
Constructive Satisfiability Procedure forALCP(Z)
(Preliminary Report)

Nadia Labai1,2, Martin Homola2, and Magdalena Ortiz1

1 Institute of Information Systems, TU Wien, Favoritenstrasse 9-11, A-1040 Vienna, Austria
2 Comenius University in Bratislava, Mlynská dolina, 84248 Bratislava, Slovakia

Abstract. The newly introducedALCP(D) extendsALC with path constraints
over concrete domainsD. Previous work showed decidability of the satisfiability
problem in ALCP(D) for various concrete domains, including integer domains.
However, the proof of this general result did not provide a complexity upper
bound on the problem, or an explicit algorithm for model construction, which
is necessary for some reasoning tasks such as abduction. In this paper, we initi-
ate an investigation of the complexity of the satisfiability and model construction
problems in ALCP(Z), where Z = 〈Z,=, <〉. As a preliminary result towards
establishing complexity upper bounds, we present a procedure for deciding satis-
fiability in a constructive way.

Keywords: Description logics, concrete domains, satisfiability

1 Introduction

Reasoning in description logics (DL) with the addition of data from concrete domains
is a highly relevant research problem motivated by the practical need to include data
values and express constraints on top of them in ontologies. Different extensions of
DLs with concrete domains were investigated [2,11,12,9,7], and based on this research
concrete domains were also incorporated into OWL [5].

The language ALCP(D), recently introduced by Carapelle and Turhan [4], takes
further steps in this direction. It extends individuals with multiple registers holding
values from the universe of a domain structure D, and enables the expression of rich
path-constraints that relate, using the relations of D, multiple registers from distinct
individuals connected by a certain path. Carapelle and Turhan [4] provided a general
decidability result for the satisfiability problem which holds for any negation-closed
domain structure satisfying the so-called EHD (existence of a homomorphism is de-
finable) property. Among such domain structures are, e.g., the natural numbers and
integers augmented with equality, linear, semi-linear, and even lexicographic orders.
However, these results do not establish a complexity upper bound for the problem. As
the proof relies largely on reductions which do not offer an obviously constructive way
to verify satisfiability, it does not give rise to an algorithm for constructing or enumer-
ating models. However, such algorithms are necessary for certain reasoning tasks such
as query answering [14,13,10] and ABox abduction [6,8,15].

In this paper, we take initial steps towards a constructive satisfiability procedure for
ALCP(Z), whereZ = 〈Z,=, <〉 is the structure induced on the integers by the equality

and linear order relations. Our satisfiability procedure is split into two parts. Firstly,
ALC satisfiability is checked for an abstraction of the TBox and the target concept,
similarly to Carapelle and Turhan [4]. Our main contribution is in the second step, where
rather than relying on the generic decidability of the existence of a homomorphism
necessary for satisfiability, we construct a representation of the numeric part of the
model in the form of a so-called integer graph. Our results open the door for future
research on reasoning tasks for ALCP(Z) that require model enumeration, as well as
complexity analysis and practicable algorithms.

The paper is structured as follows. After providing necessary background in Sec-
tion 2, we introduce integer graphs in Section 3, and discuss their relationship to models
ofALCP(Z) concepts. In Sections 4 and 5 we present procedures for constructing inte-
ger graphs and extracting a satisfying interpretation from them. Finally, in Section 6, we
discuss the results and future research. Due to space limitations, the proofs are sketched
or omitted.

2 Preliminaries forALCP(Z)

The ALCP(D) description logics were defined by Carapelle and Turhan [4] in gen-
eral form. We present definitions specialized to Z = 〈Z,=, <〉. For k ∈ Z+, denote
[k] = {1, . . . , k}. A constraint c(x1, . . . , xk) of arity k is a Boolean combination of atomic
constraints θ(xi, x j), where θ ∈ {=, <} and i, j ∈ [k]. We write Z |= c(a1, . . . , ak) if the
constraint is satisfied inZ by the assignment xi 7→ ai.

Example 1. Throughout the paper we return to the same examples to demonstrate con-
cepts and definitions. We underline symbols introduced in the examples to distinguish
them from the rest of the paper.

Let θ1(y, z) := y < z and θ2(x, z) := z < x. The constraint θ1,2(x, y, z) := θ1(y, z) ∧
θ2(x, z) has arity 3, and we haveZ |= θ1,2(3, 1, 2).

Let NC , NR, and Reg be countably infinite sets of concept names, role names, and
register names, respectively. A sequence P = r1 · · · rn, where ri ∈ NR for i ∈ [n], is a
role path of length n.ALCP(Z) concepts C are inductively defined by:

C,D := A | ¬C | (C u D) | ∃r.C | ∃P.c(Si1 x1, . . . ,Sik xk)

where A ∈ NC , r ∈ NR, P is a role path of length n ≥ 0, c is a constraint of arity k,
x1, . . . , xk ∈ Reg, and 0 ≤ i1, . . . , ik ≤ n. We call ∃P.c(Si1 x1, . . . ,Sik xk) a path constraint.
The symbol S appearing in the path constraint stands for successor, as the term Six
points to the register variable x of the i-th element on the path P.

