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Abstract

A variety of fuzzy description logics are proposed to extend classical
description logics with fuzzy capability. However, reasoning with general
TBoxes is still an open problem in fuzzy description logics. In this paper,
we present a novel discrete tableau algorithm for a given fuzzy descrip-
tion logic FSHI with general TBoxes, which tries to construct discrete
tableaus of FSHI knowledge bases. We prove the equivalence of exis-
tence between discrete tableaus and models of FSHI knowledge bases,
hence getting that the discrete tableau algorithm is a sound and complete
decision procedure for FSHI reasoning problems with general TBoxes.

1 Introduction

Increasing demands for fuzzy knowledge representation have triggered a variety
of fuzzy extensions of description logics (DLs) that make them convenient to
express knowledge in fuzzy cases. Straccia adopted fuzzy interpretations to
propose a representative fuzzy extension FALC of ALC, and designed a tableau
algorithm for acyclic TBoxes [9]. Based on FALC, Höldobler et al proposed
membership manipulator constructors to define new fuzzy concepts [2]. Fuzzy
extensions of more expressive DLs like ALCQ and SHOIN (D) were presented
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in [6,11], but there were no reasoning algorithms for them. The concrete domains
were also introduced into fuzzy DLs with an optimized reasoning technique in
FALC(D) [10]. Stoilos et al extended Straccia’s fuzzy framework into OWL,
hence getting a fuzzy ontology language: Fuzzy OWL [8]. They also gave a
reasoning technique to deal with ABox consistency without TBoxes.

Though the fuzzy extension of DLs has done a lot, reasoning with general
TBoxes is still an open problem in fuzzy DLs. In this paper, we will propose
a novel discrete tableau algorithm for satisfiability of FSHI knowledge bases
(KBs) with general TBoxes. The remaind of this paper is organized as follows.
A brief introduction to FSHI KBs will be given in section 2. The main theoreti-
cal foundation of our discrete tableau algorithms is the discretization of fuzzy
models, which will be discussed in section 3. Following that, we will present
the definition of discrete tableaus and the expansion rules of discrete tableau
algorithms, and propose a sketch proof of correctness and complexity of our
algorithms in section 4. Finally section 5 will conclude this paper and discuss
the further work.

2 A Brief Introduction to FSHI
FSHI is a complex fuzzy description logic with role hierarchy, transitive and
inverse role. Let NC be a set of concept names and R be a set of role names
with transitive role names R+ ⊆ R. FSHI roles are either role names R ∈ R
or their inverse role R−. FSHI concepts are inductively defined as follows:

1. For any A ∈ NC, A is a concept;

2. The top concept > and the bottom concept ⊥ are concepts;

3. If C and D are two concepts and R is a role, the ¬C, C uD, C tD, ∃R.C
and ∀R.C are concepts.

One of the main differences between fuzzy DLs and classical DLs is that fuzzy
DLs adopt fuzzy interpretations. A fuzzy interpretation I = 〈∆I , ·I 〉 of FSHI
consists of a nonempty domain ∆I and an interpretation function ·I mapping:

any individual name a into aI ∈ ∆I

any concept name A into AI : ∆I → [0, 1]

any role name R into RI : ∆I ×∆I → [0, 1]

And for any transitive role name R ∈ R+, ·I satisfies ∀d, d′ ∈ ∆I , RI(d, d′) ≥
supx∈∆I{min(RI(d, x), RI(x, d′))}. Intuitively, any concept name A is naturally
interpreted as the membership degree function AI w.r.t. ∆I : for any element
d ∈ ∆I , AI(d) shows the degree of d being an instance of the fuzzy concept A



>I(d) = 1
⊥I(d) = 0

(¬C)I(d) = 1− CI(d)
(C uD)I(d) = min(CI(d), DI(d))
(C tD)I(d) = max(CI(d), DI(d))
(∃R.C)I(d) = supd′∈∆I{min(RI(d, d′), CI(d′))}
(∀R.C)I(d) = inf d′∈∆I{max(1−RI(d, d′), CI(d′))}
(R−)I(d, d′) = RI(d ′, d)

Figure 1: The Semantics of FSHI

under the interpretation I. Similarly for role name R. For complex concepts
and inverse roles, ·I satisfies the following conditions (see figure 1):

A general TBox T is a finite set of fuzzy general concept inclusions C v D,
where C and D are FSHI concepts. An interpretation I satisfies C v D iff
∀d ∈ ∆I , CI(d) ≤ DI(d). I satisfies (is a fuzzy model of) a TBox T (written
I |= T ) iff I satisfies every inclusion in T .

