
The Data Readiness Problem for Relational
Databases

Rada Chirkova1, Jon Doyle1, and Juan L. Reutter2

1 North Carolina State University
2 Pontificia Universidad Católica de Chile

Abstract. We consider the problem of determining whether organiza-
tions facing a new data-transformation task can avoid building a new
transformation procedure from scratch by reusing their stored proce-
dures. Because it can be difficult to obtain exact descriptions of what
stored procedures do, our framework abstracts data-transforming tools
as black-box procedures, in which a procedure description indicates the
parts of the database that might be modified by the procedure and con-
straints on the states of the database that must hold before and after
the application of this procedure.
In this paper we present our framework and study the problem of de-
termining, given a database and a set of procedures, whether there is a
sequence of procedures from this set such that their application to the
database results in the satisfaction of a boolean query. This data readi-
ness problem is undecidable in general, but we show decidability for a
broad and realistic class of procedures.

1 Introduction

The databases of many organizations nowadays periodically undergo transforma-
tions, due to applications of data-improvement operations, merging of multiple
repositories, or management decisions. These transformations are commonly car-
ried out by means of stored procedures or other similar artifacts that are kept
together with the database, and may have to be applied periodically, becoming
at times part of the normal daily operations of the organizations. For example,
it is not uncommon to find institutions with separate databases for their ac-
countancy and operations divisions, in which the integration is carried out by a
stored procedure that runs at the end of every working day.

Whenever a new data-transformation task arises, organizations facing the
cost of assembling a new procedure to solve this task may ask instead whether one
can reuse some of the procedures that are already available. However, to answer
this question we need to be able to reason about the outcomes of procedures,
or even of sequences of applications of procedures. Several lines of research have
been studying these outcomes when procedures are understood as part of the
normal operations of an institution (see excellent surveys [14, 8, 1]); many of
these works assume a complete description of all the procedures involved in
these operations.



At the same time, it is not always feasible to obtain an exact description
of the inner workings of a procedure (as in when its creator(s) no longer work
for the company, see, e.g., [13]). In such cases, one has to work with informal
or vague descriptions of what procedures do: “This procedure copies relation
A into relation B,” or “this procedure removes all nulls from this relation.” To
model such uncertainty, we do not assume that we have a precise description
of the operations of the procedures, and adopt instead a black-box view of a
procedure. That is, we describe procedures in terms of which parts of the data
might be modified by the procedure, as well as by the constraints that specify
the required states of the data before and after applying the procedure.

Motivating example: Suppose a medical analyst wishes to know the emer-
gency rooms used by patients with a certain medical insurance. The data owned
by the analyst reside in relation LocVisits (facility ,pId ,timestp), with the at-
tributes standing, respectively, for the id of the facility where the emergency
room is, the social-security number of a patient, and a timestamp marking
the date of the visit. The analyst has also been given two procedures he can
execute as-is but not modify: One is Pmigrate, which is supposed to migrate
data into LocVisits from relation EVisits owned by another analysis company.
The other procedure, Pinsur, augments LocVisits with an attribute insId con-
taining the insurance id’s of patients, and whose data are drawn from relation
Patients(pId, insId) owned by the local authority.

Given an insurance id I, the analyst can capture the desired information
via query SELECT facility FROM LocVisits WHERE insId = I, posed over
LocVisits modified by adding attribute insId containing the insurance id’s of
patients. It is natural for the analyst to ask: Can I use any available procedures
to transform my data so that this query can be posed on my database? In other
words, is there a way to apply these procedures so that I could guarantee that
my database satisfies certain fitness-for-use [12] criteria?

We propose a formal framework in which data-transforming tools are ab-
stracted as black-box procedures, described by the following information:

– A specification of which parts of the database the procedure is modifying;
– Conditions to be satisfied for the procedure to be applicable;
– Conditions that will be satisfied once the procedure has been applied; and
– Any additional guarantees on parts of the data that must not be modified.

