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Abstract
Signage systems are critical for communicating en-
vironmental information. Signage that is visible
and properly located can assist individuals in mak-
ing efficient navigation decisions during wayfind-
ing. Drawing upon concepts from information
theory, we propose a framework to quantify the
wayfinding information available in a virtual envi-
ronment. Towards this end, we calculate and vi-
sualize the uncertainty in the information available
to agents for individual signs. In addition, we ex-
pand on the influence of new signs on overall in-
formation (e.g., joint entropy, conditional entropy,
mutual Information). The proposed framework can
serve as the backbone for an evaluation tool to help
architects during different stages of the design pro-
cess by analyzing the efficiency of the signage sys-
tem.

1 Introduction
Information theory is the branch of mathematics used to de-
scribe how uncertainty can be quantified, manipulated, and
represented [Ghahramani, 2007]. According to Shannon and
Weaver [Shannon and Weaver, 1949], a communication sys-
tem can be characterized with respect to this uncertainty and
the information being transmitted. Modeling the exchange
of information within a system essentially involves represen-
tations of uncertainty and can facilitate an understanding of
the behavior and properties of its individual elements. This
approach has been applied to several different types of sys-
tems, including those from computer science, philosophy,
physics, and cognitive science [Smyth and Goodman, 1992;
Floridi, 2002; Still, 2009; Resnik, 1996]. For example, infor-
mation may be transferred within and between internal and
external representations of space [Craik and Masani, 1967]
[Montello et al., 2004]. In the present work, we propose an
information-theoretic approach to quantify the spatial infor-
mation provided by individual or sets of signs for wayfinding
in a virtual environment.

Navigation is a process by which internal spatial represen-
tations are obtained. In turn, these representations act as the
basis of future navigation decisions. In unfamiliar environ-
ments (i.e., before any initial representation), individuals of-

ten have to rely on knowledge that is immediately available
in the environment [Golledge, 1999]. However, this relevant
information must be separated from irrelevant information
and noise. There are a variety of visual cues in the environ-
ment that can help individuals find their way (e.g., signage,
maps, landmarks, and building structure) [Montello, 2005;
Arthur and Passini, 1992]. Signs may be particularly easy to
interpret (i.e., require less abstraction than a map), adapt (i.e.,
can accommodate changes to the environment), and quan-
tify (i.e., allow for the measurement of relevant information).
An efficient signage system can drastically reduce the com-
plexity of the built environment and improve the wayfinding.
In contrast, an inefficient signage system or lack of signage
can render a simple built space complex and stressful for
patrons. Indeed, signs are typically used to guide unfamil-
iar patrons to specific locations within shopping centers and
airports [Becker-Asano et al., 2014]. An efficient signage
system can drastically reduce the navigational complexity of
such environments, but this reduction in complexity or uncer-
tainty (i.e., information) is not always evident to the archi-
tect using existing measures (e.g., space syntax; [Hillier and
Hanson, 1984]). This is critical for both leisurely shopping
trips and emergency evacuations in which the consequences
of inefficient signage can range from getting lost to becom-
ing injured. Individual signs must be placed at an optimal
height and be sufficiently salient in different lighting condi-
tions [Jouellette, 1988]. In addition, different signs within
a wayfinding system must continuously provide complemen-
tary information rather than information that conflicts with
other elements and confuses the users. Hence, the foundation
of such a signage design tool should be grounded in research
that investigates human perception and cognition.

In this paper, we first review previous research on informa-
tion theory, human wayfinding, and signage systems. Next,
we introduce our framework for quantifying information and
uncertainty for systems of signs in complex virtual environ-
ments and apply these measures to signs within a virtual air-
port. The results are discussed with respect to the develop-
ment of a novel application to aid architects in the (re)design
of real environments.

2 Background and Prior Work
This section briefly describes both Shannon’s basic measures
of information and summarizes research on navigation and



signage.

2.1 Information theory
Information theory was developed in the 1940s and 1950s as
a framework for studying the fundamental questions of the
communication process, the efficiency of information repre-
sentation, and the limits of reliable communication [Atick,
1992] [Shannon and Weaver, 1949]. In information theory,
entropy represents the amount of uncertainty in a random
variable as a probability distribution. The Shannon entropy
of a discrete random variable X with alphabet χ and proba-
bility mass function p(x), xεχ is defined as

H(X) = −
∑
xεχ

p(x)log2p(x) (1)

The probability of x, p(x)ε[0.0, 1.0] and −log2p(x) repre-
sents the information associated with a single occurrence of
x. Entropy is always positive and represents the average num-
ber of bits required to describe the random variable. Entropy
is a measure of information such that higher entropy repre-
sents more information.