A RBox R is a finite set of fuzzy role inclusions R v P , where R and P are
FSHI roles. An interpretation I satisfies R v P iff ∀d, d′ ∈ ∆I , RI(d, d′) ≤
P I(d, d′). I satisfies (is a fuzzy model of) a RBox R (written I |= R) iff I
satisfies every inclusion in R. Here we introduce v∗ as the transitive-reflexive
closure of v on R∪ {R− v P−|R v P ∈ R}.

An ABox A is a finite set of fuzzy assertions α ./ n, where α is an assertion:
a : C or 〈a, b〉 : R, ./∈ {≥, >,≤, <} and n ∈ [0, 1]. I satisfies a fuzzy assertion
a:C ≥ n iff CI(aI) ≥ n. Similarly for other three cases: <, ≤ and >, and role
assertions 〈a, b〉 : R ./ n. I satisfies (is a fuzzy model of) an ABox A (written
I |= A) iff I satisfies every fuzzy assertion in A.

A FSHI KB K = 〈T ,R,A〉 consists of its TBox T , RBox R and ABox A.
An interpretation I is a fuzzy model of a KB K (written I |= K), iff I satisfies
its TBox, RBox and ABox. K is satisfiable iff there is a fuzzy model of K. In
this paper, we will present a discrete tableau algorithm to decide satisfiability
of FSHI KBs.

3 Discretization of Fuzzy Models

Before discussing discretization of fuzzy models, we analyze troubles of reasoning
with general TBoxes in fuzzy DLs: the key question is “why reasoning technique
for general TBoxes in classical DLs can not be applied in fuzzy DLs”. To answer
this question, we will compare the semantics of fuzzy DLs with classical DLs. In
classical DL cases, an individual (a pair of individuals) completely belongs to a
concept (a role) or not, that means in classical models any concept (role) will be



interpreted as two-value degree functions: ∆I(∆I×∆I) → { 0, 1}. For any gen-
eral concept inclusion C v D and any individual a, classical tableau algorithms
nondeterministically “guess” the membership degrees n and m of a being an in-
stance of C and D, for some n,m ∈ {0, 1} and n ≤ m [1]. However, such “guess”
technique cannot be directly applied in fuzzy DLs. The main difficulty is that in
fuzzy models concepts and roles are interpreted as complex membership degree
functions by extending {0, 1} to [0, 1], hence the value of membership degree
functions is continuous but not discrete. To solve this problem, we try to design
a discretization step to translate fuzzy model into corresponding discrete model,
in which any membership degree value belongs to a special discrete degree set.
This discretization can enable similar “guess” technique applied in fuzzy DLs.

The first issue in discretization of fuzzy models is to decide the special discrete
degree set S. Let us now proceed formally in the creation of S. Consider a
FSHI KB K = 〈T ,R,A〉. Let NK be the set of degrees appearing in A:
NK = {n|α ./ n ∈ A}. From NK, we define the degree closure DSK of K as:
DSK = {0, 0.5, 1} ∪ NK ∪ {1 − n|n ∈ NK} and sort DSK in ascending order:
DSK = {n0, n1, . . . , ns}, where for any 0 ≤ i < s, ni < ni+1. It is easy to prove
that n0 = 0 and ns = 1; s is even; and for any 0 ≤ i ≤ s, ni + nn−i = 1.

Consider a constant vector M = [ c1, c2, . . . , cs/2], where for any ci, 0 < ci < 1.
We define the

⊗
operation: NSK = DSK

⊗
M = {m1,m2, . . . , ms}, where if

i ≤ s/2, mi = ci × ni−1 + (1 − ci) × ni, otherwise mi = (1 − cs+1−i) × ni−1 +
cs+1−i × ni. Obviously for any 1 ≤ i ≤ s, mi + ms+1−i = 1 and ni−1 < mi < ni.

