
Clopen Knowledge Bases: Combining Description
Logics and Answer Set Programming?

Labinot Bajraktari, Magdalena Ortiz and Mantas Šimkus

Institute of Information Systems, TU Wien, Austria

1 Introduction
Answer Set Programming (ASP) and ontology languages like Description Logics (DLs)
play leading roles in Knowledge Representation and Reasoning (KR&R). ASP and DLs
have largely orthogonal features because they make very different assumptions regard-
ing the completeness of information, and thus reasoning techniques and algorithms that
are deployed in ASP are significantly different from the ones used in DLs. Combin-
ing ASP, which makes the closed-world assumption (CWA), with DLs, which make the
open-world assumption (OWA), into expressive hybrid languages that would enjoy the
positive features of both has received significant attention in the last decade (see, e.g.,
[23, 24, 7, 20, 19]). However, progress on understanding the relationship between dif-
ferent hybrid languages, and their relationship with more standard languages like plain
ASP, has been limited, as has the development of efficient reasoning algorithms and
implementations.

These and related problems are investigated in this paper for a new hybrid language
called Clopen Knowledge Bases (CKBs), which generalizes and improves the prominent
r-hybrid language [23] and DL+LOG [24]. Each CKB is a triple H = (P , ϕ,Σ), where
P is a disjunctive Datalog program with “not” literals in rule bodies, ϕ is theory (e.g.,
in first-order logic), and Σ is a set of predicate symbols. Intuitively, Σ specifies the
predicates that should be interpreted under the OWA; the remaining predicates should
be interpreted under the CWA (see Section 3 for details). The contributions of this paper
can be summarized as follows:
◦ We introduce CKBs, and define for them a stable model semantics, inspired

the semantics given by Rosati to r-hybrid and DL+LOG KBs. In a nutshell, the major
difference between the latter formalisms and CKBs is that CKBs allow to use CWA
predicates in the theory. This allows for more convenient knowledge representation, but
also causes technical challenges.
◦ We study automated reasoning in CKBs. To this end, in Section 4 we pro-

vide a general decidability result for checking entailment of ground atoms and con-
sistency testing in CKBs H = (P , ϕ,Σ), where ϕ is expressed in the guarded negation
fragment of FO (GNFO) [4]. This is a very expressive fragment that subsumes the
more prominent guarded fragment of FO, as well as many expressive DLs. We give a
NEXPTIME2EXPTIME upper bound for inference from GNFO-based CKBs (we note that
satisfiability of GNFO formulas is 2EXPTIME-hard).
◦ In Section 5 we study reasoning in CKBs H = (P , ϕ,Σ), where ϕ is expressed

in the very expressive DL ALCHIO. We show that the (combined) complexity of
? The work was supported by the Austrian Science Fund’s projects P25207, P25518, and W1255.



reasoning in such CKBs is not higher than in standard (non-ground) ASP. If we as-
sume bounded predicate arities in rules, the basic reasoning problems are EXPTIME-
complete, which coincides with the complexity of standard problems in ALCHIO.
◦ We explore ways to implement reasoning in CKBs. To this end, we define a

restricted class of separable CKBs, and present a translation from separable CKBs into
standard ASP programs, thus enabling the reuse of existing ASP solvers. Roughly, the
idea is to compile the necessary knowledge about the ontology into a set of disjunctive
Datalog rules. Together with the original rules of the CKB, they form a plain ASP
program whose stable models are in close correspondence with the stable models of the
input CKB (see Section 5.2). The translation actively exploits the structure of the data
in the input CKB in order to minimize non-deterministic choices.
◦ We have implemented our translation from separable CKBs with ALCH on-

tologies into plain ASP, and present here some promising empirical results. We pit our
approach against an alternative implementation based on a polynomial time translation
(given in the appendix of the extended version of this paper [3]) from separable CKBs
into the so-called dl-programs [7]. Intuitively, a dl-program for a CKB effectively im-
plements a naive algorithm for reasoning in CKBs. In particular, such a dl-program
non-deterministically guesses a (relatively large) set of ground atoms, and then uses an
external query (a dl-atom) to update the ontology that is checked for consistency by an
external DL reasoner. Our experiments show that the translation into plain ASP provides
a dramatic performance improvement over the implementation based on dl-programs.

2 Preliminaries
In this paper we talk about logics which are, in general, sets of theories, and our results
are for specific logics that are fragments of standard FO. We start by introducing the
notions of (relational) interpretations, as usual in FO, and Herbrand interpretations, as
usual in rule languages.
Interpretations and models. We assume a countably infinite set Sconst of constants, and
a countably infinite set Spred of predicate symbols. Each r ∈ Spred is associated with a
non-negative integer, called the arity of r. An interpretation is a pair I = (∆I , ·I) that
consists of a non-empty set ∆I (called domain), and a valuation function ·I that maps
(i) each constant c ∈ Sconst to an element cI ∈ ∆I , and (ii) each predicate symbol r to
a set rI ⊆ (∆I)n, where n is the arity of r.

We assume a countably infinite set T of theories. Each theory ϕ ∈ T is associated
with a set mods(ϕ) of interpretations. Each I ∈ mods(ϕ) is called a model of ϕ. We
assume that > ∈ T, and we let mods(>) be the set of all interpretations. A logic is
simply a set of theories L ⊆ T. As concrete logics we will consider various fragments
of FO; the notion of a model for a theory ϕ in FO is the standard one.
Atoms and Herbrand interpretations. We assume a countably infinite set Svar of vari-
ables. The elements of Sconst ∪ Svar are called terms. An atom is an expression of the
form r(t1, . . . , tn), where r ∈ Spred, n is the arity of r, and t1, . . . , tn are terms. An
atom is called ground if no variables occur in it. An Herbrand interpretation I is any
set of ground atoms. An Herbrand interpretation I can be seen as an ordinary inter-
pretation: we let Ĩ = (∆Ĩ , ·Ĩ) be the interpretation such that (i) ∆Ĩ = Sconst, and
(ii) r Ĩ = {u | r(u) ∈ I} for all r ∈ Spred.



3 Clopen Knowledge Bases
We next define the syntax and the semantics of our hybrid language.
Syntax. A rule ρ is an expression of the form

p1 ∨ . . . ∨ pk ← pk+1, . . . , pl,not pl+1, . . . ,not pm (1)

such that p1, . . . , pm are atoms. We define head(ρ) = {p1, . . . , pk}, body+(ρ) =
{pk+1, . . . , pl}, and body−(ρ) = {pl+1, . . . , pm}. We call the expression not p, where
p is an atom, a negated atom. If head(ρ) = ∅, then ρ is a constraint.

A program P is a set of rules. A Clopen Knowledge base (CKB) is a triple H =
(P , ϕ,Σ), where P is a program, ϕ ∈ T is a theory, and Σ ⊆ Spred. The predicate
symbols in Σ (resp., in Spred \ Σ) are called the open predicates (resp., closed pred-
icates) w.r.t.H . The CKB H is called safe if the following is satisfied for every rule
ρ ∈ P : every variable that appears in ρ also appears in some atom r(u) ∈ body+(ρ)
with r 6∈ Σ. Unless stated otherwise, all considered CKBs are safe.