There are several measures that combine information from
two random variables [Cover and Thomas, 1991]. Joint en-
tropy represents the information provided by either one ran-
dom variable or a second random variable in a system. The
joint entropy of a pair of random variables (X,Y ) with a joint
probability distribution p(x, y) can be represented as

H (X,Y ) =
∑
xεχ

∑
yεγ

p(x, y)logp(x, y) (2)

In addition, conditional entropy H(X|Y ) is the entropy of
one random variable given knowledge of a second random
variable. The average amount of decrease in the randomness
of X given by Y is the average information that Y provides
regarding X . The conditional entropy of a pair of random
variables (X,Y ) with a joint probability distribution p(x, y)
can be represented as

H (X|Y ) =
∑
xεχ

∑
yεγ

p(x, y)log
p(x)

p(x, y)
(3)

Mutual information quantifies the amount of information pro-
vided by both random variables. The mutual information
I(X;Y ) between the random variables X and Y is given as

I(X;Y ) =
∑
yεY

∑
xεX

p(x, y)log(
p(x, y)

p(x)p(y)
) (4)

In Section 3, we will describe how the aforementioned
measures can be used to quantify the information provided
by two (or more) signs in an environment.

2.2 Navigation and signage
In an unfamiliar environment, navigation largely depends
on picking up ecologically relevant information (i.e., affor-
dances; [Gibson, 1977]). In such cases, optic flow can be used
to guide locomotion by distinguishing between self move-
ment (relevant for navigation) and object movement [Fajen,

2013]. Signs are also capable of providing ecologically rel-
evant information but need to be visible and interpretable
[Becker-Asano et al., 2014]. Indeed, Norman [1988] differ-
entiates between knowledge in the world (e.g., information
presented on signs) and knowledge in the head (e.g., the in-
terpretation of signs).

The communication of wayfinding information from the
world to the individual observer can be facilitated by an ap-
propriate signage system or map [Arthur and Passini, 1990]
[Allen, 1999]. Previous research has demonstrated that sig-
nage has distinct advantages over maps for navigating the
built environment [Holscher et al., 2007; O’Neill, 1991] also
found that textual signage led to a reduction in incorrect
turns and an overall increase in wayfinding efficiency com-
pared to graphic signage (i.e., an arrow; see also [Wener
and Kaminoff, 1983]). Both simulations and user experi-
ments have suggested that the focus of visual attention can
be improved with signage redesigns ([Becker-Asano et al.,
2014] [Buechner et al., 2012]). In addition, signage can im-
prove simulated evacuation times [Xie et al., 2012] and the
perception of crowding and its negative effects [Wener and
Kaminoff, 1983].

Figure 1: The circular visual catchment area (VCA) of a sign
A. The sign is considered visible if an occupant is standing
inside the circular area located at the tangent to the surface of
a sign.

Visual Catchment Area. One existing way of quantify-
ing the visibility of a sign is its visual catchment area (VCA;
[Galea et al., 2001]). VCA represents the area from which
a sign is visible when the observer faces the sign. Xie and
colleagues [Xie et al., 2007] consider the visibility of a sign
as a binary value. In other words, the sign is visible within
the VCA and not visible outside of the VCA. The VCA of
a sign is calculated using the location of the sign, the height
of the occupant and the sign above the floor, viewing angle,
and the maximum distance from which the sign can be seen
based on the size of its lettering. According to the National
Fire Protection Association (NFPA) Life Safety Code Hand-
book, signs with a lettering height of 152 mm are legible for
up to 30 m [NFPA et al., 1997]. The calculation of a sign’s
VCA are described below:



(
b

sin(o)

)2

= x2 +

(
y − b

tan(o)

)2

(5)

Here, o is the angular separation of the sign and viewer, b is
half of the size of the sign’s surface, and P(x,y) represent the
viewer’s location shown in Figure 1. The center at location
(0, b

tan(o) ) with a radius of b
sin(o) .

3 Proposed Framework
In this section, we apply the principles of information theory
to quantify the information provided by signage in a virtual
environment. While there are a number of physical and psy-
chological factors that influence the effectiveness of signage
systems (e.g., color and contrast, interpretability and and at-
tentiveness), we will focus exclusively on signage visibility.
Rather than considering sign visibility as a binary value [Xie
et al., 2007], we model sign visibility as a continuous func-
tion, which depends on distance and direction from the ob-
server. We model the entropy of a sign’s visible informa-
tion P (l, s) as a measure of the navigation-relevant informa-
tion that is available to an agent at location l from sign s.
Let X(l, sa) be a random variable that represents a particular
piece of information at a location l and sign sa. The probabil-
ity of a particular value for the random variable X(l, sa) will
depend on the distance of sign sa from the location l and the
relative angle between location l and sign sa. The probabil-
ity distribution is generated by sampling information X from
sign sa at l 1000 times. Based on our experiments, we found
1000 samples to provide a reasonable trade-off between gran-
ularity of calculations, and compute time. Further investiga-
tion is needed to determine the sensitivity of our calculations
based on this parameter.