Let S = DSK ∪ NSK, we call S a discrete degree set w.r.t K. Note that
|S| = 2s + 1 = O(|NK|) = O(|A|). We also sort degrees of S in ascending
order: S = {n0,m1, n1, . . . , ns−1,ms, ns}. For a fuzzy model Ic of K, if every
membership degree value of CIc( ) or RIc( ) belongs to a discrete degree set S,
Ic is called a discrete model of K within S. Following theorem guarantees the
equivalence between existence of fuzzy models and discrete models of K.

Theorem 1 For any K = 〈T ,R,A〉 and any discrete degree set S w.r.t K, K
has a fuzzy model, iff it has a discrete model within S.

Proof.⇒) Let I = 〈∆I , ·I〉 be a fuzzy model of K and the degree set S =
{n0,m1, n1, . . . , ns−1,ms, ns}. Consider a translation function ϕ( ) : [ 0, 1] → S:

ϕ(x) =

{
ni if x = ni

mi if ni−1 < x < ni

Here we enumerate some properties of ϕ( ), which are useful for the following
proof: for any x ≤ y, ϕ(x) ≤ ϕ(y); for any x < y, if x or y ∈ DSK, ϕ(x) < ϕ(y);
and for any x and y, ϕ(1− x) = 1−ϕ(x), ϕ(max(x, y)) = max(ϕ(x), ϕ(y)), and
ϕ(min(x, y)) = min(ϕ(x), ϕ(y)).

Based on ϕ( ), we construct a discrete model Ic = 〈∆Ic , ·Ic〉 within S from
I = 〈∆I , ·I 〉:



• The interpretation domain ∆Ic is defined as: ∆Ic = ∆I ;

• The interpretation function ·Ic is defined as: for any individual name a,
aIc = aI ; for any concept name A and any role name R: AIc( ) = ϕ(AI( ))
and RIc( ) = ϕ(RI( )); and for complex concept C and inverse role R−,
their interpretation are recursively defined based on membership degree
functions AIc( ) and RIc( ) of concept names and role names.

1. For any concept C and role R and any two elements d, d′ ∈ ∆Ic , we show,
by induction on the structure of C and R, that CIc(d) = ϕ(CI(d)) and
RIc(d, d′) = ϕ(RI(d, d′)):

• Case A: from the construction of Ic, AIc(d) = ϕ(AI(d));

• Case R: the proof is similar to case A;

• Case R−: from the semantics of R− in I and Ic,

(R−)Ic(d, d′) = RIc(d′, d) = ϕ(RI(d′, d)) = ϕ((R−)I(d, d′))

• Case >: for 1 ∈ DSK, >Ic(d) = 1 = ϕ(>I(d));

• Case ⊥: the proof is similar to case >;

• Case ¬C: from induction, CIc(d) = ϕ(CI(d)). And from ϕ(1− x) =
1− ϕ(x), we have

(¬C)Ic(d) = 1− CIc(d) = 1− ϕ(CI(d))
= ϕ(1− CI(d)) = ϕ((¬C)I(d))

• Case CuD: from induction, CIc(d)=ϕ(CI(d)) and DIc(d)=ϕ(DI(d)).
We can get that

(C uD)Ic(d) = min(CIc(d), DIc(d))
= min(ϕ(CI(d)), ϕ(DI(d)))
= ϕ(min(CI(d), DI(d)))
= ϕ((C uD)I(d))

• Case CtD: the proof is similar to case C uD.