A rule or program is called ground (resp., positive) if no variables (resp., negated
atoms) occur in it. A ground rule r(u) ← is called a fact. We write r(u) ∈ P in case
the fact r(u)← is present in a program P .

As usual, dom(f) denotes the domain of a function f , and ran(f) its range. A
substitution σ is a partial function from Svar to Sconst. For a rule ρ and a substitution σ,
we use σ(ρ) to denote the rule that is obtained from ρ by replacing every variable X ∈
dom(σ) with σ(X). The grounding of a program P (in symbols, ground(P)) is the
ground program that consists of all ground rules ρ′ such that ρ ∈ P and ρ′ = σ(ρ) for
some substitution σ. Note that ground(P) is infinite when P has at least one variable.
Semantics. An Herbrand interpretation I is called a model of a ground positive pro-
gram P if body+(ρ) ⊆ I implies head(ρ) ∩ I 6= ∅ for all ρ ∈ P . Moreover, I is a
minimal model of P if, in addition, there is no J ( I such that J is a model of P .

Given a program P , an Herbrand interpretation I , and a set Σ ⊆ Spred, the reduct
PI,Σ of P w.r.t. I and Σ is the ground positive program that is obtained from the pro-
gram ground(P) in two steps:
(1) Delete every rule ρ that contains (a) r(u) ∈ body+(r) with r ∈ Σ and r(u) 6∈ I ,

(b) r(u) ∈ head(r) with r ∈ Σ and r(u) ∈ I , or
(c) r(u) ∈ body−(r) with r(u) ∈ I .

(2) In remaining rules, delete all negated atoms, and all ordinary atoms r(u) with r∈Σ.
An Herbrand interpretation I is a stable model of a CKB H = (P , ϕ,Σ) if the

following hold:

(i) {r(u) | r(u) ∈ I, r 6∈ Σ} is a minimal model of PI,Σ , and
(ii) Ĩ is model of ϕ.

Relationship to ASP. Assume a program P and an Herbrand interpretation I . We call I
a stable model of P if I is a stable model of the CKB H = (P ,>, ∅). It is not difficult
to see that this definition yields precisely the stable models that can alternatively be
computed using the standard definition of stable model semantics in ASP. Indeed, the
program PI,∅ boils down to the standard Gelfond-Lifschitz reduct PI of P w.r.t. I [13].



Observe that in a CKB H = (P , ϕ, ∅), the theory ϕ plays the role of integrity con-
straints on the stable models of the plain program P , i.e. I is a stable model of H iff I
is a stable model of P such that Ĩ ∈ mods(ϕ).
Relationship to r-hybrid KBs. Our CKBs are a close relative of the r-hybrid KBs of
Rosati [23]. The safety restriction here is inspired by the safety condition in r-hybrid
KBs, and so is our definition of the semantics via a generalization of the Gelfond-
Lifschitz reduct that additionally reduces the program according to the truth value of
atoms over open predicates. Intuitively, r-hybrid KBs are a special kind of CKBs in
which the rule component can refer to both open and closed predicates, but the theory
component can use open predicates only. More formally, an r-hybrid KB H = (T ,P),
where T is a theory in FO and P is a Datalog¬,∨ program as defined in [23], corre-
sponds to the CKB H ′ = (P, T , Σ), whereΣ is the set of predicates symbols appearing
in T . One can verify that the stable models of H ′ are precisely the NM-models ofH.

In generic CKBs H = (P , ϕ,Σ), where ϕ is an FO theory, the set Σ need not
contain all the predicate symbols that appear in ϕ, i.e., closed predicates may occur in
ϕ. Consequently, the extensions of these predicates in (the relevant) models of ϕ must
be justified by program rules. This feature causes technical challenges, but is very useful
for declarative specification of problems: in our approach, predicates under the OWA
and the CWA can be used both in the program and in the theory of a hybrid KB (see
Example 1 for an illustration).

The DL+LOG language is obtained from the r-hybrid language by allowing only
DLs for specifying theories, and relaxing the safeness condition to weak safeness [24].
In the appendix of the extended version of this paper we show that, when sufficiently
rich DLs are considered, CKBs also generalize DL+LOG [3].
Reasoning problems. As usual in hybrid languages (see, e.g., [23]), the basic reasoning
task for CKBs is entailment of ground atoms. That is, given a CKB H = (P , ϕ,Σ) and
a ground atom R(u), the problem is to decide whether R(u) ∈ I holds for all stable
models I of H . This problem can be reduced to checking the non-existence of a stable
model for the CKB H ′ = (P ∪ {← R(u)}, ϕ,Σ). Thus in the rest of the paper we
focus on checking the stable model existence for a given CKB. Note that in general a
CKB may have infinitely many stable models.

Example 1. The CKB H = (P , ϕ,Σ) contains information on the local transport net-
work (provided by the city’s transport authority and assumed to be complete) and on
hotels and relevant locations (extracted form the web and not necessarily complete).
We have P =P1 ∪P2 ∪P3, where P1 and P2 contain facts. The network, which is
depicted by solid lines at the top of Figure 1, is described in P1. Facts of the form
RouteTable(`, s, s′) ← store that on the line `, station s is followed by station s′. The
constants t1 and t2 represent tram lines, while `1 represents a subway line; we have
corresponding facts SubwayLine(`1), TramLine(t1), TramLine(t2). P2 contains facts
related to locations, including the following (for convenience, CloseTo is depicted with
dotted lines).

CloseTo(c1, s1)←, Hotel(h1)←, TramConn(h1)←, Hotel(h2)←, CloseTo(h2, s4)←

The (self-explanatory) rules in P1 and the theory ϕ are in Figure 1 (URailConn stands
for urban rail connection). If h is a hotel with direct connection to the point of interest



Theory and Practice of Logic Programming 5

P3 = { SubwayStation(Y1) RouteTable(X ,Y1,Y2),SubwayLine(X)

TramStation(Y2) RouteTable(X ,Y1,Y2),TramLine(X)

ReachOnLine(X ,Y1,Y2) RouteTable(X ,Y1,Y2)

ReachOnLine(X ,Y1,Y3) ReachOnLine(X ,Y1,Y2),RouteTable(X ,Y2,Y3)

TramOnly(X) TramConn(X),not SubwayConn(X)

Q(X) Hotel(X),closeTo(X ,Y ),ReachOnLine(Z,Y,Y 0),CloseTo(c1,Y 0)

Q0(X) Q(X),not TramOnly(X) }

T = { 8x.
�
SubwayStation(x)_TramStation(x)! Station(x)

�
,

8x.
�
TramConn(x)$9ycloseTo(x,y)^TramStation(y)

�
,

8x.
�
SubwayConn(x)$9y.closeTo(x,y)^SubwayStation(y)

�
,

8x.
�
URailConn(x)$9y.closeTo(x,y)^Station(y)

�
}

Fig. 1. Example CKB

Jane

Hospital

Fig. 2. GRAPHICS CAPTiON!!!!!!S

for any program P and each n-ary relation symbol r with r 6= adom that appears in P, we assume
that (i) P contains the rule adom(x j) r(x1, . . . ,xn) for every 1 j n, and (ii) adom is allowed
to occur only in bodies of the remaining rules.

