
Verification of Fixed-Topology Declarative Distributed
Systems with External Data

Diego Calvanese1, Marco Montali1, and Jorge Lobo2

1 Faculty of Computer Science, Free-University of Bozen-Bolzano, Bolzano, Italy,
{calvanese,montali}@inf.unibz.it

2 ICREA, University of Pompeu Fabra, Barcelona, Spain,
jorge.lobo@upf.edu

Abstract. Logic-based languages, such as Datalog and Answer Set Program-
ming, have been recently put forward as a data-centric model to specify and im-
plement network services and protocols. This approach provides the basis for
declarative distributed computing, where a distributed system consists of a net-
work of computational nodes, each evolving an internal database and exchang-
ing data with the other nodes. Verifying these systems against temporal dynamic
specifications is of crucial importance. In this paper, we attack this problem by
considering the case where the network is a fixed connected graph, and nodes
can incorporate fresh data from the external environment. As a verification for-
malism, we consider branching-time, first-order temporal logics. We study the
problem from different angles, delineating the decidability frontier and providing
tight complexity bounds for the decidable cases.

1 Introduction

It has been recently shown that declarative query languages, such as Datalog, could
naturally be used to specify and implement network services and protocols [15]. The
approach, referred to as declarative networking [3], makes the specifications of com-
plex network protocols concise and intuitive, and directly executable through distributed
query processing algorithms [20]. Applications for declarative networking go far be-
yond network protocols, and languages and techniques developed in this setting provide
the basis for declarative distributed computing. This paradigm has been used widely,
e.g., as the core of the Webdam language for distributed Web applications [1]. We refer
to these systems as declarative distributed systems (DDSs).

There are several variants of concrete languages for specifying DDSs [16,2,1,18], but
their common denominator is data-centricity: computations in a single node are limited
to evaluations of queries on a relational database (RDB), and messages passed between
nodes are snippets of DBs, providing a close correspondence between the programs
and a formal specification in logic of their computation. This facilitates the develop-
ment of program analysis tools (see, e.g., [21,18]). However, in spite of several studies
on the foundations of DDSs [13,4], a rigorous, comprehensive characterization of the
decidability and complexity of verification in such systems, is yet to come.

In this paper, we provide a stepping stone towards a formal, systematic character-
ization of verification of DDSs. As the basis for our investigation, we rely on the D2C

approach in [18], for which verification techniques have been developed [3]. D2C is the
only proposal that decouples the declarative specification of computations inside nodes,
from the inter-node communication model. Differently from DDS languages originated
in Berkeley, such as NDlog or Overlog [16], whose formal semantics is not given in
terms of a logical interpretation but as a transformation of the program, not specified in
Datalog, D2C is strongly grounded in Datalog. The syntax of D2C programs is merely a
syntactic sugar for Datalog1S programs with negation, whose semantics is that of Stable
Models. Note that if the communication model can be described using Datalog rules,
the semantics of the entire system is given by the Stable Models of a logic program, as,
e.g., for the asynchronous models of WebdamLog and Dedalus, c.f. [18].

In this work, starting from [18], we provide a comprehensive formalization of DDSs
and their execution semantics. Differently from previous proposals, which model DDSs
as closed systems, nodes may receive data from its neighbor nodes, and also from the
external environment, to account for the interaction with users and with software in the
application layer. The external sources may inject fresh data into the node DBs, making
the system infinite state in general. Hence, while our approach is similar, in spirit, to
that of [18] and [5], it is substantially richer from the technical point of view.

In this light, the formal model proposed in this paper can be seen as a distributed
version of data-aware business processes and artifact-centric systems [10,8,6]. For such
systems, verification has been extensively studied over the last two decades [9], but typ-
ically focusing on a “monolithic” process operating over an RDB, without taking into
account distributed, interacting dynamic components (an exception is [11]). However,
our work is the first one to consider different communication models and to explicitly
incorporate the topology as a parameter.

To specify interesting properties over DDSs, we use a first-order (FO) variant of
CTL [8], which accounts for the evolution both of a DDS and of the node data. Notably,
this logic can express fundamental properties related to convergence of computation.

We show that, in general, verification is undecidable even for specific convergence
properties and extremely limited, single-node DDSs. To tame this strong negative result,
we leverage the notion of state-boundedness [8,6], and detail the decidability frontier
of verification when a bound is imposed on node relations storing the internal state,
incoming/outgoing messages, and/or external inputs. For the decidable cases, we also
provide interesting tight complexity bounds.