A Z-interpretation I is a tuple (∆I, ·I, γ), where ∆I is the domain, ·I is the in-
terpretation function, and γ : ∆I × Reg → Z is the valuation function, assigning an
integer value to each register variable of each element in the domain. The interpre-
tation function maps each concept name A ∈ NC to some AI ⊆ ∆I and each role
name r ∈ NR to a binary relation rI ⊆ ∆I × ∆I. The interpretation function is then
extended to ¬C,C u D,∃r.C as usual.3 Let P = r1, . . . , rn be a role path of length n.

3 Refer, e.g., to the DL Handbook [1].

Then PI is defined by: PI = {(v0, . . . , vn) ∈ (∆I)n+1 | (vi−1, vi) ∈ rIi for i ∈ [n]}, and
(∃P.c(Si1 x1, . . . ,Sik xk))I is defined by:

{v ∈ ∆I | ∃(v0, . . . , vn) ∈ PI s.t. v0 = v, andZ |= c(γ(vi1 , x1), . . . , γ(vik , xk))}

We explain the interpretation of ∃P.c(Si1 x1, . . . ,Sik xk) further. If an element v ∈ ∆I

is in (∃P.c(Si1 x1, . . . ,Sik xk))I, then there are v1, . . . , vn ∈ ∆
I such that there is a path

starting at v which matches the pattern P, that is (v, v1, . . . , vn) ∈ PI, and such that for
the assignment γ(v ji , x j) 7→ a j, we haveZ |= c(a1, . . . , ak).

Example 2. Let C := ∃rst.
(
θ1,2(x, y, z) ∧ θ3,4(S1x,S2x,S3x)

)
where:

θ3,4(S1x,S2x,S3x) := θ3(S1x,S2x) ∧ θ4(S2x,S3x)
θ3(S1x,S2x) := S1x < S2x
θ4(S2x,S3x) := S2x = S3x

The interpretation of C would contain elements v0 from which a path rst originates,
meaning there are elements vi, i ∈ [3] for which (v0, v1) ∈ rI, (v1, v2) ∈ sI, and (v2, v3) ∈
tI and such that 1. the x register of v0 holds a larger value than its z register, which holds
a larger value than its y register, that is γ(v0, y) < γ(v0, z) < γ(v0, x), and 2. the x register
of v1 holds a smaller value than the x register of v2, which is equal to the value in the x
register of v3. In other words, γ(v1, x) < γ(v2, x) = γ(v3, x).

As usual, C tD := ¬(¬C u¬D) and ∀R.C = ¬∃R.¬C, > := At¬A are defined as syn-
tactic sugar. In addition, also define ∀P.c(Si1 x1, . . . ,Sik xk) := ¬∃P.¬c(Si1 x1, . . . ,Sik xk)
and ∃P.C := ∃r1.∃r2. . . .∃rn.C. A General Concept Inclusion (GCI) is an expression
C v D, where C and D are concepts. A TBox is a finite set of GCIs. For a concept C
and TBox T , denote by RegC,T the set of register names appearing in C and T . Models
and satisfiability are also defined as usual: let T be a TBox and let C be a concept.
A Z-interpretation I models T if and only if CI ⊆ DI for every GCI C v D in T .
We denote I |= T in this case. C is satisfiable w.r.t. T iff there is a Z-interpretation I
which models T and CI , ∅. We denote I |=T C in this case.

We say I is tree-shaped if ∆I ⊆ Σ? is (isomorphic to) a prefix-closed set of strings
over some finite alphabet Σ, and if additionally, for u, v ∈ ∆I, we have u → v if and
only if v = uσ for some σ ∈ Σ, where → =

⋃
r∈NR

rI. The tree model property is a
well-known result forALC, [1], which also propagates toALCP(Z):

Theorem 1 ([4]). Let C be a concept and T a TBox inALCP(Z). C is satisfiable w.r.t.
T iff there exists a tree-shapedZ-interpretation I such that I |=T C.

Relying further on the treatment in [4], we also assume that all concepts are given
in constraint normal form, where negations only appear before concept names, and all
path-constraints are either of the form ∃P.c where c is a conjunction of atomic con-
straints, or of the form ∀P.c where c is a disjunction of atomic constraints.

Fix a concept C and a TBox T in constraint normal form. For an atomic constraint
θ(Six,S jy), we call d = max{i, j} the depth of θ, and for a constraint c, the depth is the
maximal depth of the atomic constraints in c. Denote by Θ the set of atomic constraints
occurring in C and T . Let B = {B1, . . . , B|Θ|} be a set of fresh concept names, called
placeholders, which do not appear in C or T .