Example 1
The CKB H = (P,T ,S) contains information on the local transport network (provided by the
city’s transport authority and assumed to be complete) and on hotels and relevant locations (ex-
tracted form the web and not necessarily complete). We have P = P1 [P2 [P2, where P1 and
P2 contain facts. The network in Figure 2 is described in P1. The constants t1 and t2 repre-
sent tram lines, while l1 represents a subway line; we have corresponding facts SubwayLine(`1),
TramLine(t1), TramLine(t2). Facts of the form RouteTable(`,s,s0) mean that on the line l,
station s is followed by station s0. P2 contains facts related to locations, including:

CloseTo(c1,s1) Hotel(h1) TramConn(h1) Hotel(h2) CloseTo(h2,s4) 

The (self-explanatory) rules in P1 and the theory T are in Figure 1 (URailConn stands for
urban rail connection). If h is a hotel with direct connection to the point of interest c1, then
Q(h) will hold for it. In this case, it holds for both h1 and h2. We can use negation as failure
to further exclude hotels for which a tram connection is explicitely mentioned, but no subway
connection, hence we can assume that it is only reachable by tram (like h1). The open predicates
are S = {Hotel,closeTo,TramConn,SubwayConn,URailConn}

4 Decidable CKBs

We now turn to identifying useful settings in which the existence of a stable model for a CKB
H = (P,j,S) is decidable. This naturally requires that the theory j belongs to a logic L in which
satisfiability is decidable (i.e., the set {j 2L | mods(j) 6= /0} should be recursive). However, this

Theory and Practice of Logic Programming 5

P3 = { SubwayStation(Y1) RouteTable(X ,Y1,Y2),SubwayLine(X)

TramStation(Y2) RouteTable(X ,Y1,Y2),TramLine(X)

ReachOnLine(X ,Y1,Y2) RouteTable(X ,Y1,Y2)

ReachOnLine(X ,Y1,Y3) ReachOnLine(X ,Y1,Y2),RouteTable(X ,Y2,Y3)

TramOnly(X) TramConn(X),not SubwayConn(X)

Q(X) Hotel(X),closeTo(X ,Y ),ReachOnLine(Z,Y,Y 0),CloseTo(c1,Y 0)

Q0(X) Q(X),not TramOnly(X) }

T = { 8x.
�
SubwayStation(x)_TramStation(x)! Station(x)

�
,

8x.
�
TramConn(x)$9ycloseTo(x,y)^TramStation(y)

�
,

8x.
�
SubwayConn(x)$9y.closeTo(x,y)^SubwayStation(y)

�
,

8x.
�
URailConn(x)$9y.closeTo(x,y)^Station(y)

�
}

Fig. 1. Example CKB

Jane

Hospital

Fig. 2. GRAPHICS CAPTiON!!!!!!S

for any program P and each n-ary relation symbol r with r 6= adom that appears in P, we assume
that (i) P contains the rule adom(x j) r(x1, . . . ,xn) for every 1 j n, and (ii) adom is allowed
to occur only in bodies of the remaining rules.

Example 1
The CKB H = (P,T ,S) contains information on the local transport network (provided by the
city’s transport authority and assumed to be complete) and on hotels and relevant locations (ex-
tracted form the web and not necessarily complete). We have P = P1 [P2 [P2, where P1 and
P2 contain facts. The network in Figure 2 is described in P1. The constants t1 and t2 repre-
sent tram lines, while l1 represents a subway line; we have corresponding facts SubwayLine(`1),
TramLine(t1), TramLine(t2). Facts of the form RouteTable(`,s,s0) mean that on the line l,
station s is followed by station s0. P2 contains facts related to locations, including:

CloseTo(c1,s1) Hotel(h1) TramConn(h1) Hotel(h2) CloseTo(h2,s4) 

The (self-explanatory) rules in P1 and the theory T are in Figure 1 (URailConn stands for
urban rail connection). If h is a hotel with direct connection to the point of interest c1, then
Q(h) will hold for it. In this case, it holds for both h1 and h2. We can use negation as failure
to further exclude hotels for which a tram connection is explicitely mentioned, but no subway
connection, hence we can assume that it is only reachable by tram (like h1). The open predicates
are S = {Hotel,closeTo,TramConn,SubwayConn,URailConn}

4 Decidable CKBs

We now turn to identifying useful settings in which the existence of a stable model for a CKB
H = (P,j,S) is decidable. This naturally requires that the theory j belongs to a logic L in which
satisfiability is decidable (i.e., the set {j 2L | mods(j) 6= /0} should be recursive). However, this

Theory and Practice of Logic Programming 5

P3 = { SubwayStation(Y1) RouteTable(X ,Y1,Y2),SubwayLine(X)

TramStation(Y2) RouteTable(X ,Y1,Y2),TramLine(X)

ReachOnLine(X ,Y1,Y2) RouteTable(X ,Y1,Y2)

ReachOnLine(X ,Y1,Y3) ReachOnLine(X ,Y1,Y2),RouteTable(X ,Y2,Y3)

TramOnly(X) TramConn(X),not SubwayConn(X)

Q(X) Hotel(X),closeTo(X ,Y ),ReachOnLine(Z,Y,Y 0),CloseTo(c1,Y 0)

Q0(X) Q(X),not TramOnly(X) }

T = { 8x.
�
SubwayStation(x)_TramStation(x)! Station(x)

�
,

8x.
�
TramConn(x)$9ycloseTo(x,y)^TramStation(y)

�
,

8x.
�
SubwayConn(x)$9y.closeTo(x,y)^SubwayStation(y)

�
,

8x.
�
URailConn(x)$9y.closeTo(x,y)^Station(y)

�
}

Fig. 1. Example CKB

Jane

Hospital

Fig. 2. GRAPHICS CAPTiON!!!!!!S

for any program P and each n-ary relation symbol r with r 6= adom that appears in P, we assume
that (i) P contains the rule adom(x j) r(x1, . . . ,xn) for every 1 j n, and (ii) adom is allowed
to occur only in bodies of the remaining rules.

Example 1
The CKB H = (P,T ,S) contains information on the local transport network (provided by the
city’s transport authority and assumed to be complete) and on hotels and relevant locations (ex-
tracted form the web and not necessarily complete). We have P = P1 [P2 [P2, where P1 and
P2 contain facts. The network in Figure 2 is described in P1. The constants t1 and t2 repre-
sent tram lines, while l1 represents a subway line; we have corresponding facts SubwayLine(`1),
TramLine(t1), TramLine(t2). Facts of the form RouteTable(`,s,s0) mean that on the line l,
station s is followed by station s0. P2 contains facts related to locations, including:

CloseTo(c1,s1) Hotel(h1) TramConn(h1) Hotel(h2) CloseTo(h2,s4) 

The (self-explanatory) rules in P1 and the theory T are in Figure 1 (URailConn stands for
urban rail connection). If h is a hotel with direct connection to the point of interest c1, then
Q(h) will hold for it. In this case, it holds for both h1 and h2. We can use negation as failure
to further exclude hotels for which a tram connection is explicitely mentioned, but no subway
connection, hence we can assume that it is only reachable by tram (like h1). The open predicates
are S = {Hotel,closeTo,TramConn,SubwayConn,URailConn}

4 Decidable CKBs

We now turn to identifying useful settings in which the existence of a stable model for a CKB
H = (P,j,S) is decidable. This naturally requires that the theory j belongs to a logic L in which
satisfiability is decidable (i.e., the set {j 2L | mods(j) 6= /0} should be recursive). However, this