2 Declarative Distributed Computing

The general computational model of DDSs can be described as a network of uniquely
identified nodes, each running an input/output state machine, where outputs of some
machines become inputs of others [17]. We discuss how state machines and their inter-
action can be modeled declaratively. We assume familiarity with Datalog and the stable
model semantics [12], and we adopt the standard conventions.

2.1 Computational Model in a Node

A state in the state machine of a node is represented by a (relational) DB. State transi-
tions occur when the node receives inputs, in the form of DBs, from external compo-

nents (such as applications running in the node, or humans), and/or from state machines
running in other nodes. A state change can also produce an output in the form of a DB
that can be delivered to another node. Thus, every node has an input schema I, a state
schema S, and a schema T , called transport, of the DBs used to communicate between
nodes. Let I, S, and T denote all possible instances of I,S, and T , respectively. The
state transition mapping in a node is a subset of S × T × I × S × T: given a pair
(S ,T) of state and transport DBs, and an input input DB I , the transition results in
new pair (Sn,Tn) of state and transport DBs. In declarative distributed computing, this
state transition mapping is defined using some dialect of Datalog. Intuitively, given a
Datalog-like programP and an encoding of (S ,T , I) as an extensional DBD, (Sn,Tn)
is extracted from the fixpoint computation over P ∪D.

Since plain Datalog is too poor to express state changes, we adopt D2C, a declarative
programming language introduced in [18], with a semantics based on Datalog. A state
transition mapping in D2C is defined by rules of the form:

H if L1, . . . , Ln,prev Ln+1, . . . , Lm, C

Like in Datalog, H is the head atom, but in D2C it is possibly annotated with a term of
the form @t, where t is a variable or constant from a fixed domain (of, e.g., IP addresses
or URLs) used to identify nodes. The Lis are literals (i.e., atoms or negated atoms),
again possibly annotated with a term of the form @t. Finally, C is a set of (in)equality
constraints over variables and constants.

The predicate names follow the standard correspondence of predicates and DB ta-
bles made by Datalog. All variables appearing inH , in C, or in any negated atom inside
a rule must also appear in a non-negated atom among the Lis of the same rule3. The
name of annotated atoms must correspond to relation names in the transport schema T
of the node, and only names that correspond to transport or state tables can appear in
H . Informally, a ground instance h if l1, . . . , ln,prev ln+1, . . . , lm, c of a rule says
that h is in the current state or is an output of the current state if l1, . . . , ln are true in the
current state, ln+1, . . . , lm were true in the previous state, and c is valid. As in Datalog
with negation, we make the usual assumption on the stratification of negated atoms in
l1, . . . , ln w.r.t. h, so that the transition mapping can be computed using the standard
Datalog fixpoint evaluation of Datalog.

Example 1. Consider the input predicate echo(m, d), where m is a message and d is
a node. Rule say(M)@D if echo(M, D) models that the node sends m to d when the
corresponding echo predicate is given as input. M and D are variables, which in this case
are bound to constants m and d respectively. We denote variables by upper-case strings.
Rule alive(S) if say(M)@S models that the node adds to its state the information
that s is alive, whenever the transport tuple say() is received from node s (in this case,
variable S is bound to s). This example shows that the meaning of an annotation depends
on where it appears: if in the head of a rule, it indicates the destination of the transport
tuple, if in the body, it points to the source. Thus, rule say(M)@Src if say(M)@Src
“echoes” the say tuple back to the source node.

Notably, a D2C state transition mapping P can be reduced to a plain Datalog pro-
gram [P] following the technique in [18], i.e., by (i) internalizing @ annotations as an

3 This requirement can be relaxed for negated atoms containing anonymous variables.

additional relation argument; (ii) using two predicates (s p and r p) to differentiate be-
tween an outgoing and an incoming transport tuple of the same p; (iii) duplicating every
predicate to account for the current and previous DBs. Note that the operator [·] can be
applied also to a set of Datalog facts, i.e., an RDB. This reduction makes it possible to
declaratively characterize the computations of a D2C system, including the communi-
cation model, and to simulate them with an ASP engine (for closed DDSs – see below).
Non-determinism. The language described so far only supports deterministic state
transitions. To support also non-deterministic transitions, we introduce the special pred-
icate choice, where choice(X, Y) is a positive atom among the literals L1, . . . , Ln.
Variable X must appear also in another positive atom among the Lis, and once we fix X,
a single value for Y is chosen by picking it from the set of all values that can substitute
X, so as to enforce a functional dependency X→ Y. Specifically, we adopt the semantics
of [22] to interpret choice: choice is encoded via (a controlled form of) recursion
through negation, and non-determinism is captured by the Stable Model Semantics of
logic programs [12]. Example 2 below illustrates the use of choice.