In this paper we study this framework for procedures that do not alter the
schema of databases, such as the procedure that migrates the information of the
analyst in the example above. We study basic questions arising in the framework,
such as whether a procedure can be applied to the outcome of a given procedure
over a given instance, and whether the outcome of a (sequence of) procedures is
nonempty. Finally, we consider what we call the data-readiness problem: Given
an instance I, a set Π of procedures, and a boolean query over instances (that
intuitively expresses a desired property of the data), is there a way to construct
a sequence of procedures from Π so that each instance in the outcome satisfies
this property? While undecidable in its general form, we show that this problem
is decidable for some broad classes of procedures.



For space reasons we omit proofs from this draft. All of them can be found
in the full version of this paper [5].

2 Preliminaries

Since we aim to model procedures over real databases, we write the paper using
a specific named assumption over instances and queries.

Schemas and Instances. Assume three disjoint sets: a countably infinite set
of attribute names A = {A1, A2, . . .} totally ordered by ≤A, a countably infinite
domain of values (or elements) D, and a countably infinite set of relation names
R = {R1, R2, . . .}. A relational schema over A and R is a partial function
S : R → 2A, which associates a finite set of attributes with a finite set of relation
symbols. We say that R is in S if S(R) is defined. An instance I of schema S
assigns a set RI of tuples to each relation R in S, so that if S(R) = {A1, . . . , An}
then RI ⊆ Dn, with the set of tuples structured so that the elements of each tuple
(a1, . . . , an) appear in the assumed attribute order, that is, A1 <A · · · <A An.

Queries across Schemas, Total Queries. A named atom is an expression
R(A1 : x1, . . . , Ak : xk), where R is a relation name, each Ai is an attribute
name, and each xi is a variable. The variables mentioned by such an atom are
x1, . . . , xk, and the attributes are A1, . . . , Ak. Such an atom is compatible with
schema S if {A1, . . . , Ak} ⊆ S(R). Given a named atom R(A1 : x1, . . . , Ak : xk),
an instance I of schema S that is compatible with the atom, and an assignment
τ : {x1, . . . , xk} → D assigning values to variables, we say that (I, τ) satisfies
R(A1 : x1, . . . , Ak : xk) if there is a tuple a in RI such that its projection
πA1,...,Ak

ā over A1, . . . , Ak is the tuple τ(x1), . . . , τ(xk).
A conjunctive query (CQ) is an expression of the form ∃z̄ φ(z̄, ȳ), where z̄

and ȳ are tuples of variables and φ(z̄, ȳ) is a conjunction of named atoms that
uses the variables in z̄ and ȳ. A CQ is compatible with S if all its named atoms
are compatible. The usual semantics of CQs is obtained from the semantics of
named atoms in the usual way. Given a CQ Q compatible with S, the result
Q(I) of evaluating Q over I is the set of all the tuples τ(x1), . . . , τ(xk) such that
(I, τ) satisfy Q. Further, a total query, which we define to be an expression of
the form R for some relation name R, returns all the tuples of R, regardless of
the schema and arity of R, as is done in SQL with SELECT * FROM R. A total
query of this form is compatible with schema S if S(R) is defined; the result of
evaluating this query over an instance I over a compatible schema S is the set
of all tuples in RI .

Data constraints: We consider data constraints that are (i) tuple-generating
dependencies (tgds), i.e., expressions of the form ∀x̄

(
∃ȳ φ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)

)
for

CQs ∃ȳ φ(x̄, ȳ) and ∃z̄ ψ(x̄, z̄), and (ii) equality-generating dependencies (egds),
i.e., expressions of the form ∀x̄

(
∃ȳ φ(x̄, ȳ) → x = x′

)
for a CQ ∃ȳφ(x̄, ȳ) and

variables x, x′ in x̄. As usual, for readability we sometimes omit the universal
quantifiers of tgds and egds. An instance I satisfies a set Σ of tgds and egds,
written I |= Σ, if (1) each CQ in each dependency in Σ is compatible with the



schema of I, and (2) every assignment τ : x̄ ∪ ȳ → D such that (I, τ) |= φ(x̄, ȳ)
can be extended into a τ ′ : x̄ ∪ ȳ ∪ z̄ → D such that (I, τ ′) |= ψ(x̄, z̄).

A tgd is full if it does not use existentially quantified variables on the right-
hand side. A set Σ of tgds is full if each tgd in Σ is full. Σ is acyclic if an
acyclic graph is formed by representing each relation mentioned in a tgd in Σ
as a node and by adding an edge from node R to S if a tgd in Σ mentions R on
the left-hand side and S on the right-hand side.