Theory and Practice of Logic Programming 5

P3 = { SubwayStation(Y1) RouteTable(X ,Y1,Y2),SubwayLine(X)

TramStation(Y2) RouteTable(X ,Y1,Y2),TramLine(X)

ReachOnLine(X ,Y1,Y2) RouteTable(X ,Y1,Y2)

ReachOnLine(X ,Y1,Y3) ReachOnLine(X ,Y1,Y2),RouteTable(X ,Y2,Y3)

TramOnly(X) TramConn(X),not SubwayConn(X)

Q(X) Hotel(X),closeTo(X ,Y ),ReachOnLine(Z,Y,Y 0),CloseTo(c1,Y 0)

Q0(X) Q(X),not TramOnly(X) }

T = { 8x.
�
SubwayStation(x)_TramStation(x)! Station(x)

�
,

8x.
�
TramConn(x)$9ycloseTo(x,y)^TramStation(y)

�
,

8x.
�
SubwayConn(x)$9y.closeTo(x,y)^SubwayStation(y)

�
,

8x.
�
URailConn(x)$9y.closeTo(x,y)^Station(y)

�
}

Fig. 1. Example CKB

Jane

Hospital

Fig. 2. GRAPHICS CAPTiON!!!!!!S

for any program P and each n-ary relation symbol r with r 6= adom that appears in P, we assume
that (i) P contains the rule adom(x j) r(x1, . . . ,xn) for every 1 j n, and (ii) adom is allowed
to occur only in bodies of the remaining rules.

Example 1
The CKB H = (P,T ,S) contains information on the local transport network (provided by the
city’s transport authority and assumed to be complete) and on hotels and relevant locations (ex-
tracted form the web and not necessarily complete). We have P = P1 [P2 [P2, where P1 and
P2 contain facts. The network in Figure 2 is described in P1. The constants t1 and t2 repre-
sent tram lines, while l1 represents a subway line; we have corresponding facts SubwayLine(`1),
TramLine(t1), TramLine(t2). Facts of the form RouteTable(`,s,s0) mean that on the line l,
station s is followed by station s0. P2 contains facts related to locations, including:

CloseTo(c1,s1) Hotel(h1) TramConn(h1) Hotel(h2) CloseTo(h2,s4) 

The (self-explanatory) rules in P1 and the theory T are in Figure 1 (URailConn stands for
urban rail connection). If h is a hotel with direct connection to the point of interest c1, then
Q(h) will hold for it. In this case, it holds for both h1 and h2. We can use negation as failure
to further exclude hotels for which a tram connection is explicitely mentioned, but no subway
connection, hence we can assume that it is only reachable by tram (like h1). The open predicates
are S = {Hotel,closeTo,TramConn,SubwayConn,URailConn}

4 Decidable CKBs

We now turn to identifying useful settings in which the existence of a stable model for a CKB
H = (P,j,S) is decidable. This naturally requires that the theory j belongs to a logic L in which
satisfiability is decidable (i.e., the set {j 2L | mods(j) 6= /0} should be recursive). However, this

Theory and Practice of Logic Programming 5

P3 = { SubwayStation(Y1) RouteTable(X ,Y1,Y2),SubwayLine(X)

TramStation(Y2) RouteTable(X ,Y1,Y2),TramLine(X)

ReachOnLine(X ,Y1,Y2) RouteTable(X ,Y1,Y2)

ReachOnLine(X ,Y1,Y3) ReachOnLine(X ,Y1,Y2),RouteTable(X ,Y2,Y3)

TramOnly(X) TramConn(X),not SubwayConn(X)

Q(X) Hotel(X),closeTo(X ,Y ),ReachOnLine(Z,Y,Y 0),CloseTo(c1,Y 0)

Q0(X) Q(X),not TramOnly(X) }

T = { 8x.
�
SubwayStation(x)_TramStation(x)! Station(x)

�
,

8x.
�
TramConn(x)$9ycloseTo(x,y)^TramStation(y)

�
,

8x.
�
SubwayConn(x)$9y.closeTo(x,y)^SubwayStation(y)

�
,

8x.
�
URailConn(x)$9y.closeTo(x,y)^Station(y)

�
}

Fig. 1. Example CKB

Jane

Hospital

Fig. 2. GRAPHICS CAPTiON!!!!!!S

for any program P and each n-ary relation symbol r with r 6= adom that appears in P, we assume
that (i) P contains the rule adom(x j) r(x1, . . . ,xn) for every 1 j n, and (ii) adom is allowed
to occur only in bodies of the remaining rules.

Example 1
The CKB H = (P,T ,S) contains information on the local transport network (provided by the
city’s transport authority and assumed to be complete) and on hotels and relevant locations (ex-
tracted form the web and not necessarily complete). We have P = P1 [P2 [P2, where P1 and
P2 contain facts. The network in Figure 2 is described in P1. The constants t1 and t2 repre-
sent tram lines, while l1 represents a subway line; we have corresponding facts SubwayLine(`1),
TramLine(t1), TramLine(t2). Facts of the form RouteTable(`,s,s0) mean that on the line l,
station s is followed by station s0. P2 contains facts related to locations, including:

CloseTo(c1,s1) Hotel(h1) TramConn(h1) Hotel(h2) CloseTo(h2,s4) 

The (self-explanatory) rules in P1 and the theory T are in Figure 1 (URailConn stands for
urban rail connection). If h is a hotel with direct connection to the point of interest c1, then
Q(h) will hold for it. In this case, it holds for both h1 and h2. We can use negation as failure
to further exclude hotels for which a tram connection is explicitely mentioned, but no subway
connection, hence we can assume that it is only reachable by tram (like h1). The open predicates
are S = {Hotel,closeTo,TramConn,SubwayConn,URailConn}

4 Decidable CKBs

We now turn to identifying useful settings in which the existence of a stable model for a CKB
H = (P,j,S) is decidable. This naturally requires that the theory j belongs to a logic L in which
satisfiability is decidable (i.e., the set {j 2L | mods(j) 6= /0} should be recursive). However, this

Theory and Practice of Logic Programming 5

P3 = { SubwayStation(Y1) RouteTable(X ,Y1,Y2),SubwayLine(X)

TramStation(Y2) RouteTable(X ,Y1,Y2),TramLine(X)

ReachOnLine(X ,Y1,Y2) RouteTable(X ,Y1,Y2)

ReachOnLine(X ,Y1,Y3) ReachOnLine(X ,Y1,Y2),RouteTable(X ,Y2,Y3)

TramOnly(X) TramConn(X),not SubwayConn(X)

Q(X) Hotel(X),closeTo(X ,Y ),ReachOnLine(Z,Y,Y 0),CloseTo(c1,Y 0)

Q0(X) Q(X),not TramOnly(X) }

T = { 8x.
�
SubwayStation(x)_TramStation(x)! Station(x)

�
,

8x.
�
TramConn(x)$9ycloseTo(x,y)^TramStation(y)

�
,

8x.
�
SubwayConn(x)$9y.closeTo(x,y)^SubwayStation(y)

�
,

8x.
�
URailConn(x)$9y.closeTo(x,y)^Station(y)

�
}

Fig. 1. Example CKB

Jane

Hospital

Fig. 2. GRAPHICS CAPTiON!!!!!!S

for any program P and each n-ary relation symbol r with r 6= adom that appears in P, we assume
that (i) P contains the rule adom(x j) r(x1, . . . ,xn) for every 1 j n, and (ii) adom is allowed
to occur only in bodies of the remaining rules.