• Case ∀R.C: let f(d′) = max(1 − RI(d, d′), CI(d′)). From definition,
(∀R.C)I(d) = infd′∈∆If(d′). Assume there is an element d ′′ with the
minimal value of f( ): for any d′ in ∆I , f(d′′) ≤ f(d′)1. Let

f ∗(d ′) = ϕ(f(d ′))
= ϕ(max(1−RI(d, d′), CI(d′)))
= max(ϕ(1−RI(d, d′)), ϕ(CI(d′)))
= max(1− ϕ(RI(d, d′)), ϕ(CI(d′)))
= max(1−RIc(d, d′), CIc(d′))

1The detailed proof of this assumption is given in [5]



Obviously, for ∀d ′ in ∆Ic , f ∗(d ′′) = ϕ(f(d ′′)) ≤ ϕ(f(d′)) = f ∗(d′).
Then we get

(∀R.C)Ic(d) = infd′∈∆Ic f ∗(d′) = f ∗(d′′)
= ϕ(f(d′′)) = ϕ((∀R.C)I(d))

• Case ∃R.C: for ¬(∃R.C) = ∀R.¬C, we can get the proof from case
¬C and ∀R.C.

2. We show Ic is a fuzzy model of K.

• Case R ∈ R+: for I is a fuzzy model of K, ∀d, d′ ∈ ∆I , RI(d, d′) ≥
supx∈∆I{RI(d, x), RI(x, d′)}. Therefore,

RIc(d, d′) = ϕ(RI(d, d′))
≥ supx∈∆I{min(ϕ(RI(d, x)), ϕ(RI(x, d′)))}
= supx∈∆Ic{min(RIc(d, x), RIc(x, d′))}

• Case C v D ∈ T : for I is a fuzzy model of K, ∀d ∈ ∆I , CI(d) ≤
DI(d). And from 1, for any concept C, CIc(d) = ϕ(CI(d)). There-
fore, ∀d ∈ ∆Ic , CIc(d) = ϕ(CI(d)) ≤ ϕ(DI(d)) = DIc(d);

• Case R v S ∈ R: the proof is similar to case C v D;

• Case α ./ n ∈ A: here we only focus on a:C ≥ n. For CI(aI) ≥ n
and n ∈ DSK, we can get:

CIc(aIc) = ϕ(CI(aI)) ≥ ϕ(n) = n

From above two points, Ic is a discrete model of K within S.

⇐) Let Ic be a discrete model of K within S. It is also a fuzzy model of K.¤

4 Discrete Tableau Algorithms

This section will talk about discrete tableau algorithms, which try to decide
the existence of discrete models of a FSHI KB K by constructing a discrete
tableau. Before going into the definition of discrete tableaus, we first introduce
some notations. It will be assumed that the concepts appearing in tableau
algorithms are written in Negation Normal Form (NNF). And for any concept
C, we use nnf(C) to denote its equivalent form in NNF. The set of subconcepts of
a concept C is denoted as sub(C). For a KB K, we define sub(K) as the union of
all sub(C), when the concept C appears in K. We also make two notions about
roles to make the following consideration easier: we use Inv(R) to denote the
inverse role of R and Tran(R) as a Boolean value to tell whether R is transitive.
Trans(R) =True, iff R or Inv(R) ∈ R+ or there is a role P with (1) P v∗ R and
R v∗ P ; and (2) P or Inv(P ) ∈ R+. Moreover, we use the symbols B and C as
two placeholders for the inequalities ≥, > and ≤, <, and the symbols ./−, B−



Table 1: Conjugated pairs

〈<,m〉 〈≤,m〉
〈≥, n〉 n ≥ m n > m

〈>, n〉 ¬∃n1 ∈ S with n < n1 < m n ≥ m

and C− to denote the reflections of ./, B and C. For example, ≥ and ≤ are the
reflections to each other. Finally, we define 〈./, n〉 as a degree pair. Two degree
pairs 〈B, n〉 and 〈C,m〉 are called conjugated, iff they satisfy one of following
conditions (see table 1).

Now we define the discrete tableau for K. Let RK and OK be the sets of roles
and individuals appearing in K. A discrete tableau T for K within a degree set
S is a quadruple: 〈O, L, E , V〉, where

• O: a nonempty set of nodes;

• L: O → 2M , M = sub(K)× {≥, >,≤, <} × S;

• E : RK → 2Q, Q = {O ×O} × {≥, >,≤, <} × S;

• V : OK → O, maps any individual into a corresponding node in O.