The uncertainty function U(l, sa) represents the likelihood
of viewing information from a sign sa at location l as

U(l, sa) = N(µ, σ) (6)

N is a normal distribution with mean µ and standard devia-
tion σ. In addition, µ is directly proportional to the distance
and relative angle between sign sa and location l. Larger
distances and relative angles between sign sa and location
l result in higher values for µ (i.e., closer to 1), and σ rep-
resents the range of uncertainty values (which are held con-
stant). Here, µ is dependent on the mean of the normalized
distance dn (over 30 m) and normalized relative direction ran
(over 180 degrees; see Equation 7). ∆ is the weight of the
sum between distance and the relative direction:

µ = (dn + ∆ran)/2 (7)

The work done in [Filippidis et al., 2006], makes an as-
sumption between the relationship of the relative direction
between the observant and the sign with the probability of
visibility (see Figure 2). We use this relationship in the cal-
culation of µ (see Equation 7) and add our own assumption
of probability of visibility with the distance between the ob-
servant and the sign (see Figure 3).

These two relationships form the basis of I(sa) (i.e., the
actual information contained in sign sa) and can be combined

with Equation 6 to calculate Noise:

P (l, sa) = Noise(I(sa), U(l, sa)) (8)

We can then substitute P (l, sa) for p(x) using Shannon’s en-
tropy equation (Equation 1) and Equation 8 to obtain a mea-
sure of entropy for a sign from the observer’s location.
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Figure 2: Proposed hypothetical detection probability accord-
ing to the orientation between occupant travel direction and
sign’s directional vector
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Figure 3: Proposed hypothetical detection probability accord-
ing to the distance between occupant and the sign

Information measures that describe signage systems can
also be extended for the combination of two or more signs.
Another random variable Y (l, sb) can be used to represent
the amount of navigation-relevant information available to an
agent at location l from a second sign sb. An uncertainty
function U(l, sa,b) can represent the likelihood of viewing in-
formation from two signs (sa and sb) at location l:



U(l, sa,b) = N((µa + µb)/2, σ) (9)
Finally, the joint probability distribution can be computed

by sampling information X from sign sa and sign sb at l sev-
eral times:

Pa,b(l, sa,b) = Noise(I(sa), U(li, sa,b)) (10)
For all locations from which both signs are visible, we can
calculate joint entropy, conditional entropy, and mutual infor-
mation. The joint entropy of visible information from both
signs sa and sb refers to the amount of information contained
in either of the two random variablesX and Y . For two mutu-
ally independent variables X and Y (i.e., when the two signs
can be viewed from each other), joint entropy is the sum of the
individual entropies H(X) and H(Y ) for each sign. When
the two variables are not mutually independent, joint entropy
H(X,Y ) can be calculated by using equation 2 in which the
joint probability distribution Pa,b is defined by equation 10.
In the case of signage, joint entropy indicates the extent to
which an observer may navigate from one sign to another to-
wards a goal location.

Conditional entropy is the reduction in uncertainty (i.e., in-
formation from the sign sa) due to the presence of another
sign sb and vice versa. For example, an observer is located
between signs sa and sb but closer to sb. Both signs are indi-
cating the same destination along the same route. The proba-
bility of viewing the information from sign sa is low because
the individual entropy of sa is high. At the same time, the
probability of viewing information from sb is high because
the individual entropy of sb is low. Because the two random
variables are not mutually independent, conditional entropy
for sa given sb is lower than the individual entropy of sa, and
conditional entropy for sb given sa is lower than the individ-
ual entropy of sb. In other words, both signs become more
visible in the presence of the other sign. In addition, the con-
ditional entropy of sb given sa is lower than the conditional
entropy of sa given sb. Because entropy is inversely related
to the probability of viewing each sign, sb is more visible than
sa from this location.

Mutual Information measures the correlation of the two
random variables X (information from sign sa ) and Y (infor-
mation from sign sb). It quantifies the amount of information
known about sign A by knowing sign B and vice versa. Mu-
tual information can be calculated as the difference between
conditional entropy for any sign and its corresponding indi-
vidual entropy. Higher mutual information represents higher
redundancy, which may result in improvements in navigation
performance. However, increases in redundancy may not be
linearly related to improvements in navigation performance.
The information measures presented here provide one method
for estimating the expected increase in performance for each
additional sign.

In Figure 9 MI can be computed by subtracting the entropy
of sign A( in black) with the conditional entropy of sign A
with sign B( shown in yellow).