Example 1
The CKB H = (P,T ,S) contains information on the local transport network (provided by the
city’s transport authority and assumed to be complete) and on hotels and relevant locations (ex-
tracted form the web and not necessarily complete). We have P = P1 [P2 [P2, where P1 and
P2 contain facts. The network in Figure 2 is described in P1. The constants t1 and t2 repre-
sent tram lines, while l1 represents a subway line; we have corresponding facts SubwayLine(`1),
TramLine(t1), TramLine(t2). Facts of the form RouteTable(`,s,s0) mean that on the line l,
station s is followed by station s0. P2 contains facts related to locations, including:

CloseTo(c1,s1) Hotel(h1) TramConn(h1) Hotel(h2) CloseTo(h2,s4) 

The (self-explanatory) rules in P1 and the theory T are in Figure 1 (URailConn stands for
urban rail connection). If h is a hotel with direct connection to the point of interest c1, then
Q(h) will hold for it. In this case, it holds for both h1 and h2. We can use negation as failure
to further exclude hotels for which a tram connection is explicitely mentioned, but no subway
connection, hence we can assume that it is only reachable by tram (like h1). The open predicates
are S = {Hotel,closeTo,TramConn,SubwayConn,URailConn}

4 Decidable CKBs

We now turn to identifying useful settings in which the existence of a stable model for a CKB
H = (P,j,S) is decidable. This naturally requires that the theory j belongs to a logic L in which
satisfiability is decidable (i.e., the set {j 2L | mods(j) 6= /0} should be recursive). However, this

Theory and Practice of Logic Programming 5

P3 = { SubwayStation(Y1) RouteTable(X ,Y1,Y2),SubwayLine(X)

TramStation(Y2) RouteTable(X ,Y1,Y2),TramLine(X)

ReachOnLine(X ,Y1,Y2) RouteTable(X ,Y1,Y2)

ReachOnLine(X ,Y1,Y3) ReachOnLine(X ,Y1,Y2),RouteTable(X ,Y2,Y3)

TramOnly(X) TramConn(X),not SubwayConn(X)

Q(X) Hotel(X),closeTo(X ,Y ),ReachOnLine(Z,Y,Y 0),CloseTo(c1,Y 0)

Q0(X) Q(X),not TramOnly(X) }

T = { 8x.
�
SubwayStation(x)_TramStation(x)! Station(x)

�
,

8x.
�
TramConn(x)$9ycloseTo(x,y)^TramStation(y)

�
,

8x.
�
SubwayConn(x)$9y.closeTo(x,y)^SubwayStation(y)

�
,

8x.
�
URailConn(x)$9y.closeTo(x,y)^Station(y)

�
}

Fig. 1. Example CKB

Jane

Hospital

Fig. 2. GRAPHICS CAPTiON!!!!!!S

for any program P and each n-ary relation symbol r with r 6= adom that appears in P, we assume
that (i) P contains the rule adom(x j) r(x1, . . . ,xn) for every 1 j n, and (ii) adom is allowed
to occur only in bodies of the remaining rules.

Example 1
The CKB H = (P,T ,S) contains information on the local transport network (provided by the
city’s transport authority and assumed to be complete) and on hotels and relevant locations (ex-
tracted form the web and not necessarily complete). We have P = P1 [P2 [P2, where P1 and
P2 contain facts. The network in Figure 2 is described in P1. The constants t1 and t2 repre-
sent tram lines, while l1 represents a subway line; we have corresponding facts SubwayLine(`1),
TramLine(t1), TramLine(t2). Facts of the form RouteTable(`,s,s0) mean that on the line l,
station s is followed by station s0. P2 contains facts related to locations, including:

CloseTo(c1,s1) Hotel(h1) TramConn(h1) Hotel(h2) CloseTo(h2,s4) 

The (self-explanatory) rules in P1 and the theory T are in Figure 1 (URailConn stands for
urban rail connection). If h is a hotel with direct connection to the point of interest c1, then
Q(h) will hold for it. In this case, it holds for both h1 and h2. We can use negation as failure
to further exclude hotels for which a tram connection is explicitely mentioned, but no subway
connection, hence we can assume that it is only reachable by tram (like h1). The open predicates
are S = {Hotel,closeTo,TramConn,SubwayConn,URailConn}

4 Decidable CKBs

We now turn to identifying useful settings in which the existence of a stable model for a CKB
H = (P,j,S) is decidable. This naturally requires that the theory j belongs to a logic L in which
satisfiability is decidable (i.e., the set {j 2L | mods(j) 6= /0} should be recursive). However, this

P3 = { SubwayStation(Y1)← RouteTable(X,Y1, Y2), SubwayLine(X)

TramStation(Y2)← RouteTable(X,Y1, Y2),TramLine(X)

ReachOnLine(X,Y1, Y2)← RouteTable(X,Y1, Y2)

ReachOnLine(X,Y1, Y3)← ReachOnLine(X,Y1, Y2),RouteTable(X,Y2, Y3)

TramOnly(X)← TramConn(X),not SubwayConn(X)

Q(X)←Hotel(X),CloseTo(X,Y ),ReachOnLine(Z, Y, Y ′)

CloseTo(c1, Y
′)

Q′(X)←Q(X),not TramOnly(X) }

ϕ = { ∀x.
(
SubwayStation(x) ∨ TramStation(x)↔ Station(x)

)
,

∀x.
(
TramConn(x)↔ ∃yCloseTo(x, y) ∧ TramStation(y)

)
,

∀x.
(
SubwayConn(x)↔ ∃y.CloseTo(x, y) ∧ SubwayStation(y)

)
,

∀x.
(
URailConn(x)↔ ∃y.CloseTo(x, y) ∧ Station(y)

)
}

Fig. 1. Example CKB

c1, then Q(h) holds for it. In this case, it holds for both h1 and h2 (note that we do not
know which station h1 is close to). We can use negation as failure to further exclude
hotels for which a tram connection is explicitly mentioned, but no subway connection,
hence we can assume that it is only reachable by tram, like h1. For this reason, Q′ only
holds for h2. The predicates that describe the network, and those that the rules in P3

infer from them, are closed. The remaining ones are open, that is:

Σ = {Hotel,CloseTo, Station,TramConn,SubwayConn,URailConn}.

4 Decidable CKBs

We now turn to identifying useful settings in which the existence of a stable model for a
CKB H = (P , ϕ,Σ) is decidable. This naturally requires that the theory ϕ belongs to a
logic L in which satisfiability is decidable (i.e., the set {ϕ ∈ L | mods(ϕ) 6= ∅} should
be recursive). However, this alone is not enough, since we will in general be interested
in models of ϕ where a selected set of predicates have a concrete extension that is given
as input. Intuitively, this means we are interested in logics with a rather flexible support
for equality reasoning.

Towards providing a quite general decidability result for checking stable model ex-
istence in CKBs, we first define a simple program that allows to freely “guess” the
extensions of open predicates of a given CKB H , these extensions are restricted to
constants that appear in H .