We can now define abstracted concepts and constraint graphs, which allow us
to split the satisfiability check into testing usual ALC-satisfiability of the abstracted
TBox, and verifying the constraints in the appropriate constraint graph can be satisfied.

Definition 2 (Abstracted concepts). Let P = r1 . . . rn and let θ1, . . . , θm ∈ Θ have
depths d1 ≤ . . . ≤ dm, respectively. Define d0 = 0 and dm+1 = n. For a conjunction c of
θ1, . . . , θm, the abstraction of ∃P.c(Si1 x1, . . . ,Sik xk) is defined as:

∃P1.(B1 u ∃P2.(B2 u · · · ∃Pm.(Bm u ∃Pm+1.>) · · ·))

where ∃Pi is short for ∃rdi−1+1 . . .∃rdi . If di = di+1 then ∃Pi+1 is empty. For a disjunction
c′ of θ1, . . . , θm, the abstraction of ∀P.c′(Si1 x1, . . . ,Sik xk) is defined as:

∀P1.(B1 t ∀P2.(B2 t · · · ∀Pm.(Bm t ∀Pm+1.⊥) · · ·)).

Define Ca and Ta to be theALC concept and TBox, respectively, obtained by replacing
every path constraint with its abstraction.

Example 3. The abstraction of C is given as follows. We have n = 3, m = 4, d0 = d1 =

d2 = 0, d3 = 2, and d4 = d5 = 3. We have that ∃P1, ∃P2, and ∃P5 are empty, and
∃P3 = ∃r∃s, and ∃P4 = ∃t. All in all, we have:

Ca := B1 u
(
B2 u

(
∃r∃s.B3 u

(
∃t.B4 u (>)

)))
An ordinary interpretation I that models Ca is shown in Figure 1, where ai is shorthand
for i repetitions of a. Note that elements in the interpretation of a path-constraint are at
the origins of the paths, whereas in the abstraction, the placeholders are satisfied by el-
ements along the path, with the d-th element satisfying the placeholders for constraints
of depth d.

a1

B1, B2

a2 a3

B3

a4

B4

r s t

Fig. 1: An ordinary model of Ca.

For a graph G, we denote by V(G) its set of vertices and by E(G) its set of edges.

Definition 3 (Constraint graph). Given an ordinary tree-shaped interpretation I =

(∆I, ·I), the constraint graph of I is the edge-labeled graph GI = (G, µ) where V(G) =

∆I ×RegC,T , and µ : E(G)→ {l=, l<}, and E(G) are as follows. For every (u, x), (v, y) ∈
V(G) and θ ∈ {=, <}, we have ((v, y), (u, x)) ∈ E(G) and µ((v, y), (u, x)) = lθ iff 1. u is a
prefix of v, and 2. there exists B j ∈ B such that θ j = θ(S|v|−|u|y, x) or θ j = θ(x,S|v|−|u|y),
and v ∈ BIj . Let p̄ be a (finite or infinite) path in I. The constraint graphGI, p̄ is given by
the labeled subgraph of GI induced by {(u, x) | u ∈ ∆I, u is on the path p̄, x ∈ RegC,T }.

(a1, x)

(a1, y)

(a1, z)

<
<

(a2, x)

(a2, y)

(a2, z)

(a3, x)

(a3, y)

(a3, z)

<
(a4, x)

(a4, y)

(a4, z)

=

Fig. 2: The constraint graph GI of I.

Example 4. The constraint graph of I from Example 3 is shown in Figure 2.

Theorem 4 ([4]). C is satisfiable w.r.t. T if and only if there is an ordinary tree-shaped
interpretation I s.t. I |=Ta Ca and s.t. there is a homomorphism from GI toZ.

A tableau reasoner may be used to verify that I |=Ta Ca. As I may be infinite,
such a reasoner constructs a finite representation of I in which the infinite parts of
I are represented by paths between blocking and blocked nodes. The infinite version
can be obtained by a construction known as unraveling. For more details, see [1]. The
following observation will be later essential in our constructions:

Remark 5. W.l.o.g., we may assume that each path between a blocking node and its
respective blocked node is of length n ≥ d where d is the maximal depth of a constraint
appearing in T and C. This is because we can add d new concepts A1, . . . , Ad, plus the
axioms Ai v ¬A j, for i, j ∈ [d], i , j, together with > v A1t· · ·tAd, and for all r ∈ NR

also A1 v ∀r.A2, . . . , Ad−1 v ∀r.Ad, Ad v ∀r.A1, yielding an equisatisfiable TBox.