The discrete tableau has a forest-like structure, which is a collection of trees
that correspond to individuals in the ABox A. Every tree consists of nodes
standing for the individuals, and edges representing the relations between two
nodes (individuals). Each node d is labelled with a set L(d) of degree triples:
〈C, ./, n〉, which denotes the membership degree of d being an instance of C ./ n.
A pair of triple 〈C, ./, n〉 and 〈C, ./′,m〉 are conjugated if 〈./, n〉 and 〈./′,m〉 are
conjugated. In a discrete tableau T, for any d, d′ ∈ O, a, b ∈ OK, C, D ∈ sub(K)
and R ∈ RK, the following conditions must hold:

1. There are not two conjugated degree triples in L(d);
2. There are not inconsistent triples: 〈⊥,≥, n〉 (n > 0), 〈>,≤, n〉 (n < 1),
〈⊥, >, n〉, 〈>, <, n〉, 〈C, >, 1〉 and 〈C, <, 0〉 in L(d);

3. If C v D ∈ T , then there must be some n ∈ S with 〈C,≤, n〉 and 〈D,≥, n〉
in L(d);

4. If 〈C, ./, n〉 ∈ L(d), then 〈nnf(¬C), ./−, 1− n〉 ∈ L(d);
5. If 〈C uD, B, n〉 ∈ L(d), then 〈C, B, n〉 and 〈D, B, n〉 ∈ L(d);
6. If 〈C uD, C, n〉 ∈ L(d), then 〈C, C, n〉 or 〈D, C, n〉 ∈ L(d);
7. If 〈C tD, B, n〉 ∈ L(d), then 〈C, B, n〉 or 〈D, B, n〉 ∈ L(d);
8. If 〈C tD, C, n〉 ∈ L(d), then 〈C, C, n〉 and 〈D, C, n〉 ∈ L(d);
9. If 〈∀R.C, B, n〉 ∈ L(d),〈〈d, d′〉, B′,m〉 ∈ E(R), and 〈B′,m〉 is conjugated

with 〈B−, 1− n〉, then 〈C, B, n〉 ∈ L(d′);
10. If 〈∀R.C, C, n〉 ∈ L(d), then there must be a node d′ ∈ O with 〈〈d, d′〉, C−, 1−

n〉 ∈ E(R) and 〈C, C, n〉 ∈ L(d′);
11. If 〈∃R.C, B, n〉 ∈ L(d), then there must be a node d′ ∈ O with 〈〈d, d′〉, B, n〉 ∈

E(R) and 〈C, B, n〉 ∈ L(d′);



12. If 〈∃R.C, C, n〉 ∈ L(d), 〈〈d, d′〉, B′,m〉 ∈ E(R), and 〈B′,m〉 is conjugated
with 〈C, n〉, then 〈C, C, n〉 ∈ L(d′);

13. If 〈∀P.C, B, n〉 ∈L(d), 〈〈d, d′〉, B′,m〉 ∈ E(R) for some R v∗ P with Trans(R)
=True and 〈B′,m〉 is conjugated with 〈B−, 1−n〉, then 〈∀R.C, B, n〉 ∈L(d′);

14. If 〈∃P.C, C, n〉 ∈L(d), 〈〈d, d′〉, B′,m〉 ∈ E(R) for some R v∗ P with Trans(R)
=True and 〈B′,m〉 is conjugated with 〈C, n〉, then 〈∃R.C, C, n〉 ∈ L(d′);

15. If 〈〈d, d′〉, ./, n〉 ∈ E(R), then 〈〈d′, d〉, ./, n〉 ∈ E(Inv(R));
16. If 〈〈d, d′〉, B, n〉 ∈ E(R) and R v∗ P , then 〈〈d, d′〉, B, n〉 ∈ E(P );
17. If a : C ./ n ∈ A, then 〈C, ./, n〉 ∈ L(V(a));
18. If 〈a, b〉 : R ./ n ∈ A, then 〈〈V(a),V(b)〉, ./, n〉 ∈ E(R).

Discrete tableau is an extension of fuzzy tableau [7] with additional condi-
tions (condition 3) to deal with general TBoxes. For any C v D ∈ T , since any
membership degree in the discrete model belongs to S, for any individuals d, let
d : C = n1 and d : D = n2, where n1, n2 ∈ S and n1 ≤ n2. Obviously, there must
be some n ∈ S satisfying n1 ≤ n ≤ n2. Then we add 〈C,≤, n〉 and 〈D,≥, n〉 in
L(d). For other conditions, conditions 1 and 2 prevent tableau from containing
any clash; condition 4-16 are necessary for the completeness of discrete tableaus;
and condition 17-18 ensure the correctness of individual mapping function V( ).