2.2 The Network Model
A DDS relies on an underlying network N of communicating nodes, each running a
D2C program. In distributed computing, N is typically represented as a graph (V,A),
where V are the computation nodes, and the arcs in A reflect communication ability in
the physical network. Directed arcs denote non-symmetric communication.

There is a complex spectrum of different network models, depending on the topol-
ogy of the graph, the degree of mobility of nodes, and on which extent the network may
vary over time. Here we consider an interesting widespread class of networks with
(i) fixed network topology; (ii) bidirectional communication channels; (iii) strongly
connected nodes; (iv) the number of neighbors that a node can have bounded by a con-
stant κ; (v) the ability for every node to communicate with itself. This class of networks
can be represented by fixed undirected, connected graphs with bounded degree, where
each node has a self-loop. From now on, we always assume that the network is of this
shape. To make nodes aware of their own name and that of their neighbors, each node
has the following rules:
my name(M) if prev my name(M). neighbor(N) if prev neighbor(N).

This information is read-only, so no other rule has my name and neighbor in its head.

Example 2. The following D2C program creates a rooted spanning tree in a network.
parent(P) if join@X, choice(X, P),prev not parent().
parent(P) if prev parent(P).
join@N if parent(P), neighbor(N),prev not parent().

The first rule says that when a node receives a join request for the first time, it picks the
sender as a parent. choice is used to handle the case where multiple join requests are
received simultaneously; in this case, the node non-deterministically selects one of the
senders as parent. The second rule is an inertial rule to keep the tree unchanged. The last
rule is recursive and propagates the join request to its neighbors. Even though termina-
tion is not explicitly detected, in a reliable order-preserving network (cf. Section 2.3)
the root can safely start using the tree as soon as it sends the join tuples.

2.3 DDS Formal Model, Execution Semantics

We now formalize DDSs, adopting homogeneous nodes, i.e., all running the same pro-
gram and with the same local DB schemas. Still, over time the behavior of different
nodes might diverge, depending on: (i) the location in the network, (ii) nondeterminis-
tic choices, and (iii) the data obtained from the external world.

A DDS systemM is a tuple 〈N , I, T ,S,P, D0〉, where:
– N is the network graph (see Section 2.2);
– I, T , and S denote the input, transport, and state schemas of every node inM;
– P is the D2C program run by every node inM;
– D0 is a local state DB over S, which represents the initial state of each node, with-

out considering instances of my name and neighbor.
As common for dynamic systems over relational data, the execution semantics of a

DDS is given in terms of a relational transition system (RTS), i.e., a transition system
whose states are labeled by DBs [23]. In the following, ∆ denotes a countably infinite
data domain of constants/values, including also node names. Technically, an RTS Υ is a
tuple 〈∆,R, Σ, σ0, db,⇒〉, whereR is a DB schema, Σ a set of states, and σ0 ∈ Σ the
initial state; db is a function that, given a state σ ∈ Σ, returns a DB instance conforming
toR and made up of values in∆; and⇒ ⊆ Σ×Σ is a transition relation between states.
Υ is serial if, for each σ ∈ Σ, there is σ′ ∈ Σ s.t. σ ⇒ σ′.

Building an RTS from a DDSM poses three main challenges, resulting in variants of
verification: (i) how to construct a global view ofM from the local node DBs; (ii) which
communication modelM adopts; (iii) howM interacts with the environment.
Global View. To obtain a global view ofM = 〈N , I, T ,S,P, D0〉, we group all local
DBs into a unique, global DB. To do so, we obtain schemas IG, SG, and TG from
the corresponding local ones, by adding in the first position of each relation an extra
argument, keeping track of the node to which a relation tuple belongs. This allows us
to define the initial global DB D0,M ofM, as the global DB over SG where each node
stores D0, and the information about its own name and that of its neighbors, according
toN = 〈V,A〉. SpecificallyD0,M = {p(n, t) | p(t) ∈ D0, n ∈ V }∪{my name(n, n) |
n∈V } ∪ {neighbor(n, n′) | (n, n′)∈A}. We denote by ∆0,M ⊂ ∆ the set of values
explicitly mentioned in D0,M, i.e., its active domain.

