everyday life. This, as a result, is a promising indica-
tor towards the validity of the designed simulator 

 
Table 1. Pearson correlations (and significance level) among 
observed (O) and self-reported (SR) behaviours (N=50 or 
51, *p<0.05, **p<0.01) 
 
 Workload analysis 
To answer the fourth research question in relation to drivers’ 
workload, both EEG readings and lateral deviations per road 
section (Figure 6 &7) were utilised. The former is a physio-
logical objective measure and the latter a phenotype objec-
tive measure. Given that the participants were driving in a 
normal driving scenario with easy traffic conditions, the as-
sumption here was that there would be no overloading of 
participants.  If that occurred then it could indicate a problem 
with the simulator’s level of realism. The hypothesis is that 
drivers under optimum driving condition (no hazards and 
low traffic flow) should not experience overloading. If this 
occurs then it could designate that the simulator requires the 
drivers to utilise extra cognitive resources to figure out how 
to drive optimally in the synthetic environment. It is evident 
from these results that on average all participants experience 
an optimum level of workload. This was between 45 to 65 in 
terms of EEG readings (Figure 6). Similar results are depict-
ed in the 3D analysis of the frequency distribution of EEG 
ratings (Figure 7) per road section. This shows that the ma-
jority of participants experience optimum level of workload 
in all road sections. The EEG ratings are slightly high at the 
first road sections but still within the acceptable range of 
optimality. The second measure of workload utilised here is 
lateral deviations. Results of Figure 6 show that there was no 
significant deviations by participants and hence indicating 
that the level of workload was optimal throughout the exper-
iment. 
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Table 2. Pearson correlations (and significance level) among 
observed EEG (O) and self-reported (SR) behaviours (N=50 
or 51, *p<0.05, **p<0.01) 
 
 

 Figure 7: 3D EEG frequency distribution per road sections 
(vertical axis) and EEG level (horizontal axis), showing the 
concentration of frequency peaks around the optimal level of 
workload  
 
To answer the fifth research question, an analysis was con-
ducted to examine the link between drivers’ style and work-
load. Correlation results showed that drivers who are charac-
terised as inattentive (i.e. commit high level of lapses) in 
their self-report driving style experiences high readings of 
EEG (Table 2). This confirms the assumption that careless 
and inattentive drivers (imprudent) consume more cognitive 
resources to engage with the driving scenarios. 
 
6. Conclusions  
The paper describes the design and validation of a custom 
made driving simulator for driver behaviour analysis. The 
developed driving simulator is agent-based with the infra-
structure being developed using a component based ap-
proach. This allows the analyst to easily customize the road 
infrastructure for what-if scenario analyses and the design of 
experimental settings for a variety of scenarios.  
 
Results from the analysis of the data collected during the 
experiment, revealed that the simulator satisfies the mini-
mum requirements for vehicle control since participants 
maintain satisfactory level of SA and workload. Additional-
ly, results indicate that what the users experienced during 
their interaction with the simulator and what they actually 
denoted as their opinion in the post-test questionnaire point 
to the same conclusion. Finally, self-reported driver style of 
participants was correlated with observed behaviour during 
the use of the simulator, pointing to the conclusion that the 
artificial settings did not alter their driving style, hence it is 
realistic and considered as valid. 
 

Limitations of this work concentrate on the simulator’s level 
of immersion factors and the issue of motion sickness known 
in VR settings. Simulated settings do not currently offer the 
resolution of the real world, and so these may affect driving 
behaviour and human factors analyses.  
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