Theorem 2 For any K =< T ,R,A > and any discrete degree set S w.r.t K,
K has a discrete model within S iff it has a discrete tableau T within S.

Proof. ⇐) Let S = {n0,m1, n1, . . . , ns−1,ms, ns} and T = 〈O, L, E , V〉 be a
discrete tableau within S. We define a sign function h( ): S → {1, 2, . . . , 2s+1}.
For any 0 ≤ i ≤ s, h(ni) = 2i+1 and h(mi) = 2i. Obviously, for any x ∈ S, x is
the h(x)-th minimal element in S. And we define g( ) as the inverse function of
h( ). Based on T, we construct a discrete model Ic = 〈∆Ic , ·Ic〉 of K within S:

• The interpretation domain ∆Ic is defined as follows: ∆Ic = O;

• The interpretation function ·Ic is defined as follows: for any individual a,
aIc = V(a); for any concept name A any d ∈ ∆Ic :

AIc(d) = max{ 0, max{n|〈A,≥, n〉 ∈ L(d)},
h(g(max{n|〈A,>, n〉 ∈ L(d)}) + 1) }

And for any role name R and d, d′ ∈ ∆Ic , let

R∗(d, d′) = max{ 0, max{n|〈〈d, d′〉,≥, n〉 ∈ E(R)},
h(g(max{n|〈〈d, d′〉, >, n〉 ∈ E(R)}) + 1) }

For any k ≥ 0, let

R∗
k(d, d′) = supx1,...,xk∈∆Ic{min(R∗(d, x1), R

∗(x1, x2), . . . ,

R∗(xk−1, xk), R
∗(xk, d

′))}

RIc(d, d′) =

{
supk≥0{R∗

k(d, d′)} if Tran(R) = True
R∗(d, d′) otherwise



From above, AIc(d) are defined as the minimal value to satisfy constraints
in both ≥ and > cases. Note that, in order to be greater than all values
in S∗ = {n|〈A,>, n〉 ∈ L(d)}, AIc(d) must be greater than or equal to
the subsequence value h(g(max S∗) + 1) of the maximal value of S∗ in S.
And similarly for RIc(d, d′). And for any complex concept C and inverse
role R−, their interpretation are recursively defined based on membership
degree functions AIc( ) and RIc( ) of concept names and role names.

1. We show, for any C and d with 〈C, ./, n〉 ∈ L(d), CIc(d) ./ n.

– Case A: from the definition of AIc( ), for any 〈A, B, n〉 ∈ L(d), obvi-
ously AIc(d)Bn. And for any 〈A, C, n〉 ∈ L(d), here we only focus on
≤ cases. Assume AIc(d) > n, (1) if AIc(d) is max{n|〈A,≥, n〉 ∈ L(d)}
or h(g(max{n|〈A,>, n〉 ∈ L(d)})+1), then there must be two conju-
gated triples in L(d), which is contrary to condition 1 of the discrete
tableaus; or (2) if AIc(d) is 0, then n < 0 holds which is contrary to
assumption n ∈ [0, 1].

– Case complex concepts: the proof is similar to case A.

2. Similarly, for any R and d, d′ with 〈〈d, d′〉, ./, n〉 ∈ E(R), RIc(d, d′) ./ n.

3. We show Ic is a fuzzy model of K.

– Case R ∈ R+: from the construction of Ic, for any d, d′ ∈ ∆Ic ,

RIc(d, d′) ≥ supx∈∆Ic{RIc(d, x), RIc(x, d′)}
– Case C v D ∈ T : from condition 3 of discrete tableaus, for any

d ∈ ∆Ic there must be some n ∈ S with 〈C,≤, n〉 and 〈D,≥, n〉 in
L(d). And from 1, CIc(d) ≤ n and DIc(d) ≥ n hold. Therefore, Ic

satisfies C v D

– Case R v S ∈ R: the proof is similar to case C v D;

– Case α ./ n ∈ A: here we only focus on a : C ./ n. From condition
17 of discrete tableau, 〈C, ./, n〉 ∈ L(V(a)). And from aIc = V(a)
and 1, we get CIc(aIc) ./ n.