Also the local D2C program P can be turned into a global program PG, by: (i) in-
troducing an additional node variable S in every predicate of P , and (ii) adding atom
my name(S, S) to the body of each rule (so as to “bind” S). We denote by [PG] the
Datalog program obtained from PG via the procedure in Section 2.1.
Communication Model. A communication model specifies how messages are ex-
changed by nodes, i.e., how output transport tuples are delivered to the destination.
We assume reliable communication, i.e., messages are never lost. In a given computa-
tion step, we also assume that for each pair of neighbor nodes s and d, s concretely
sends at most one message to d. The actual data payload of such messages consists of
all transport tuples produced by s with destination d.

We consider here asynchronous communication, which decouples senders from re-
ceivers, as well as message exchanges: each message is delivered independently from
the others, without any guarantee about “when” it will be received. However, we assume
that all messages sent from a node to another node are delivered in the same relative

order. Hence, asynchronous communication can be abstractly captured by equipping
every node with one message queue per neighbor. The DDS evolution is then captured
by iterating through these steps: (i) nondeterministically pick a non-empty queue, ex-
tracting its front message M ; (ii) the destination node performs a computation step
triggered by M , possibly considering external input data; (iii) the node state is updated
and the produced messages are inserted in the corresponding destination queues.

Environment Interaction. In addition to considering closed DDS, which do not receive
any external input, we distinguish two modes:

(i) autonomous DDS (aDDS): nodes may receive an input DB only at startup, and then
the input remains fixed throughout the execution;

(ii) interactive DDS (iDDS): nodes may receive a new input DB when they are active
and are about to process an incoming message.

The coupling of input and transport DBs is w.l.o.g., since nodes may send dummy
messages to themselves just to process a new input.

Asynchronous, Interactive Execution Semantics. We show how to build the RTS for
a DDS M = 〈N , I, T ,S,P, D0〉 with network N = 〈V,A〉. Given a global DB D
over TG]SG, transp(D) and state(D) denote the projections of D over transport and
state relations, respectively. As pointed out before, nodes are conceptually equipped
with queues for incoming messages, whose relational representation obeys the special
(global) schema QG. We abstract away from the concrete relational representation of
queues. Given a global queue DB Q over QG and a pair of neighbor nodes s, d ∈ V ,
notation inQ

s→d ⊆ Q denotes the portion of Q that refers to the queue used by d to store
messages from s.4 Given a global DB D over TG] SG] QG, queues(D) denotes the
projection of D that maintains only the queue relations. Then, given a global DB D
over SG] TG]QG, we introduce the following preliminary notions:
– The enqueue result of D, written enqueueMsgM(D), is the global queue DB over
QG that results from the queues in D by incorporating all the output transport tuples
into the corresponding input queues:

enqueueMsgM(D) =
{
inD

s→d.enqueue(ms→d) |
(s, d) ∈ A, and ms→d = {p(x) | s p(s, d, x) ∈ D}}

– The active nodes in D are those nodes that have at least a non-empty queue in D:
activeM(D) = {d | there exists s such that (s, d) ∈ A and ¬(inD

s→d.isEmpty())
}

– Given a node d ∈ activeM(D) and a neighbor s of d s.t. ¬(inD
s→d.isEmpty()), the

dequeue result of D w.r.t. s and d, written dequeueMsgs→d
M (D), is a pair 〈Qnew, T 〉,

where, given 〈newins→d,ms→d〉 = inD
s→d.dequeue():

• Qnew is the global queue DB obtained by extracting the front message from
queue inD

s→d, while maintaining all other queues unaltered:
Qnew = (queues(D) \ inD

s→d) ∪ newins→d

• T is the global transport DB obtained by transforming the tuples contained
inside message ms→d into corresponding input transport tuples for d:

T = {r p(d, s, x) | p(x) ∈ ms→d}

4 Recall that every node is connected to itself, hence there is a special queue where each node
stores the messages sent to itself.