3 Integer graphs and Embeddings intoZ

For the rest of the paper, fix a concept C and a TBox T in ALCP(Z) and let Ca and
Ta be their abstractions. Fix some ordinary tree-shaped model I = (∆I, ·I) such that
I |=Ta Ca, given by a blocked tree satisfying the blocking condition described in Re-
mark 5, and let GI = (GI, µI) be its constraint graph. As mentioned before, deciding
the satisfiability of C w.r.t. T breaks down to finding an ordinary model of the abstrac-
tions Ca and Ta, and verifying that the constraints in its constraint graph are satisfiable.
The latter may be done by finding a homomorphism from GI toZ.

In this section we define integer graphs, which represent such homomorphisms in
a general form. As the extraction of homomorphisms from a general integer graph is
somewhat cumbersome, we also introduce compacted integer graphs which simplify
said extraction.

Let G be a (possibly infinite) directed graph. Define LPathG : V(G)2 → Z+ ∪ {∞}

as follows. For u, v ∈ V(G), LPathG(u, v) is undefined if v is not reachable from u, is
equal to k if k is the length of the longest path from u to v, and is equal to∞ if for every
k ∈ Z+, there is a path of length at least k from u to v. Let ≡ be an equivalence relation
on V(G). For v ∈ V(G), denote the equivalence class of v in ≡ by [v]≡. The quotient
graph G/≡ is given by V(G/≡) = {[v]≡ | v ∈ V(G)}, and:

E(G/≡) = {([u]≡, [v]≡) | (u′, v′) ∈ E(G) for some u′ ∈ [u]≡, v′ ∈ [v]≡}.

Define ≈I to be the equivalence relation on V(GI) induced by the reflexive symmetric
transitive closure of the edges in E(GI) labeled with l=. Define G<

I
= (V(GI), E<(GI))

where E<(GI) = {e ∈ E(GI) | µI(e) = l<}. For a path p̄ in I, define ≈p̄ and G<
p̄ similarly.

Definition 6 (Integer graph). Let ≈ be an equivalence relation on V(GI) such that
≈I refines ≈, and denote G<

I
/≈ by H≈

I
. If H≈

I
is acyclic and if for every a, b ∈ V(H≈

I
),

LPathH≈
I
(a, b) , ∞, we say H≈

I
is an integer graph. We say H≈

I
is a compacted integer

graph if, in addition, for every a, b ∈ V(H≈
I

), either a is reachable from b or vice versa.
For a path p̄ in I and ≈ such that ≈p̄ refines ≈, define H≈p̄ similarly.

When H≈I
I

is an integer graph, we often refer to it as the integer graph of I.

Definition 7 (Vertex contraction). Let G = (V(G), E(G)) and let a, b ∈ V(G). The
result of contracting a and b, denoted G/{a,b}, is given by replacing a and b with a
fresh vertex c whose neighborhood is the union of the neighborhoods of a and b. That
is, V(G/{a,b}) = (V(G) \ {a, b}) ∪ {c} and for every a′ ∈ V(G) \ {a, b}, we have (a′, c) ∈
E(G/{a,b}) iff {(a′, a), (a′, b)}∩E(G) , ∅ (and similarly for (c, a′)). If G is quotient graph,
the fresh vertex c is the union of the equivalence classes a and b.

Notice that vertex contractions do not introduce new edges. For a quotient graph G/≡,
we have that the equivalence relation ≡ refines the equivalence relation obtained after
contracting vertices in G/≡. Hence, we have that all the integer graphs of a given model
I can be obtained from H≈I

I
by contracting vertices in H≈I

I
. Moreover, we have:

Lemma 8. If H≈I
I

is an integer graph, I has a compacted integer graph.

Example 5. The equivalence relation ≈I of I from Example 3 only contains the pair
((a3, x), (a4, x)). The integer graph H

≈I

I
is shown in Figure 3(a) with the isolated ver-

tices omitted. A compaction of H
≈I

I
is given by the integer graph induced by the equiv-

alence relation ≈, where: (a3, x) is equivalent to (a4, x), (a1, x) is equivalent to (a2, x),
and (a1, y), (a2, y), (a2, z), (a3, y), (a3, z), (a4, y), (a4, z) are equivalent to each other, and
(a1, z) is only equivalent to itself. Note that ≈I indeed refines ≈, H≈ (shown in Fig-
ure 3(b)) is acyclic, and for any pair of vertices, one is reachable from another. The ver-
tex [(a1, y)]≈ denotes the equivalence class {(a1, y), (a2, y), (a2, z), (a3, y), (a3, z), (a4, y), (a4, z)}.

{(a1, x)}{(a1, y)} {(a1, z)}

{(a2, x)} {(a3, x), (a4, x)}

(a) H
≈I

I

[(a1, y)]≈ {(a1, z)}

{(a1, x), (a2, x)} {(a3, x), (a4, x)}

(b) H≈

Fig. 3: The integer graph H
≈I

I
and its compaction H≈.

Note that integer graphs naturally induce a homomorphism (in fact, infinitely many)
from GI toZ, as they are directed acyclic graphs:

Observation 9. Let H be an integer graph. There exists a function num : V(H) → Z
such that for a, b ∈ V(H) where a , b, if b is reachable from a, then num(a) < num(b).