⇒) Let Ic = 〈∆Ic , ·Ic〉 be a discrete model within S. And we construct a
discrete tableau T = 〈O, L, E , V〉 from Ic:

• O: O = ∆Ic ;

• L: for any d ∈ O, L(d) = {〈C, ./, n〉|CIc(d) ./ n, n ∈ S};
• for any R ∈ RK, E(R) = {〈〈d, d′〉, ./, n〉|RIc(d, d′) ./ n, n ∈ S};
• V : for any a ∈ OK, V(a) = aIc .



From definition, 〈C, ./, n〉 ∈ L(d) ⇔ CIc(d) ./ n and 〈〈d, d′〉, ./, n〉 ∈ E(R) ⇔
RIc(d, d′) ./ n. We show T is a discrete tableau of K within S: here we give the
proof of that T satisfies condtion 3 and 4:

3. if C v D ∈ T , for any d, CIc(d) ≤ DIc(d). Let CIc(d) = n and obviously
n ∈ S. From the construction of T, 〈C,≤, n〉 and 〈D,≥, n〉 ∈ L(d).

4. if 〈C, ./, n〉 ∈ L(d), then CIc(d) ./ n. And for the semantics of negation,
nnf(¬C)Ic(d) ./− 1− n, then 〈nnf(¬C), ./−, 1− n〉 ∈ L(d).

From above, T is a discrete tableau of K within S. ¤
From theorem 1 and 2, an algorithm that constructs a discrete tableau of

K within S can be considered as a decision procedure for the satisfiability of
K. The discrete tableau algorithm works on a completion forest FK, where each
node x is labelled with L(x) ⊆ M = sub(K)× {≥, >,≤, <} × S; and each edge
〈x, y〉 is labelled L(〈x, y〉)={〈R, ./, n〉}, for some R ∈ RK and n ∈ S.

The tableau algorithm initializes FK to contain a root node xa for each
individual a in OK and labels xa with L(xa) = {〈C, ./, n〉|a : C ./ n ∈ A}.
Moreover, for any pair 〈xa, xb〉, L(〈xa, xb〉) = {〈R, ./, n〉|〈a, b〉 : R ./ n ∈ A}.
The algorithm expands the forest FK either by extending L(x) for the current
node x or by adding new leaf node y with expansion rules in table 2.

In table 2, we adopt an optimized way to reduce ”C rules”: for any ”C” triple
〈C, C, n〉 ∈ L(x), we use ¬./ rules to add its equivalence 〈nnf(C), C−, 1− n〉 to
L(x), and then deal it with B rules.

Edges and nodes are added when expanding triples 〈∃R.C, B, n〉, 〈≥ pR, B, n〉
in L(x). A node y is called a R-successor of another node x and x is called a
R-predecessor of y, if 〈R, ./, n〉 ∈ L(〈x, y〉). Ancestor is the transitive clo-
sure of predecessor. And for any two connected nodes x and y, we define
DR(x, y)={〈B, n〉|P v∗ R, 〈P, B, n〉 ∈ L(〈x, y〉) or 〈Inv(P ), B, n〉 ∈ L(〈y, x〉)}⋃
{〈C, n〉|R v∗ P, 〈P, C, n〉 ∈ L(〈x, y〉) or 〈Inv(P ), C, n〉 ∈ L(〈y, x〉)}. If DR(x, y)
6= ∅, y is called a R-neighbor of x. As inverse role is allowed in FSHI, we
make use of dynamic blocking technique [3] to ensure the termination and cor-
rectness of our tableau algorithm. A node x is directly blocked by its ancestor
y iff x is not a root node and L(x) = L(y). A node x is indirectly blocked if its
predecessor is blocked. A node x is blocked iff it is either directly or indirectly
blocked.