Definition 1 (Program Choose(H )). Assume a CKB H = (P , ϕ,Σ). For every n-ary
relation symbol r ∈ Σ, let r be a fresh n-ary relation symbol that does not appear in
H . We let Choose(H ) be the set that contains

r(c1, . . . , cn) ∨ r(c1, . . . , cn)←

for each n-ary r ∈ Σ occurring in P , and each tuple (c1, . . . , cn) of constants from P .

A stable model I of P ∪ Choose(H ) can be seen as (partially complete) candidate
for a stable model of a CKB H = (P , ϕ,Σ). The following proposition, whose proof
relies on the imposed CKB safety requirement, tells us when such an I witnesses the
existence of a stable model of H .

Proposition 1. A CKB H = (P , ϕ,Σ) has a stable model iff P ∪Choose(H ) has some
stable model I for which there exists some I ∈ mods(ϕ) with the following properties:

(C1) (cI1 , . . . , c
I
n) ∈ rI for all r(c1, . . . , cn) ∈ I ,

(C2) (cI1 , . . . , c
I
n) 6∈ rI for all r(c1, . . . , cn) ∈ I , and

(C3) if (e1, . . . , en) ∈ rI and r 6∈ Σ, then there exists r(c1, . . . , cn) ∈ I with cI1 =
e1, . . . , c

I
n = en.

From Proposition 1, we obtain decidability of stable model existence for H =
(P , ϕ,Σ) whenever we can list the stable models of P ∪ Choose(H ) and test, for
each of them, the existence of a model I of the theory ϕ satisfying conditions (C1–C3).
Moreover, if the logic L in question is strong enough to express, for a fixed candidate
I , conditions (C1–C3) as part of a theory in L, then decidability of the underlying satis-
fiability problem suffices. This applies, in particular, to the guarded negation fragment
(GNFO), which is among the most expressive FO fragments for which satisfiability has
been established [4].

We use ϕ[x] to indicate that an FO formula ϕ has x as free variables. The fragment
GNFO contains all formulas that can be built using the following grammar:

ϕ ::= r(u1, . . . , un) | u1 = u2 | ∃x ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | α ∧ ¬ϕ[x],

where u1, . . . , un are terms, and α is an atom or an equality statement such that all
variables of x also occur in α. Intuitively, in GNFO a subformula can be negated only
if its free variables are “guarded” by an atom or an equality statement. Observe also
that a subformula with a single free variable x can always be guarded by an equality
statement x = x. GNFO is flexible and natural for domain modelling; for instance, the
theory ϕ in Example 1 is in GNFO.

The following upper bound can be shown by employing Proposition 1, and an en-
coding of conditions (C1–C3) in GNFO (see the appendix in [3], as well as [5] for a
similar trick).

Theorem 1. Checking the stable model existence in CKBs H = (P , ϕ,Σ), where ϕ
is in GNFO, is decidable. The problem belongs to the class NEXPTIME2EXPTIME, and is
2EXPTIME-hard.



5 CKBs and Description Logics

GNFO is very expressive and thus computationally very expensive. We study next
CKBs based on DLs, and show that they are (to a large extent) computationally not
more expensive than plain ASP. We concentrate here on the expressive DL ALCHIO.
To this end, we assume a countably infinite set Scn ⊆ Spred of unary relation symbols,
called concept names, and a countably infinite set Srn ⊆ Spred of binary relation sym-
bols, called role names. We use the elements of Sconst as individuals. The syntax for
ALCHIO concepts, roles, concept and role inclusions, and TBoxes is the usual. We
also reuse interpretations I = (∆I , ·I) as defined in Section 2, and note that the se-
mantics to all complex concepts and roles is given by extending ·I in the standard way
(see [2]). The notions of models and satisfiability of TBoxes are also standard.

Example 2. The theory ϕ in Example 1 can be written in the syntax of ALCHIO as
follows (we use the axiom C ≡ D as a shortcut for the two inclusions C vD, DvC):

SubwayStation t TramStation ≡ Station TramConn ≡ ∃CloseTo.TramStation

SubwayConn ≡ ∃CloseTo.SubwayStation URailConn ≡ ∃CloseTo.Station

Theorem 2. Deciding stable model existence in CKBs H = (P , T , Σ), where T is
an ALCHIO TBox, is NEXPTIMENP-complete. If P is not disjunctive, the problem is
NEXPTIME-complete. The problem is EXPTIME-complete, if (i) P is both positive and
non-disjunctive, or (ii) the arity of predicate symbols in P is bounded by a constant.

The above theorem can be proven by employing an encoding of condition (C3) of
Proposition 1 by means of nominals, similarly to the encoding of DBoxes in [11].

5.1 Separability

We provide next a translation from DL-based CKBs to plain ASP. The translation is
given for a large fragment of CKBs, which we call separable CKBs, and which in fact
generalizes r-hybrid KBs. To define the fragment we need the notion of a positive oc-
currence and a negative occurrence of a concept or role name α in a (complex) concept
C. These notions are defined inductively as follows:
- Every concept name A occurs positively in A.
- Every role name R occurs positively in ∃R.C, for any concept C.
- Every role name R occurs negatively in ∀R.C, for any concept C.
- If a concept nameA occurs positively (resp., negatively) inC, thenA occurs positively

(resp., negatively) in C uD, C tD, ∀R.C, and ∃R.C, for any conceptD and roleR.
- If a concept or role name α occurs positively (resp., negatively) in C, then α occurs

negatively (resp., positively) in ¬C.

Definition 2 (Separability). A CKB H = (P , T , Σ) is separable if
d
CvD∈T (¬C t

D) does not have a positive occurrence of concept or role name α with α 6∈ Σ.

Example 3. Take the CKB H = (P , T , Σ) with T = {∃R.(∃P.A) v B}, P =
{Q(X,Y, Z) ← T (X,Y ), P (Y,Z)}, and Σ = {R,A,B}. Then H is separable be-
cause P occurs only negatively in ¬(∃R.(∃P.A)) tB.



Intuitively, in a separable CKB H = (P , T , Σ) the inclusions in T can be used
to infer the extensions of open predicates from the extensions of closed predicates and
other predicates, but these axioms simply cannot assert membership of a domain ele-
ment (resp., pair of elements) in a closed concept name (resp., role name). More con-
cretely, for separable CKBs one can show a version of Proposition 1 where the condition
(C3) is omitted (the rest of the proposition remains the same). The omission of condi-
tion (C3) is a major change: recall that we relied heavily on the equality predicate in
GNFO, and on nominals supported in ALCHIO in order to cope with (C3). We note
that separable CKBs capture r-hybrid KBs H = (T ,P) with T an ALCHOI TBox.
Such KBs, as mentioned in Section 3, correspond to CKBs H = (P, T , Σ), whereΣ is
the set of predicates symbols that appear in T , and which trivially satisfy the separabil-
ity condition. We remark that the pair (T ,P) with T ,P from Example 3 is not a safe
r-hybrid KB (neither is it weakly safe in the spirit of DL+LOG), because the variable Z
does not appear in a rule atom with a predicate symbol that does not occur in T .