This allows us to reduce the problem of deciding the existence of a homomorphism
to checking whether there exists an integer graph for I:

Lemma 10. There is a homomorphism from GI toZ iff I has an integer graph.

Combining this with the previous result of Carapelle and Turhan, we have:

Corollary 11. C is satisfiable w.r.t. T if and only if there exists an ordinary model I of
Ca w.r.t. Ta which has an integer graph.

The next lemma will allow us to break the task of deciding whether I has an integer
graph into simpler steps:

Lemma 12. I has an integer graph if and only if every path in I which starts at the
root has an integer graph.

Proof (Sketch). One direction is immediate. For the other direction, assume every path
starting at the root in I has an integer graph. We show the claim by induction on the
number T of (blocked or maximal and finite) paths in I. The case where T = 1 is
immediate. Assume the claim holds for T . Let I have T + 1 such paths which all have
integer graphs. Let p̄ be one of these paths, and consider the sub-tree I′ induced by the
T paths in I other than p̄. Then by the induction hypothesis, I′ has an integer graph
H≈I′
I′

. Let H≈ p̄

p̄ be the integer graph of p̄. Let ∆Ip̄ denote the elements on p̄, and let ∆I
′

denote the elements in I′. Then the integer graph H≈I
I

of I is as follows. H≈I
I

is given
by taking the disjoint union of H≈ p̄

p̄ and H≈I′
I′

and contracting (see Definition 7) the
vertices [(u, x)]≈ p̄ and [(u, x)]≈I′ for every u ∈ ∆Ip̄ ∩ ∆

I′ and x ∈ RegC,T .

We have now established that in order to check satisfiability of C w.r.t. T , it is enough
to obtain an ordinary tree-shaped model I for their abstractions and to check that each
path in I starting at the root has an integer graph.

4 Constructing Integer graphs

In this section, we describe how the existence of an integer graph for a path in I can be
tested. First, observe that for finite paths, this task is simple:

Observation 13. Let p̄ be a finite path in I. It is straightforward to construct its con-
straint graph G p̄, compute ≈p̄ and then construct the graph H≈ p̄

p̄ and test it for for being
acyclic, as these are all finite structures. Together with the construction described in the
proof of Lemma 12, we have that we can compute the integer graph (if it exists) of any
finite tree-shaped prefix of I.

We still need conditions for the existence of integer graphs for infinite ultimately
periodic paths which can be verified in finite time.4 Such paths ᾱ(β̄)ω require caution,
since it is possible for their prefixes ᾱ(β̄)t have an integer graph for any t ∈ Z+ while
they themselves do not. This behavior is demonstrated in the following example:

4 We will sometimes abuse notation and denote an ultimately periodic path by ᾱ(β̄)ω, where ᾱ
and β̄ list the labels appearing in the non-periodic and respectively periodic parts of the path.

Example 6. Let θ5 := x = S1x, θ6 := y = S1y, and θ7 := z < S1z, and let B5,6,7
be a placeholder for θ5 ∧ θ6 ∧ θ7. Let B1,2 be a placeholder for θ1,2 (see Example 1).
Consider the ultimately periodic path b1b2 . . ., where b1 is labeled with B1,2 and for
i ≥ 2, bi is labeled with B5,6,7. Essentially, these constraints fix two integer values,
held in the x and y registers, and with each repetition of B5,6,7, add a fresh integer
value between them. Hence, for any t ∈ Z+, b1 . . . bt+1 has an integer graph which is
a simple path of length t + 1, since for any t ∈ Z+ there is a choice of two integer
values with enough different values between them. See Figure 4 for the integer graph of
b1 . . . b4, with the isolated vertices omitted and where [(b1, x)] = {(bi, x) | i ∈ [4]} and
[(b1, y)] = {(bi, y) | i ∈ [4]}. However, there is no integer graph for b1b2 . . ., since no
two integer values have infinitely many different integers between them.

[(b1, x)] {(b4, z)} {(b3, z)} {(b2, z)} {(b1, z)} [(b1, y)]

Fig. 4: Integer graph of b1b2b3b4.

We first need to introduce the notion of integer graph extensions, which can be
roughly seen as the subgraph relation adapted to quotient graphs:

Definition 14 (Integer graph extension). Let H′ and H be integer graphs. We say H′

extends H if for every [v] ∈ V(H), 1. there exists [v′] ∈ V(H′) such that [v] ⊆ [v′], and
2. if ([u], [v]) ∈ E(H) for some [u] ∈ V(H), then ([u], [v]) ∈ E(H′).

The next easy lemma follows from the definitions:

Lemma 15. Let p̄ be a (finite or infinite) path in I and let ᾱ be a prefix of p̄. If p̄ has
an integer graph H p̄, then ᾱ has an integer graph Hᾱ and H p̄ extends Hᾱ.