A completion forest FK is said to contain a clash, if for a node x in FK,
L(x) contains two conjugated triples or an inconsistent triple (see condition 2
of discrete tableaus). A completion forest FK is clash-free if it does not contain
any clash, and it is complete if none of the expansion rules are applicable.

From dynamic blocking technique, the worst-case complexity of our tableau
algorithm is 2NEXPTIME [4]. And the soundness and completeness of our
tableau algorithm are guaranteed by the following theorem.



Table 2: Expansion rules of discrete Tableau

Rule name Description

KB rule: if C v D ∈ T and there is no n with 〈C,≤, n〉 and 〈D,≥, n〉 in L(x);
then L(x) → L(x) ∪ {〈C,≤, n〉, 〈D,≥, n〉} for some n ∈ S.

The following rules are applied to nodes x which is not indirectly blocked.
¬./ rule: if 〈C, ./, n〉 ∈ L(x) and 〈nnf(¬C), ./−, n〉 /∈ L(x);

then L(x) → L(x) ∪ {〈nnf(¬C), ./−, n〉}.
uB rule: if 〈C uD, B, n〉 ∈ L(x), and 〈C, B, n〉 or 〈D, B, n〉 /∈ L(x);

then L(x) → L(x) ∪ {〈C,B, n〉, 〈D, B, n〉}.
tB rule: if 〈C tD, B, n〉 ∈ L(x), and 〈C, B, n〉, 〈D, B, n〉 /∈ L(x)

then L(x) → L(x) ∪ {T}, for some T ∈ {〈C, B, n〉, 〈D, B, n〉}
∀B rule: if 〈∀R.C, B, n〉 ∈ L(x), there is a R-neighbor y of x with 〈B′,m〉 ∈ DR(x, y),

which is conjugated with 〈B−, 1− n〉, and 〈C, B, n〉 /∈ L(y);
then L(y) → L(y) ∪ {〈C,B, n〉}.

∀+B rule: if 〈∀P.C, B, n〉 ∈ L(x), there is a R-neighbor y of x with R v∗ P , Trans(R)=True
and 〈B′,m〉 ∈ DR(x, y), 〈B′,m〉 is conjugated with 〈B−, 1− n〉
L(y) → L(y) ∪ {〈∀R.C, B, n〉}.

The following rules are applied to nodes x which is not blocked.
∃B rule: if 〈∃R.C, B, n〉 ∈ L(x); there is not a R-neighbor y of x with 〈B, n〉 ∈ DR(x, y)

and 〈C, B, n〉 ∈ L(y).
then add a new node z with 〈R, B, n〉 ∈ L(〈x, z〉) and 〈C, B, n〉 ∈ L(z).

Theorem 3 For any K = 〈T ,R,A〉 and any discrete degree set S w.r.t K, K
has a discrete tableau within S iff the tableau algorithm can construct a complete
and clash-free completion forest.

Proof.(Sketch) Here we only focus on ⇐). The proof of ⇒) is similar to
the one given in [3]. Let FK a complete and clash-free completion forest. We
construct a discrete tableau T = 〈O, L, E , V〉 from FK:

• O: O = {x |x is a node in FK, and it is not blocked};
• L: for any x ∈ O, L(x) = the labelling set L(x) of nodes x in FK;

• E : for any R ∈ RK,

E(R) = {〈〈x, y〉, ./, n〉| 1. y is R-neighbor of x and 〈./, n〉 ∈ DR(x, y);or

2. y blocks z, and 〈./, n〉 ∈ DR(x, z);or

3. x blocks z, and 〈./, n〉 ∈ DInv(R)(y, z) }
• V : for any a ∈ OK, V(a) = the initialized node xa of a in FK.

We can follow the similar steps in theorem 2 to prove that T is a discrete tableau
of K within S.



5 Conclusion

This paper presents the discretization technique to reduce fuzzy models of
FSHI and proposes a discrete tableau algorithm to solve satisfiability of FSHI
KBs with general TBoxes. This discretization technique supports a new way to
achieve reasoning with general TBoxes in fuzzy DLs. We will try to extend this
discretization technique in more complex fuzzy DLs and design corresponding
tableau algorithms for reasoning with them. Moreover, we plan to apply it in
complexity research of reasoning problems in fuzzy DLs.
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