5.2 Translation into Plain ASP

We describe here our translation from separable CKBs H = (P , T , Σ) into standard
ASP. Intuitively, we perform reasoning about T during the translation so that afterwards
T can be effectively forgotten. This translation is not polynomial and may take single
exponential time in the size of the input. However, our experiments show that in practice
this translation performs much better than the translation into dl-programs (which is
provided in [3]). The translation is inspired by existing translations from expressive DLs
into disjunctive Datalog [17, 9, 6], however it actively exploits the structure of the data
(i.e., the facts) and is not data-independent. We limit this approach to ALCH TBoxes
(i.e., we do not support inverses and nominals).

We assume here TBoxes in normal form, that is, each axiom has the form

A1 u . . . uAn vB AvB1 t . . . tBm Av ∃R.B (2)
∃R.AvB Av ∀R.B Rv S (3)

where A,B,Ai, Bi are concept names, > or ⊥, and R,S are role names. It is well
known that any TBox T can be normalized into a TBox T ′ in polynomial time so that
T and T ′ have the same models up to the original signature of T (see, e.g., [25]).

Definition 3 (The communication rules Comm(H )). For a separable CKB H =
(P , T , Σ), let Comm(H ) denote the set of the following rules:

S(X,Y )← R(X,Y ) for each Rv S ∈ T
B(X)← r(X,Y ), A(Y ) for each ∃R.AvB ∈ T
B(Y )← A(X), r(X,Y ) for each Av ∀R.B ∈ T

The program Comm(H ) contains the direct translation of inclusions listed in (3). To
deal with the remaining inclusions (the ones listed in (2)), we need the notion of types.

Definition 4 (Types). A type is any set τ ⊆ Scn ∪ {¬A | A ∈ Scn}. A type τ is
consistent w.r.t. a TBox T if there exists a model I of T and an element e ∈ ∆I such



that e ∈ (
d
C∈τ C)

I . We use types(T ) to denote the set of types over the signature of
a TBox T that are consistent w.r.t. T .

Definition of the translation. Assume a separable CKB H = (P , T , Σ). For a TBox
T , we usevT for the transitive closure of the relation {(R,S) | RvS ∈ T }. For every
constant c that appears in H , let t(c,H ) be the set of types returned by the non-failing
runs of the following non-deterministic procedure:

(1) Let τ = {A | P has the fact A(c)←}.
(2) Close τ under the following inference rules:

(a) If A1 u · · · uAn vB ∈ T and {A1, . . . , An} ⊆ τ , then add B to τ .
(b) If ∃S.>vB ∈T , RvT S, and P has a fact R(c, d)← for some d, add B to τ .
(c) If>v∀S.B ∈T , RvT S, and P has a fact R(d, c)← for some d, add B to τ .
If τ in not consistent w.r.t. T , then return failure.

(3) Pick a concept name B such that {B,¬B} ∩ τ = ∅, and B appears in one of the
following:
(a) in a non-fact rule of P ,
(b) in some ∃R.A v B ∈ T or A v ∀R.B ∈ T such that R appears in a non-fact

rule of P ,
(c) in some ∃S.A v B ∈ T such that P has the fact R(c, d) ← for some d, and

RvT S, or
(d) in some A v ∀R.B ∈ T such that P has the fact R(d, c) ← for some d, and

RvT S.
If the above B does not exist, then return τ . Otherwise, non-deterministically add
to τ either B or ¬B, and go to step (2).

Take a fresh unary predicate symbol Typeτ for each τ ∈ t(c,H ) such that c occurs
in H . We let ASPdd(H ) be the extension of P ∪ Comm(H ) with the following rules:

(i) for all roles R ∈ Σ that appear in a non-fact rule in P , and all constants c, d of P ,
the disjunctive fact R(c, d) ∨R(c, d)←, where R is a fresh relation symbol

(ii) for each constant c of H , the disjunctive fact
∨
τ∈t(c,H ) Typeτ (c)←

(iii) for each constant c of H and type τ ∈ t(c,H ), the following constraints

A(c)←Typeτ (c) for each A ∈ τ ∩ Scn

←Typeτ (c), A(c) for each ¬A ∈ τ

The above translation yields a tool to decide the existence of a stable model for H .

Theorem 3. The CKB H has a stable model iff ASPdd(H ) has a stable model.

6 Implementation and Experiments

We next present some experiments that demonstrate the advantages of translating a
separable CKB H into a plain program ASPdd(H ). We have implemented our approach
in a prototype reasoner. In particular, to build the function t described in Section 5.2,



instead of relying on an external DL reasoner for testing consistency of types w.r.t. a
TBox, we have implemented our own algorithm for this purpose. It is designed in such
a way that the consistency of several types can be tested simultaneously, using caching
to avoid recomputation. Consistent types are stored in a database and can be reused for
other hybrid knowledge bases over the same ontology. The ASP program resulting from
the translation is evaluated with Clingo 4.2.1 [12].

Our implementation is written in Java and PostgreSQL 9.5.5 database, and uses
OWLAPI [16] to manage ontologies. The experiments were run on a PC with Intel
Core i7 CPU and 16GB RAM running 64bit Linux-Mint 17. We compared the per-
formance of our system with an implementation based on a direct encoding into dl-
programs (given in the appendix of [3]), and implemented in dlvhex (an implementa-
tion of dl-programs, see [21]). We note that both encodings use Clingo. For bench-
marking data, we used as source real-world OpenStreetMap data1, and followed the
approach described in [10] to transform it into Datalog facts. The data describes the
city of Vienna and are available from BBBike as database dumps2. The extracted data
contains facts about 19517 geographical points in the map treated as constants. Con-
cept assertions were extracted from tags in the mapping data, for points of interest like
Hotel,Restaurant,Shop,Hospital,SubwayStation, etc. There are also facts about re-
lations between these points and other constants representing objects of interest such
as subway lines, types of cuisine, dishes, etc. Among the plain Datalog relations, we
extracted next, relating pairs of points whose distance is below a certain threshold set
in meters. By considering different thresholds, ranging from 50 to 250 meters, we ob-
tained sets of facts of different sizes. Other Datalog relations extracted to describe the
Vienna subway network include locatedAlong and nextStation. The former relates a
subway station to the corresponding subway line, and the latter relates pairs of con-
secutive stations on the same line. The extracted relations that also occur in T include
roles like hasCuisine and serves, which relate a Restaurant to a Cuisine or a Dish, re-
spectively. As the TBox of our separable CKBs, we used an ontology based on the
geospatial ontology found in MyITS Project [8] (currently discontinued), which was a
system for smart, semantically enriched route planning over real work data sources, in-
cluding OpenStreetMap (OSM) data. More specifically, we increased the expressivness
of the original ontology in DL-LiteR, by addingALCH inclusion axioms that were rel-
evant for our use cases. We considered different separable CKBs with the same TBox,
but different programs. Four of them are provided in the appendix of [3]. Each example
captures the potential information need of a tourist planning to settle for a hotel. Pro-
grams P1–P4 ask for a reachable Hotel from the main station “Hauptbahnhof ”. Addi-
tionally P1–P3 ask for Hotels that are next to some LocRestaurant (a concept inferred
from the ontology). P4 asks for Hotels that are in a quiet neighbourhood, achieved by
using the negation of the computed relation LoudNeighbourhood. Note that P1 requires
that the station close to the Hotel should be reachable with no line changes starting from
“Hauptbahnhof ”, while P2 allows for at most one line change, whereas P3–P4 allow
for any number of changes as long as a station is reachable (achieved via recursion).