3 Procedures

In this section we formalize the notion of procedures that transform data. We
view procedures as black boxes and assume no knowledge of or control over
their inner workings. Our reasoning about procedures is based on the following
information: The input conditions, or preconditions, on the state of the data
that must hold for a procedure to be applicable; the output conditions, or post-
conditions, on the state of the data that must hold after an application of the
procedure; and the set of relations affected by the application. To specify that
some of the data will not be deleted, we also allow the inclusion of some queries
whose answer needs to be preserved during the application of the procedure.

Example 1. Recall the procedure Pmigrate outlined in Section 1; its intent is to
define migration of data from relation EVisits into LocVisits. Pmigrate can be
described as follows. First, the scope: Pmigrate only changes relation LocVisits.
Next, the precondition: Pmigrate requires a schema with relations LocVisits and
EVisits, each with attributes facility , pId , and timestp. Next, the postcondition:
after Pmigrate is applied, each tuple of EVisits must be in LocVisits. Finally, we
need to guarantee that the tuples in LocVisits are not deleted.

In the following, we present notation for formally defining these types of
procedures. We start by introducing “structure constraints,” which we use to
define the scopes of procedures.

3.1 Structure Constraints

A structure constraint is a formula of the form R[s̄] or R[∗], with R a relation
symbol, s̄ a tuple of attribute names from A, and ∗ a symbol not in A or R
acting as a wildcard. A schema S satisfies a structure constraint R[s̄], denoted
S |= R[s̄], if S(R) is defined and each attribute in s̄ belongs to S(R). A schema
S satisfies the constraint R[∗] if S(R) is defined.

Given a set C of structure constraints and a schema S, we denote by QS\C
the conjunctive query formed by the conjunction of the following atoms:

– For each relation R such that S(R) = {A1, . . . , Am} and R is not mentioned
in C, QS\C includes an atom R(A1 : z1, . . . , Am : zm), where z1, . . . , zm are
fresh variables.



– For each T mentioned in C such that T [∗] is not in C, QS\C includes an atom
T (B1 : z1, . . . , Bk : zk), where B1, . . . , Bk are all the attributes in S(T ) that
are not mentioned in any constraint of the form T [s̄] in C, and z1, . . . , zk are
fresh variables.

Intuitively, QS\C is intended to retrieve the projection of the entire database
over all the relations and attributes not mentioned in C. QS\C is unique up to
the variable renaming and order of conjuncts. As an example, let schema S have
relations R, S, and T , with attributes: A1 and A2 in R; B1, B2, and B3 in T ;
and A1 and B1 in S. Let set C comprise constraints R[∗] and S[B1]. Then QS\C
is the query T (B1 : z1, B2 : z2, B3 : z3) ∧ S(A1 : w1).

3.2 Formal Definition of Procedures

We define procedures w.r.t. a class C of FO constraints and a class Q of queries.
We will focus primarily on tgds, egds, structure constraints, and CQ queries.

Definition 1. A procedure P over C and Q is a tuple (Scope, Cin, Cout,Qpres),
where:

– Scope is a set of structure constraints that defines the scope (i.e., the relations
and attributes) within which the procedure operates;

– Cin and Cout are constraints in C describing the pre- and postconditions of
P , respectively;

– Qpres is a set of queries in Q that serve as a preservation guarantee for the
procedure.

Example 2 (Example 1 continued). We define the procedure Pmigrate formally as
follows:

Scope: The scope is the constraint LocVisits[∗].
Cin: We use the structure constraints EVisits[facility, pId, timestp] and LocVisits
[facility, pId, timestp], to ensure that the data have the correct attributes.

Cout: The postcondition comprises the tgd

EVisits(facility : x, pId : y, timestp : z)→ LocVisits(facility : x, pId : y, timestp : z).

It says that, once Pmigrate has been applied, the projection of EVisits over facil-
ity , pId , and timestp is a subset of the respective projection of LocVisits.
Qpres: We use query LocVisits(facility : x, pId : y, timestp : z), whose intent is
to state the guarantee that all the answers on LocVisits that are present before
Pmigrate is applied will be preserved.