The behavior in Example 6 we wish to avoid, namely, having the length of the
longest path between two vertices grow in subsequent extensions, can be expressed
using the following:

Definition 16 (Non-disrupting extensions). Let H′′, and H′, and H be integer graphs
such that H′′ extends H′ and H′ extends H. We say that H′′ extends H′ without disrupt-
ing H if for every u, v ∈ V(H), LPathH′ (u, v) = LPathH′′ (u, v).

Through these two notions we can characterize the (finite or infinite) paths which
have integer graphs, using conditions which can be verified in finite time. The following
lemma is the most technically involved result of the paper. Recall that n denotes the
maximal depth of constraints appearing in I.

Lemma 17. Let p̄ = ᾱ(β̄)ω be an ultimately periodic path in I, beginning at the root.
Then p̄ has an integer graph if and only if:

(C) ᾱ(β̄)n+1 has an integer graph Hp̄,n+1 which extends H p̄,n without disrupting Hp̄,1,
where H p̄,1 and H p̄,n are the integer graphs of ᾱ(β̄) and ᾱ(β̄)n, respectively.

The following example shows that the bound in Lemma 17 on the number n + 1 of
repetitions needed is tight:

Example 7. Let θ8 := x < y with placeholder B8 and let θ9,10 := (x < S3x) ∧ (S3y < y)
with placeholder B9,10. Consider the path u1u2 . . ., where if i = 1 mod 4, ui is labeled
with B8, and otherwise ui is labeled with B8 u B9,10. It is straightforward, albeit tedious,
to verify that the integer graph of u1u2u3u4 is disrupted by its extensions up to i = 16.

Also note that condition (C) may be verified for a path ᾱ(β̄)ω in finite time; by Obser-
vation 13, it is straightforward to construct the graphs Hp̄,1, Hp̄,n, Hp̄,n+1 and to verify
they are acyclic. Then it is immediately verifiable that for every u, v ∈ V(Hp̄,1), it holds
that LPathHp̄,n (u, v) = LPathH p̄,n+1 (u, v).

Proof (Sketch). Recall that I, and therefore also p̄, satisfies the blocking condition
described in Remark 5. To reduce notational clutter, in this proof we omit p̄ and denote
by Ht the integer graph of ᾱ(β̄)t where relevant.

Our blocking condition allows us to define a graph operation which, in a way, ap-
pends some fixed graph induced by the periodic part of p̄ to Ht in order to obtain Ht+1.
This regularity in the structure of the integer graphs of the prefixes of p̄ allows us to
show that if condition (C) holds, then (*) for every t ∈ Z+, ᾱ(β̄)t+n has an integer graph
Ht+n which extends Ht+n−1 without disrupting Ht. We can further show that acyclicity
is preserved when taking the limit H∞ = limt→∞ Ht. Therefore, if H∞ is not the integer
graph of p̄, there are u, v ∈ V(H∞) such that LPathH∞ (u, v) = ∞. Fix such u and v. Let
t ∈ Z+ be the minimal number for which u, v ∈ V(Ht). We have that ᾱ(β̄)t is finite,
so Ht is a finite directed acyclic graph, therefore LPathHt (u, v) is also finite. Since by
our assumption, LPathH∞ (u, v) = ∞, there exists some minimal t′ ≥ t + n for which
LPathHt′ (u, v) > LPathHt (u, v). Then we have that Ht′ disrupts Ht. In fact, we have
that Ht′ disrupts Ht′′ for every t ≤ t′′ < t′. In particular, for t′′ = t′ − n we have that
t ≤ t′′ < t′, so Ht′ = Ht′′+n disrupts Ht′′ while extending Ht′′+n−1, in contradiction to (*).
We conclude that there are no u, v ∈ V(H∞) such that LPathH∞ (u, v) = ∞. Therefore H∞
satisfies all conditions of Definition 6, making it the integer graph of p̄.

For the other direction, assume that p̄ has an integer graph H. First, note that ᾱ(β̄)t

is a prefix of p̄ for every t ≥ 0. Therefore, by Lemma 15, for every t ∈ Z+, ᾱ(β̄)t has
an integer graph Ht. Furthermore, for every t < t′, we have that Ht′ extends Ht. In
particular, this is true for t = n and t′ = n + 1. Therefore, to satisfy condition (C), it
remains to show that Hn+1 does not disrupt H1 when extending Hn.

Assume for contradiction that Hn+1 does disrupt H1 when extending Hn. Then, re-
lying on the fact that the depth of the placeholders in β̄ is limited by the length of β̄, we
can show that there are w, w′ ∈ V(H1) such that LPathHt (w, w

′) < LPathHt+1 (w, w′) for
every t ≥ n. Since the length of the longest path between w and w′ grows with each t,
we have that for every k ∈ Z+, there exists some tk ∈ Z+ such that LPathHtk

(w, w′) > k.
Hence, in H, we have that LPathH(w, w′) = ∞, in contradiction to our assumption that
H is an integer graph. We conclude that Hn+1 does not disrupt H1 when extending Hn,
and condition (C) holds.