Let QG be the set of possible DB instances over QG. To formalize the asynchronous
execution semantics, we introduce a relation C-STEPM ⊆ SG × TG × QG × V ×
IG × SG ×TG ×QG that substantiates the generic state transition mapping introduced
in Section 2.1 by adding the current and next queue state, as well as the single node
asynchronously triggering the transition. In particular, given two global DBs D, Dnew

over SG] TG] IG, a node n ∈ V , and a global input DB I over IG, we have that
〈D, n, I,Dnew〉 ∈ C-STEPM if and only if n ∈ activeM(D), and there exists a neigh-
bor node s of n with ¬inD

s→n.isEmpty() and a stable model M for the program [PG]∪
[D′]∪ T ∪ I|n such that Dnew = state(M)∪ transp(M)∪ enqueueMsgM(M∪Qn),
where 〈Qn, T 〉 = dequeueMsgs→n

M (D). Finally, we define the asynchronous transition
system ofM, written Υ int

M, as the RTS 〈∆,R, Σ, σ0, db,⇒〉, where:
– R = SG] TG]QG; ∆0,M ⊂ ∆;
– db(σ0) = D0,M ∪

⋃
n∈V in∅

n→n.enqueue(start()), where start ∈ TG is consid-
ered as a special, 0-ary transport tuple that is initially inserted in every self-queue of
the system, so as to trigger the first computation step of the corresponding node;

– Σ and⇒ are defined by simultaneous induction as the smallest sets s.t. σ0 ∈ Σ and
1. given σ ∈ Σ s.t. db(σ) = D and activeM(D) 6= ∅, for every global DB Dnew

over SG] TG, every node n ∈ V , and every global input DB I over IG, if
〈D, n, I,Dnew〉 ∈ C-STEPM then σnew ∈Σ and σ ⇒ σnew, with db(σnew)=D̂;

2. given σ ∈ Σ s.t. db(σ) = D and activeM(D) = ∅ (i.e., the system is quiescent),
we have σ ⇒ σ.

Observe that, also in this case,⇒ is guaranteed to be serial.
Execution Semantics for Autonomous DDSs. In the case of autonomous DDSs, the ex-
ecution semantics needs to be modified so as to take into account that the input is pro-
vided only at the beginning of the computation, and then stays rigid over time. Clearly,
each computation may be associated with a different initial input. We can then imagine
that the execution semantics is given, in this case, by an infinite set of RTSs, each asso-
ciated to a different global input DB. Given a DDSM, we write JΥ aut

MK to denote the set
of RTSs obtained by variying the rigid input DB under the autonomous semantics.

3 Static Analysis of DDS

To specify interesting properties over DDSs, we need a logic that captures: (i) the DDS
dynamics, (ii) queries over the data stored in the node DBs, and (iii) conditions about
the evolution of such data over time. The first requirement calls for temporal logics,
the second for FO logic, and the third for their combination, where FO quantification
interacts with temporal modalities. Several logics have been introduced for that purpose
(see, e.g., [10,6]). Here we rely on FO-CTL in [8], which combines FOL under the
active domain semantics with CTL, fully supporting FO quantification across states.
Given schemaR and a finite set ∆0 of values, the syntax of FO-CTL is:

Φ ::= Q | ∃x.Φ | ¬Φ | Φ1 ∧ Φ2 | EXΦ | E(Φ1UΦ2) | A(Φ1UΦ2)

where Q is a FO formula over R and ∆0. FO-CTL formulae are interpreted over a
(serial) RTS relative to a state. We refer to [8] for the full semantics of FO-CTL, and
just recall that E stands for “existence of a path”, A for “all paths”, X for “next state”,
and U for “until”.

Example 3. Given the standard abbreviation AGΦ = ¬E(trueU¬Φ), the formula
AG(∀n, p.Parent(n, p) → AG Parent(n, p)) expresses that Parent is rigid: when-
ever n stores that p is its parent, then it will keep this information forever. This property
is satisfied by any DDS using the D2C program of Example 2. ut

Given a DDS M, we assume, without loss of generality, that the finite set ∆0 over
which Φ is defined coincides with ∆0,M. Given a closed FO-CTL property Φ, veri-
fying whether Φ holds in M gives rise to a different model checking problems, each
one obtained by fixing a certain execution semantics for M. Specifically, for aDDSs
it is interesting to study whether the DDS satisfies a given FO-CTL property indepen-
dently from the given input (that is, for every possible input DB provided at the system
startup). This verification problem resembles the classical verification problem for re-
lational transducers and their distributed variants [10,11]. We consequently obtain that:

– M verifies Φ under the interactive semantics, if Υ int
M |= Φ;

– M verifies Φ under the autonomous semantics, if Υ |= Φ for every RTS Υ ∈ JΥ aut
MK.