Semantics: A procedure P = (Scope, Cin, Cout,Qpres) is applicable on an instance
I over schema S if (1) Each query in Qpres is compatible with S; and (2) I |= Cin.
We can now proceed with the semantics of procedures.

Definition 2. Let I be an instance over schema S. An instance I ′ over S is a
possible outcome of applying procedure P to I if all of the following holds:



1. P is applicable on I;
2. I ′ |= Cout;
3. The answers of the query QS\Scope do not change: QS\Scope(I) =

QS\Scope(I
′); and

4. The answers to each query Q in Qpres over I are preserved: Q(I) ⊆ Q(I ′).

Example 3 (Example 2 continued). Recall procedure Pmigrate = (Scope, Cin, Cout,
Qpres) defined in Example 2. Consider instance I over schema S with relations
EVisits and LocVisits, each with attributes facility , pId , and timestp, as shown
in Figure 1 (a). Note first that Pmigrate is indeed applicable on I. When applying
Pmigrate to I, we know from Scope that the only relation whose content can
change is LocVisits, while EVisits is the same across all possible outcomes.
Further, we know from Cout that in all possible outcomes, the projection of
EVisits over the attributes facility , pId , and timestp must be the same as the
projection of LocVisits over the same attributes. Finally, from Qpres we know
that the projection of LocVisits over these three attributes must be preserved.

Perhaps the most obvious possible outcome of applying Pmigrate to I is that
of the instance J1 in Figure 1 (b), corresponding to the outcome where the tuple
in EVisits that was not yet in LocVisits is migrated into the latter relation.
However, since we assume no control over the actions performed by Pmigrate, it
may well be that it is also migrating data from a different relation that we are
not aware of, producing an outcome whose relation EVisits is the same as in I
and J1, but LocVisits has additional tuples, as depicted in Figure 1 (c).

As seen in Example 3, in general the number of possible outcomes that result
from applying a procedure is infinite. Thus, we are in general interested in prop-
erties shared by all possible outcomes, which motivates the following definition.

Definition 3. The outcome set of applying a procedure P to I is defined as:

outcomesP (I) = {I ′ | I ′ is a possible outcome of applying P to I}.

The outcome of applying a procedure P to a set of instances I is the union of
the outcome sets of applying P to all the instances in I:

outcomesP (I) =
⋃
I∈I

outcomesP (I).

Finally, to reason about (perhaps repeated) applications of multiple proce-
dures, we extend the definitions to enable talking about the outcomes of se-
quences of procedures. The outcome of applying a sequence P1, . . . , Pn of proce-
dures to instance I is the set

outcomesP1,...,Pn
(I) = outcomesPn

(outcomesPn−1
(· · · (outcomesP1

(I)) · · · )).

4 Basic Decision Problems

We begin with two decision problems on outcomes of sequences of procedures.



EVisits LocVisits

facility pId timestp

1234 33 070916 12:00
2087 91 090916 03:10

facility pId timestp

1234 33 070916 12:00
1222 33 020715 07:50

(a) Instance I

EVisits LocVisits

facility pId timestp

1234 33 070916 12:00
2087 91 090916 03:10

facility pId timestp

1234 33 070916 12:00
1222 33 020715 07:50
2087 91 090916 03:10

(b) Possible outcome J1 of applying P over I

LocVisits

facility pId timestp

1234 33 070916 12:00
1222 33 020715 07:50
2087 91 090916 03:10
4561 54 080916 23:45

(c) relation LocVisits in J2

Fig. 1. Instance I of Example 3 (a), a complete possible outcome of applying Pmigrate

to I (b), and the instance of LocVisits in another possible outcome in which LocVisits
has an additional tuple not mentioned in EVisits (c).

4.1 Applicability:

Suppose we wish to apply procedures P1 and P2 to instance I sequentially, first
P1 then P2. To ensure applicability of P2, we need to guarantee that any possible
outcome of applying P1 to I will satisfy the preconditions of P2. Hence, we study
the following applicability problem: Given schema S and procedures P1 and P2,
is it true that P2 can be applied to each instance in outcomesP1

(I), regardless of
the choice of I ∈ S?