5 Putting it Together – the Constructive Procedure

It remains to construct an assignment to the registers. Since a homomorphism can be
easily extracted from a compacted integer graph, we show in this section that such
compactions are effectively computable. Let P̄fin be the set of maximal finite paths in
I beginning at the root, and let P̄prd be the set of infinite ultimately periodic paths in I
beginning at the root. For t ∈ Z+, let Ut = {u ∈ p̄ | p̄ ∈ P̄fin} ∪ {u ∈ ᾱ(β̄)t | ᾱ(β̄)ω ∈ P̄prd}.
That is, all elements that appear either on maximal finite paths or by the t-th iteration of
the ultimately periodic paths. Define It be the sub-tree of I induced by the elements in
Ut. Let u1, u2, . . . be a lexicographical ordering of ∆I × RegC,T .

Algorithm 1 Integer graph compaction
Input: An integer graph Ht of It for t ∈ Z+

Output: A compaction Ht,c of Ht

1: V(Ht,c) = V(Ht)
2: E(Ht,c) = E(Ht)
3: a = [u1] . We refer to the equivalence classes in Ht,c

4: for b, b′ ∈ V(Ht,c) do
5: if LPathHt,c (a, b) = LPathHt,c (a, b′) ∈ Z or LPathHt,c (b, a) = LPathHt,c (b′, a) ∈ Z then
6: contract b and b′ in V(Ht,c)
7: for i = 2, . . . , |V(Ht)| do
8: if a is not reachable from [ui] in Ht,c nor vice versa then
9: contract a and [ui] in V(Ht,c)

10: a = [ui]
11: for b, b′ ∈ V(Ht) do
12: if LPathHt,c (a, b) = LPathHt,c (a, b′) ∈ Z or LPathHt,c (b, a) = LPathHt,c (b′, a) ∈ Z then
13: contract b and b′ in V(Ht,c)
14: Ht,c = (V(Ht,c), E(Ht,c))
15: return Ht,c

Lemma 18. Let t ∈ Z+ and let Ht be the integer graph of It. There is an effectively
computable compaction Ht,c of Ht.

Proof (Sketch). We claim that Algorithm 1 outputs a compaction of Ht. Acyclicity is
preserved by operations in Lines 6, 9, and 13. As for the reachability condition, first
note that for every b ∈ V(Ht,c), either b is reachable from [u1] or vice versa. Let
b, b′ ∈ V(Ht,c). Assume for contradiction that b is not reachable from b′ nor vice versa.
Then, either both b, b′ are reachable from [u1], or [u1] is reachable from both. Assume
w.l.o.g. that it is the former. If LPathHt (u1, b) = LPathHt (u1, b′), then b and b′ would
have been contracted during the run of the algorithm. Therefore either LPathHt (u1, b) <
LPathHt (u1, b′) or LPathHt (u1, b) > LPathHt (u1, b′). If LPathHt (u1, b) < LPathHt (u1, b′),
there is some b′′ ∈ V(Ht,c) such that LPathHt (u1, b′) = LPathHt (u1, b′′)+LPathHt (b

′′, b′)
and such that LPathHt (u1, b′′) = LPathHt (u1, b). Hence, b and b′′ would have been con-
tracted during the run of the algorithm, producing a path from b to b′, in contradiction

to our assumption. The other case is analogous. Therefore, for every b, b′ ∈ V(Ht,c),
either b is reachable from b′ or vice versa, making Ht,c a compacted integer graph.

Theorem 19. Let I have an integer graph. There is an effectively computable valuation
function γ : ∆I × RegC,T → Z such that (∆I, ·I, γ) satisfies C w.r.t. T .

Proof (Sketch). We describe a procedure which, given input (u, x) ∈ RegC,T , outputs
an integer value. It first constructs a compacted integer graph using Observation 13 and
Algorithm 1, then assigned it a value based on the length of the longest path between
[(u, x)] and [(ε, x1)]. For t ∈ Z+, denote by Ht the integer graph of It. Let t ∈ Z+ be
the minimal t for which [(u, x)] appears in Ht, and denote t′ = t + n + 1. Generate Ht′

using Observation 13 and then generate the compacted Ht′,c using Algorithm 1. Denote
[(u, x)] = b and [(ε, x1)] = a and return γ(u, x) = −LPathHt′ ,c (b, a) if LPathHt′ ,c (b, a) ∈
Z+, and γ(u, x) = LPathHt′ ,c (a, b) otherwise. Recall that for every b ∈ V(Ht,c) we have
that either b is reachable from a or vice versa, therefore γ is well-defined. Also note that
our blocking condition together with Lemma 17 guarantee that the length of the longest
path between two vertices is final after n iterations, therefore, if [(u, x)] is reachable
(and different) from [(v, y)], then γ(u, x) > γ(v, y). Now apply Lemma 10.