1 https://www.openstreetmap.org
2 http://download.bbbike.org/osm/bbbike/Wien/



next50 next100 next150 next200 next250

Fact count 145014 263075 479283 743935 1053335

P1 19.6 30.1 44.6 60.2 87.6
P2 19.6 31.8 52.7 64.0 95.4
P3 19.6 32.8 56.1 64.7 98.2
P4 23.8 32.9 49.8 65.9 87.3

Table 1. Number of facts for different next relations, and running times in seconds for evaluation
of P1–P4 (including the translation of a CKB H into ASPdd(H ))

For each of the mentioned programs, we included the datasets of different sizes
shown in Table 1, which have up to roughly a million facts. Our approach behaved
well, as can be seen from the running times shown in Table 1. The dl-program encoding
for dlvhex did not scale for any of the example programs provided, and failed to return
answers because of memory exhaustion even for the smallest dataset shown in Table 1.
We tried to test it against a smaller yet useful set of facts with approx 13000 Datalog
facts, and it still reached the time out of 600s that was set.

7 Discussion

In this paper, we have presented CKBs which is a powerful generalization of r-hybrid
KBs due to Rosati. In addition to decidability and complexity results for CKBs, we have
provided an implementation for a rich fragment of CKBs. The implementation is based
on a reduction to reasoning in plain ASP. Our experiments show that this is a promising
approach that provides a dramatic improvement over a naive implementation based on
a translation into dl-programs.

Related Work. There are few other works on implementing reasoning over combina-
tions of DL ontologies and rules. For expressive (non-Horn) DLs that go beyond the
lightweight DLs of the DL-Lite and EL families, dl-programs is the richest formalism
that has been implemented, in particular in the dlvhex suite. The HermiT system sup-
ports reasoning in expressive DLs enriched with positive rules under DL-safety [14].
The work in [17] enables query answering services over expressive DLs using a data-
independent translation into disjunctive Datalog. For Horn DLs, Heymans et al. show
how dl-programs with external queries over Datalog-rewritable DLs can be translated
into Datalog with stable negation [15]. Redl recently presented a generalization of this
rewriting approach to external atoms in general HEX-programs [22], still its applica-
bility for reasoning with DL ontologies was demonstrated only using the lightweight
logic DL-Lite. An implementation of reasoning in hybrid MKNF KBs (with lightweight
ontologies) under the Well-Founded Semantics is also available [1, 18]. The work in
[26] shows how reasoning about DL concepts, but not general TBoxes, can be imple-
mented in ASP.

Future work. The main task for future work is to generalize our ASP translations from
separable ALCH-based CKBs to non-separable CKBs based on more expressive DLs
like ALCHIO. Another challenge is to understand the data complexity of CKBs.



References

1. José Júlio Alferes, Matthias Knorr, and Terrance Swift. Query-driven procedures for hybrid
mknf knowledge bases. ACM Trans. Comput. Logic, 14(2):16:1–16:43, June 2013.

2. Franz Baader. The description logic handbook: theory, implementation, and applications.
Cambridge university press, 2003.

3. Labinot Bajraktari, Magdalena Ortiz, and Mantas Šimkus. Clopen knowledge
bases: Combining description logics and answer set programming (with appendix),
2017. Available at http://dbai.tuwien.ac.at/staff/simkus/papers/
clopen-kbs-extended.pdf.

4. Vince Bárány, Balder Ten Cate, and Luc Segoufin. Guarded negation. J. ACM, 62(3):22:1–
22:26, June 2015.

5. Michael Benedikt, Pierre Bourhis, Balder ten Cate, and Gabriele Puppis. Querying visible
and invisible information. In Proc. of LICS 2016, pages 297–306. ACM, 2016.

6. Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data
access: A study through disjunctive datalog, csp, and MMSNP. ACM Trans. Database Syst.,
39(4):33:1–33:44, 2014.

7. Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans
Tompits. Combining answer set programming with description logics for the semantic web.
Artif. Intell., 172(12-13):p. 1495, 2008.

8. Thomas Eiter, Thomas Krennwallner, and Patrik Schneider. Lightweight spatial conjunctive
query answering using keywords. In Proc. of ESWC 2013. Springer, 2013.

9. Thomas Eiter, Magdalena Ortiz, and Mantas Šimkus. Conjunctive query answering in the
description logic SH using knots. J. Comput. Syst. Sci., 78(1):47–85, 2012.

10. Thomas Eiter, Jeff Z. Pan, Patrik Schneider, Mantas Šimkus, and Guohui Xiao. A rule-based
framework for creating instance data from OpenStreetMap. In Proc. of RR 2015. Springer,
2015.

11. Enrico Franconi, Yazmin Angélica Ibáñez-Garcı́a, and Inanç Seylan. Query answering with
DBoxes is hard. Electr. Notes Theor. Comput. Sci., 278:71–84, 2011.

12. Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub,
and Marius Thomas Schneider. Potassco: The potsdam answer set solving collection. AI
Commun., 24(2):107–124, 2011.

13. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Proc. of ICLP/SLP 1988, pages 1070–1080. MIT Press, 1988.

14. Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang. Hermit: An OWL
2 reasoner. J. Autom. Reasoning, 53(3):245–269, 2014.

15. Stijn Heymans, Thomas Eiter, and Guohui Xiao. Tractable reasoning with dl-programs over
datalog-rewritable description logics. In Proc. of ECAI 2010. IOS Press, 2010.

16. Matthew Horridge and Sean Bechhofer. The OWL API: A java API for OWL ontologies.
Semantic Web, 2(1):11–21, 2011.

17. Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in description logics by a reduc-
tion to disjunctive datalog. J. Autom. Reasoning, 39(3):351–384, 2007.

18. Vadim Ivanov, Matthias Knorr, and Joao Leite. A query tool for EL with non-monotonic
rules. In Proc. of ISWC 2013. Springer, 2013.

19. Matthias Knorr, José Júlio Alferes, and Pascal Hitzler. Local closed world reasoning with
description logics under the well-founded semantics. Artif. Intell., 175(9-10):1528–1554,
2011.

20. Boris Motik and Riccardo Rosati. Reconciling description logics and rules. J. ACM, 57(5),
2010.



21. Christoph Redl. The dlvhex system for knowledge representation: recent advances (system
description). TPLP, 16(5-6):866–883, 2016.

22. Christoph Redl. Efficient evaluation of answer set programs with external sources based on
external source inlining. In Proc. of AAAI 2017. AAAI Press, February 2017.

23. Riccardo Rosati. On the decidability and complexity of integrating ontologies and rules. Web
Semantics: Science, Services and Agents on the World Wide Web, 3(1):61 – 73, 2005. Rules
Systems.

24. Riccardo Rosati. DL+log: Tight integration of description logics and disjunctive datalog. In
Proc. of KR 2006. AAAI Press, 2006.

25. František Simančı́k, Yevgeny Kazakov, and Ian Horrocks. Consequence-based reasoning
beyond horn ontologies. In Proc. of IJCAI 2011, pages 1093–1098. AAAI Press, 2011.

26. Terrance Swift. Deduction in ontologies via ASP. In Proc. of LPNMR 2004. Springer, 2004.