The applicability problem is intimately related to the problem of implication
of dependencies (see, e.g., [2–4, 11, 6, 7]). Indeed, consider a class L of constraints
for which the implication problem is known to be undecidable. Then if we let
P1 be a procedure with a set Σ of postconditions in L, and P2 a procedure
with a dependency λ in L as a precondition, it is not difficult to come up with
proper scopes and preservation queries so that the set outcomesP1(I) satisfies λ
for every instance I over schema S if and only if λ is true in all instances that
satisfy Σ.

However, applicability turns out to be undecidable even if we fix P1 and P2:

Proposition 1. There are fixed procedures P1 and P2 that only use tgds for
their constraints, and such that the following problem is undecidable: Given an
instance I over schema S, is it true that all the instances in outcomesP1

(I)
satisfy the preconditions of P2?



The proof of Proposition 1 is by reduction from the embedding problem for
finite semigroups, shown to be undecidable in [10].

This result suggests that to obtain decidability, it may not be enough to focus
on procedures whose pre- and postconditions are specified in languages with
decidable implication problem — one would need to create stronger restrictions.
Consider, e.g., the restriction of disallowing preconditions in procedures, for
which we have the following trivial result.

Fact 1 A procedure without preconditions can always be applied to any instance.

Nonemptiness: The other important problem is that of determining whether
the outcome of a sequence of procedures is nonempty. We remark that even with-
out preconditions, the outcome of a procedure may be empty if it is not possible
to transform an instance in a way that would satisfy the postconditions of a
procedure, while ensuring that the scope and preservation queries are respected.
Perhaps surprisingly, we can show that this problem is undecidable even if we
just have one fixed procedure.

Proposition 2. There exists a procedure P that does not use preconditions and
uses only tgds in its postconditions, such that the following is undecidable: Given
an instance I, is the set outcomesP (I) nonempty?

The proof of this proposition is similar to that of Proposition 1, but in this case
we can get away with one procedure by merging together the postconditions and
precondition of the procedures in the reduction for Proposition 1.
Procedures with safe scope: Toward obtaining decidability, we could con-
tinue restricting the types of constraints we allow in procedures. (For example,
nonemptiness is decidable for a broad range of acyclicity conditions.) We choose
to adopt a different strategy, which restricts the interplay between the postcon-
ditions of procedures, their scope, and their preservation queries.

We say that procedure P = (Scope, Cin, Cout,Qpres) has safe scope if the
following holds:

– Cin is empty, and Cout is an acyclic set of tgds;
– The set Scope contains exactly one constraint R[∗] for each relation R that

appears on the right-hand side of a tgd in Cout; and
– The set Qpres contains one total query R for each constraint R[∗] in Scope.

That is, it binds precisely all the relations in the scope of P .

Note that the procedure Pmigrate of Example 2, while not a procedure with
safe scope, can easily be transformed into one. Once again, we have an easy
result that makes a case for the good behaviour of procedures with safe scope:

Proposition 3. For every instance I and sequence P1, . . . , Pn of procedures with
safe scope, the set outcomesP1,...,Pn(I), is not empty.

5 Data Readiness

We now address the problem of assessing achievability of desired properties of
data, which we describe informally as follows. We start with an instance I and



have a set Π of procedures. We are also given a boolean query Q (that intuitively
expresses a desired property) that does not hold in I. The question we ask is
whether we can apply to I some or all the procedures in Π so that all the
resulting outcomes would satisfy Q:

data readiness:
Input: An instance I, a set Π of procedures, and a boolean query Q;
Question: Is there a sequence P1, . . . , Pn of procedures in Π such that

all the instances in outcomesP1,...,Pn(I) satisfy Q?

First negative results: In the previous sections we have seen that most prob-
lems in our framework can be solved if we restrict ourselves to procedures with
safe scope. Unfortunately, as the following result shows, this is not the case for
the data-readiness problem.

Proposition 4. The problem data readiness is undecidable, even if Π is a
set of procedures with safe scope.

The proof is by reduction from the universal halting problem for Turing
machines, along the lines of the proof used in [9] to show that termination of
chase is undecidable. The proof uses Π to simulate each of the constraints being
chased in the proof in [9].