4 Experiments and Results
In this section, we use a simplified building information
model (BIM) of a virtual airport (Figure 4) in order to illus-

Figure 4: Top-down view of a virtual airport. Letters A and
B indicate the location of two signs in a section of the airport.

trate the information theoretic approach to signage systems.
The model was created using Autodesk Revit [Revit, 2012]
and then imported into Unity 3D [Unity3D, 2016] to perform
simulations. In this example, the 3D model of the building
includes two signs placed at different locations and pointing
towards a common destination (represented by A and B in the
Figure 4). The walkable region of the floor of the 3D built en-
vironment was divided into n square grid cells of 0.5 m x 0.5
m. This grid cell size approximates the space occupied by an
average human.

Figures 5 (a) illustrate the probabilities of viewing
wayfinding information provided by signs A from several lo-
cations (represented as density maps). These uncertainties
are based on the distance and relative direction of the grid
cell from each sign according to the functions in Figures 2
and 3 as well as Equations 6, 7 and 8. Agents at grid cells in a
lighter shade of gray have a higher probability of viewing the
information provided by the sign than agents at grid cells in
darker shades of gray. Agents at grid cells at greater distances
or larger relative directions from each sign have smaller prob-
abilities of viewing the information compared to agents at
grid cells at smaller distances or relative directions from that
sign. Black grid cells do not provide any information to an
agent. Figures 5 (b) and (c) represents the first person view of
an agent from a location which has high information (shown
in yellow star in 5 (a)) and an agent from a location which has
low information ((shown in yellow circle in 5 (a)). The text on
the signage is visible from a high information location since
the distance between the agent and the signage along with the
relative angle between them is acute. Which results in lower
value of entropy and a higher probability of perceiving the
information. Which is not the case from the location which
is outside the VCA ((shown in yellow circle in 5 (a)). The
relative angle between the agent and the sign is high which
creates more noise and increases the entropy of visibility. We
showcase the similar effect for the sign B in 6 (a), (b) and (c).

Figure 7 (a) illustrates the individual and joint probabilities
of viewing the information provided by both signs A and B



Figure 5: (a) Visualization of the probability of perceiving the information from Sign A. The yellow star and circle represent
two locations where information is high and low with respect to sign A (b) First person view from yellow star where information
is high with respect to sign A (c) First person view from the yellow circle where information is low with respect to sign A.

Figure 6: (a) Visualization of the probability of perceiving the information from Sign B. The yellow star and circle represent two
locations where information is high and low with respect to sign B (b) First person view from the yellow star where information
is high with respect to sign B (c) First person view from the yellow circle where information is low with respect to sign B.

Figure 7: Visualization of the probability of perceiving the in-
formation from Sign A, B and the mutual information (lighter
grids) between them Figure 8: Entropy of the information perceived from varying

distance and relative angle with sign A
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Figure 9: Entropy of perceived information from sign A (in green) and conditional entropy of sign A with sign B (in black).The
difference in the entropy value captures the mutual information between the information from Sign A and Sign B.

from each grid cell. The probability of viewing information
from both signs (i.e., mutual information) is higher than the
probability of viewing the information provided by either sign
in isolation for the common grid cells.

Figure 8 demonstrates the relationship between the infor-
mation viewed from sign A, the distance of the observer from
sign A, and the relative direction of the observer from sign A.
An increase in entropy indicates higher uncertainty in view-
ing the information provided by sign A. Finally, Mutual in-
formation can also visualized in Figure 9 as the difference
between individual and conditional entropies. Here, the green
line represents the individual entropy of sign A, and the black
line represents the conditional entropy of sign A given sign
B.

5 Conclusions and Future Works
The quantification of information provided by a system of
signs can be beneficial to architects attempting to improve
the navigation of building patrons. This approach may be
particularly useful for buildings that are especially complex
and require redesigns of signage. For this paper, we adapted
Shannon’s entropy measures in order to study the informa-
tion provided by two signs in a 3D virtual environment. We
then visualized these entropy measures in an understandable
way for practitioners, including architects and engineers. The
benefit of using a gaming engine (Unity 3D) is that these vi-
sualization can be dynamically updated during navigation.

For simplicity, we have focused on the distance and rel-
ative direction between the observer and one or two signs.
Future work will extend this framework to include additional
physical and psychological factors (e.g., color and contrast,

interpretability and attentiveness) and additional signs (i.e.,
more than two). The former addition will provide the ground-
work for a cognitively inspired, agent-based model of naviga-
tion behavior. Additional signs will allow us to address some
of the difficulties associated with decomposing complex sys-
tems in terms of information theory (see [Griffith and Koch,
2014] [Griffith and Ho, 2015]).

We also plan to further inform this framework with at least
two empirical studies with human participants in virtual real-
ity. The first study will investigate the relationship between
the visibility of a sign at different distances and relative di-
rections at a finer granularity than previous work. The sec-
ond study will test different signage systems with respect to
their effect on the wayfinding behavior in complex virtual
buildings. Together, these studies will provide the necessary
groundwork for incorporating research on human perception
and cognition into evidence-based design.
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