Convergence Properties. Convergence is a generalization of termination for DDSs, in-
dicating that the distributed computation run by the whole DDS eventually reaches a
stable situation where all nodes are quiescent, i.e., do not change anymore their DBs.
This typically occurs when no messages are exchanged. However, we want to rule out
those cases in which quiescence is reached because one or more nodes stop their compu-
tation due to an error (e.g., because the node has received an unexpected message/input,
or has entered an undesired state). We assume that a node declares that it is faulty by
inserting the special flag error in its state. This, in turn, corresponds to a global unary
relation, where error(n) indicates that node n is faulty. Under this assumption, D2C
programs employ error to indicate under which circumstances a node becomes faulty.

Convergence properties are then defined by mixing two dimensions: (i) number of
faulty nodes in a run, with the two extreme cases of global (no faulty node) vs partial
(at least one non-faulty node) correctness; (ii) quantification over runs, considering the
case in which the DDS sometimes (i.e., for at least one run) vs always (i.e., for all runs)
converges. Given a DDSM, this gives rise to four variants of convergence:

– M sometimes converges when totally/partially correct if there is a run ofM reach-
ing a state where all nodes are quiescent, and all are/at least one is not faulty.

– M always converges when totally/partially correct if every run ofM in which all
nodes stay/at least one node stays non-faulty eventually converges.
All four convergence properties can be formalized in FO-CTL. Moreover, in FO-

CTL we can model variants of convergence properties that better reflect the conditions
under which the DDS is desired to converge. In this way, checking convergence is re-
duced to FO-CTL model checking, for which well known techniques are available.

4 Verification of DDSs

We investigate the decidability frontier of verification over DDSs. To stress the tightness
of our results, we establish undecidability for convergence properties, and decidability
for full FO-CTL. While input, state, and transport schemas are fixed in advance, the
extension of such relations is not, and could grow unboundedly over time. If no bound

Table 1: Summary of decidability and complexity results for verification of DDSs
Type of Input State/transport bounded

DDS bounded N/Y Y/N Y/Y

Interactive N undecidable undecidable PSPACE-complete
Y undecidable undecidable PSPACE-complete

Autonomous N undecidable undecidable undecidable
Y not applicable not applicable PSPACE-complete

Closed not applicable not applicable not applicable PSPACE-complete

is imposed on the data manipulated by the DDS, verification of convergence properties
(and even propositional reachability) is undecidable even for a single-node DDS [6]5.

Building on the notion of state-boundedness [8,6,7], we study how decidability is
affected when we impose a (pre-defined) bound on the different information sources of
the DDS. Specifically, we say that a DDSM is input-bounded it there is a bound on the
number of values that can appear in each single input DB. In this case, unboundedly
many values can still be input over time, provided they do not accumulate in a single
computation step. The notions of state-boundedness, transport-boundedness, and (for
asynchronous DDSs) queue-boundedness are analogous. A bound independent from the
network size fits with the idea that the programs run by nodes are not tailored to a
specific network. Also, state-boundedness does not interfere with the information each
node has about its neighbors, since our networks are neighbor-bounded (cf. Section 2.2).

In our analysis, a key observation is that the notion of uniformity [8] (corresponding
to genericity in databases) can be straightforwardly recast for DDSs. Intuitively, unifor-
mity states that the dynamics of a DDSM are invariant under permutation of values in
the node DBs, modulo the finite subset∆0,M of∆: the system exhibits the same behav-
ior (modulo renaming of values) when nodes compute over isomorphic DBs. Making
use of uniformity, we are able to show the upper bounds in Table 1. Undecidability is
proved via reductions from the halting problem for 2-counter machines.

5 Conclusions

In the wide spectrum of declarative distributed computing, we have studied verification
in the important case of reliable communication with order-preserving asynchronous
strategies. We plan to build on our foundational results to implement verification tech-
niques for DDSs, relying on existing ASP techniques for D2C, and in particular on the
implementation in [14], which can simulate runs of DDSs according to our formaliza-
tion. We also want to study how to extend our results to networks whose topology
can change. Building on the approach in [19], we can deal with the case of an overall
bounded number of nodes, while the case where unboundedly many computation nodes
can be created is left for interesting future work.