Decidability for full tgds: In order to obtain decidability, we further restrict
to sequences of procedures with safe scope and given by full tgds only, for which
we can show the following result:

Proposition 5. The problem of checking whether a boolean query Q holds in
all outcomes of an instance I over a sequence P1, . . . , Pn of procedures with safe
scope and given by full tgds only, is decidable and in EXPTIME.

This proposition suggests an algorithm for data readiness: one needs to guess
a sequence of procedures, and then check whether the query is entailed in this
sequence. Of course, we need a small-model property for the size of the sequence
of procedures that we need to guess. Summing up, we have the following result.

Theorem 1. For the cases where Π is a set of procedures with safe scope with
output constraints comprising full tgds only, data readiness is in NEXPTIME.

6 Conclusion

In this paper we embark on the development of a framework that allows one to
reason about database procedures based only on a high level description of what
these procedures do. We have instantiated our framework in a relational setting,
and only when procedures are guaranteed not to alter the schema of databases.

The proposed framework presents several opportunities for further research.
One line of work would involve understanding how to represent outcomes of se-
quences of procedures, perhaps by means of knowledge bases or similar artifacts.



We also believe that our framework is general enough to allow reasoning
on other data paradigms, or even across various different data paradigms. Our
black-box abstraction could, for example, offer an effective way to reason about
procedures involving unstructured text data, or even data transformations using
machine-learning tools, as long as one can obtain some guarantees on the data
outcomes of these tools.

References

1. D. Calvanese, G. De Giacomo, and M. Montali. Foundations of data-aware
process analysis: A database theory perspective. In Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2013, New York, NY, USA - June 22 - 27, 2013, pages 1–12, 2013.

2. M. A. Casanova, R. Fagin, and C. H. Papadimitriou. Inclusion dependencies and
their interaction with functional dependencies. J. Comput. Syst. Sci., 28(1):29–59,
1984.

3. M. A. Casanova and V. M. P. Vidal. Towards a sound view integration methodol-
ogy. In Proceedings of the Second ACM SIGACT-SIGMOD Symposium on Prin-
ciples of Database Systems, March 21-23, 1983, Colony Square Hotel, Atlanta,
Georgia, USA, pages 36–47, 1983.

4. A. K. Chandra and M. Y. Vardi. The implication problem for functional and
inclusion dependencies is undecidable. SIAM J. Comput., 14(3):671–677, 1985.

5. R. Chirkova, J. Doyle, and J. L. Reutter. Assessing achievability of queries and
constraints. CoRR, abs/1712.03438, 2017.

6. S. S. Cosmadakis and P. C. Kanellakis. Equational theories and database con-
straints. In Proceedings of the 17th Annual ACM Symposium on Theory of Com-
puting, May 6-8, 1985, Providence, Rhode Island, USA, pages 273–284, 1985.

7. S. S. Cosmadakis, P. C. Kanellakis, and M. Y. Vardi. Polynomial-time implication
problems for unary inclusion dependencies. J. ACM, 37(1):15–46, 1990.

8. D. Deutch and T. Milo. A quest for beauty and wealth (or, business processes for
database researchers). In Proceedings of the thirtieth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 1–12. ACM, 2011.

9. A. Deutsch, A. Nash, and J. Remmel. The chase revisited. In Proceedings of
the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 149–158. ACM, 2008.

10. P. G. Kolaitis, J. Panttaja, and W.-C. Tan. The complexity of data exchange. In
Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 30–39, 2006.

11. J. C. Mitchell. The implication problem for functional and inclusion dependencies.
Information and Control, 56(3):154–173, 1983.

12. O. Savkovic, E. Marengo, and W. Nutt. Query stability in monotonic data-aware
business processes. In 19th International Conference on Database Theory, ICDT
2016, Bordeaux, France, March 15-18, 2016, pages 16:1–16:18, 2016.

13. J. F. Sequeda. Ontology based data access: Where do the ontologies and mappings
come from? In AMW17., 2017.

14. V. Vianu. Automatic verification of database-driven systems: A new frontier. In
Database Theory - ICDT 2009, 12th International Conference, St. Petersburg, Rus-
sia, March 23-25, 2009, Proceedings, pages 1–13, 2009.