6 Conclusion

ALCP(D) is an interesting family of DLs which enable the expression of constraints
over register values of individuals along a specified path, where the values and the con-
straints are over a domain structure D. In this work, we have provided a constructive
satisfiability procedure forALCP(Z) instantiated to the integer domainZ = 〈Z,=, <〉.
The construction is two-fold: in order to construct the Z-model of an ALCP(Z) con-
cept C w.r.t. a TBox T , first an ordinaryALC-model I is constructed for the abstracted
versions of T and C; and consecutively the so-called integer graph of I, which provides
a general representation of the relationships between the registers, is constructed and
used for assigning the registers with values from Z.

We believe that this result will enable to employALCP(Z) in reasoning tasks where
model construction is required, e.g., ABox abduction and query answering. Although
complexity issues were not addressed in this paper, a complexity upper bound can be
obtained by analyzing our procedures. This would already be an improvement, as the
reductions in [4] lead to an automata model with a decidable emptiness problem of
non-elementary complexity, [3]. However, since such a naïve bound is likely to not be
complete, a natural sequel to this work would be to refine our approach to derive a tight
complexity upper bound for this logic.

Acknowledgments. We thank Mantas Šimkus for comments on early stages of this
work, and we are grateful to the anonymous reviewers for their fruitful comments. This
work was supported by the FWF (project W1255).

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press (2003)

2. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept languages.
In: Proceedings of the 12th International Joint Conference on Artificial Intelligence. Sydney,
Australia, August 24-30, 1991. pp. 452–457. Morgan Kaufmann (1991)

3. Bojańczyk, M., Toruńczyk, S.: Weak MSO+U over infinite trees. In: 29th International Sym-
posium on Theoretical Aspects of Computer Science, STACS 2012, February 29th–March
3rd, 2012, Paris, France. pp. 648–660 (2012)

4. Carapelle, C., Turhan, A.: Description logics reasoning w.r.t. general TBoxes is decidable for
concrete domains with the EHD-property. In: ECAI 2016 – 22nd European Conference on
Artificial Intelligence, 29 August–2 September 2016, The Hague, The Netherlands. Frontiers
in Artificial Intelligence and Applications, vol. 285, pp. 1440–1448. IOS Press (2016)

5. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2:
The next step for OWL. J. Web Semant. 6(4), 309–322 (2008)

6. Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over ontologies. In:
Proceedings of the OWLED*06 Workshop on OWL: Experiences and Directions, Athens,
Georgia, USA, November 10–11, 2006 (2006)

7. Haarslev, V., Möller, R., Wessel, M.: The description logic ALCNHR+ extended with con-
crete domains: A practically motivated approach. In: Automated Reasoning, First Interna-
tional Joint Conference, IJCAR 2001, Siena, Italy, June 18–23, 2001, Proceedings. Lecture
Notes in Computer Science, vol. 2083, pp. 29–44. Springer (2001)

8. Halland, K., Britz, K.: Abox abduction inALC using a DL tableau. In: 2012 South African
Institute of Computer Scientists and Information Technologists Conference, SAICSIT ’12,
Pretoria, South Africa, October 1–3, 2012. pp. 51–58 (2012)

9. Horrocks, I., Sattler, U.: Ontology reasoning in theSHOQ(D) description logic. In: Proceed-
ings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001,
Seattle, Washington, USA, August 4-10, 2001. pp. 199–204. Morgan Kaufmann (2001)

10. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to ontology-based data access. In: IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16–22, 2011. pp.
2656–2661 (2011)

11. Lutz, C.: NExpTime-complete description logics with concrete domains. ACM Trans. Com-
put. Log. 5(4), 669–705 (2004)

12. Lutz, C., Miličić, M.: A tableau algorithm for description logics with concrete domains and
general TBoxes. J. Autom. Reasoning 38(1–3), 227–259 (2007)

13. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logic EL
using a relational database system. In: IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11–17, 2009.
pp. 2070–2075 (2009)

14. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expressive de-
scription logics via tableaux. Journal of Automated Reasoning 41(1), 61–98 (2008)

15. Pukancová, J., Homola, M.: Tableau-based ABox abduction for description logics: Prelimi-
nary report. In: Proceedings of the 29th International Workshop on Description Logics, Cape
Town, South Africa, April 22–25, 2016. (2016)

	Constructive Satisfiability Procedure for ALCP(Z) (Preliminary Report)
	Introduction
	Preliminaries for ALCP(Z)
	Integer graphs and Embeddings into Z
	Constructing Integer graphs
	Putting it Together – the Constructive Procedure
	Conclusion
	Acknowledgments.