Acknowledgements. This work is supported by the Spanish Ministry of Economy
and Competitiveness under grants MDM-2015-0502 and TIN2016-81032-P, and by the
REKAP project funded by unibz through the 2017 research budget.

5 Observe that, in the single-node case, partial and global correctness, coincide.

References

1. S. Abiteboul, M. Bienvenu, A. Galland, and É. Antoine. A rule-based language for web data
management. In Proc. of PODS, pages 293–304. ACM Press, 2011.

2. P. Alvaro, T. J. Ameloot, J. M. Hellerstein, W. Marczak, and J. Van den Bussche. A declar-
ative semantics for Dedalus. Technical Report UCB/EECS-2011-120, EECS Department,
University of California, Berkeley, 2011.

3. T. J. Ameloot. Declarative networking: Recent theoretical work on coordination, correctness,
and declarative semantics. SIGMOD Record, 43(2):5–16, 2014.

4. T. J. Ameloot, F. Neven, and J. Van den Bussche. Relational transducers for declarative
networking. JACM, 60(2):15:1–15:38, 2013.

5. T. J. Ameloot, J. Van den Bussche, W. R. Marczak, P. Alvaro, and J. M. Hellerstein. Putting
logic-based distributed systems on stable grounds. CoRR Technical Report abs/1507.05539,
arXiv.org e-Print archive, 2015. Available at http://arxiv.org/abs/1507.05539.

6. B. Bagheri Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, and M. Montali. Verification
of relational data-centric dynamic systems with external services. In Proc. of PODS, 2013.

7. B. Bagheri Hariri, D. Calvanese, M. Montali, and A. Deutsch. State-boundedness in data-
aware dynamic systems. In Proc. of KR, pages 458–467. AAAI Press, 2014.

8. F. Belardinelli, A. Lomuscio, and F. Patrizi. Verification of agent-based artifact systems.
JAIR, 51:333–376, 2014.

9. D. Calvanese, G. De Giacomo, and M. Montali. Foundations of data aware process analysis:
A database theory perspective. In Proc. of PODS, pages 1–12, 2013.

10. A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven web applica-
tions. JCSS, 73(3):442–474, 2007.

11. A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of communicating data-driven web
services. In Proc. of PODS, pages 90–99, 2006.

12. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.
of ICLP, pages 1070–1080. The MIT Press, 1988.

13. J. M. Hellerstein. The declarative imperative: Experiences and conjectures in distributed
logic. SIGMOD Record, 39(1):5–19, 2010.

14. J. Lobo, D. Wood, D. Verma, and S. Calo. Distributed state machines: A declarative frame-
work for the management of distributed systems. In Proc. of CNSM, pages 224–228, 2012.

15. B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ramakr-
ishnan, T. Roscoe, and I. Stoica. Declarative networking. CACM, 52(11):87–95, 2009.

16. B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica. Implementing
declarative overlays. Operating Systems Rev., 39(5):75–90, 2005.

17. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
18. J. Ma, F. Le, D. Wood, A. Russo, and J. Lobo. A declarative approach to distributed com-

puting: Specification, execution and analysis. TPLP, 13:815–830, 2013.
19. M. Montali, D. Calvanese, and G. De Giacomo. Verification of data-aware commitment-

based multiagent systems. In Proc. of AAMAS, pages 157–164, 2014.
20. V. Nigam, L. Jia, B. T. Loo, and A. Scedrov. Maintaining distributed logic programs incre-

mentally. Computer Languages, Systems & Structures, 38(2):158–180, 2012.
21. Y. Ren, W. Zhou, A. Wang, L. Jia, A. J. Gurney, B. T. Loo, and J. Rexford. FSR: Formal

analysis and implementation toolkit for safe inter-domain routing. Computer Communication
Rev., 41(4):440–441, 2011.

22. D. Sacca and C. Zaniolo. Stable models and non-determinism in logic programs with nega-
tion. In Proc. of PODS, pages 205–217, 1990.

23. M. Y. Vardi. Model checking for database theoreticians. In Proc. of ICDT, volume 3363 of
LNCS, pages 1–16. Springer, 2005.

http://arxiv.org/abs/1507.05539

	Verification of Fixed-Topology Declarative Distributed Systems with External Data

