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Abstract. A logical formalism to support the insertion of uncertain
concepts in formal ontologies is presented. It is based on the search of
extensions by means of two automated reasoning systems (ARS), and it
is driven by what we call cognitive entropy.

1 Introduction

The challenge of data management with logical trust arose from the statement
of the Semantic Web (SW). An important problem is the need for extending or
revising ontologies. Such task is, from the point of view of companies, dangerous
and expensive: since every change in ontology would affect the overall knowledge
of the organization. It is also hard to be automated, because some criteria for
revision cannot be fully formalized. Despite its importance, the tools designed
to facilitate the syntactic extension or ontological mapping do not analyze, in
general, their effect on the (automated) reasoning.

Our aim is to design tools for extending ontologies in a semi-automated way,
that is one of the problems present in several methods for cleaning data in
the SW, when it implies ontological revision (see e.g. [1] [3]). The method is
based on the preservation by extensions of the notion of ontology robustness [8].
(Lattice categoricity, described in sect. 3), is going to applied in a special case:
the change is induced by the user, who has detected the (cognitive) necessity of
adding a notion. That is, a vague concept which comprises a set of elements with
features roughly shaped by the existing concepts. In Ontological Engineering,
careful consideration should be paid to the accurate classification of objects: the
notion becomes a concept when its behaviour is constrained by new axioms that
relate it to the initial concepts. This scenario emphasises the current need for
an explanation of the reasoning behind cleaning programs. That is, a formalized
explanation of the decisions made by systems. Note that such explanations are
necessary for the desirable design of logical algorithms to be used by general-
purpose cleaning agents [4]. It is evident that the task will need not only specific
ARSs for SW, but also those for general purpose. The reason is that some tasks
are not directly related to reasoning services for the SW [2] [16] [8]. Among the
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challenges the problem raises in a dynamic setting as the SW, there are three
of them which are specially interesting from the point of view of automated
reasoning. They seem to obstruct the design of a fully formalised methodology
[4] from classical database field:

— We can not suppose the database to be stable (because new facts could be
added in the future).

— Usually, specification of ontology is syntactically complex, so it is very likely
that classical axiomatization of database theory becomes inconsistent, even
if ontology itself is consistent.

— It is possible that the database does not contain facts about the whole rela-
tions of the language.

However, some limitations can be solved weakening the requirements imposed
in both database and ontological reasoning [8] [2].

The method proposed is based on the assistance of two ARS, McCune’s OT-
TER and MACE4 (http://www-unix-mcs.anl.gov). The first one, OTTER, is
an automated theorem prover (ATP) based on resolution and support set strat-
egy. The program allows great autonomy: its auto2 mode suffices to find almost
every automated proof that have been required. The second one, MACEA4, is
an automatic model finder sharing formula syntax with OTTER. It is based on
Davis-Putnam-Loveland-Longemann’s procedure to decide satisfiability. It has
been useful for analyzing the models of the involved theories.

Finally, it would be good to add some information about MACE4. Despite
it has not been formally verified to work correctly, once the result by MACE4
is determined, it is not difficult to certify that the models it gives are correct.
It is necessary to use OTTER to prove that the list of models is exhaustive.
Thus, MACE4 has been used as an automatic assistant to induce new results
and investigate the effect of diverse axiomatizations, which must be certified
later.

2 Logic-based ontological extensions

Once the need for revision is accepted, the task can be seen, up to some extent
-and specially when one designs her/his own logical theory-, from two points of
view. The first one considers it like a task similar to belief revision, analyzing
it by classic methods of AI. Nevertheless, the effort can be expensive, because
it must study once again the impact of revision on the foundational features of
the source ontology. The second one has a foundational character. The evolution
of ontology should obey ground principles which are accepted on this matter.
For example, preserving some sort of backward compatibility, if it is possible is
possible (extracted from [14]):

— The ontology should be able to extend other ontologies with new terms and
definitions.

— The revision of an ontology should not change the well-formedness of re-
sources that commit themselves to an earlier version of the ontology.



However, such principles are more adequate if the source ontology is robust,
in the following sense [4]: An ontology is robust if its core is clear, stable (except
for extensions); if every model of its core exhibits similar properties w.r.t. the
core language, and if it is capable of admitting (minor) changes made out of the
core without commiting core consistency. By core we understand a portion of
ontology that we consider as a sound theory with well known properties, and
which is accepted as the best for the concepts involved. We can consider two
kinds of extensions:

— Extension by definition. Is produces conservative extensions. If definitions
are not provided for the new elements, conservation can fail.

— Ontological insertion: Essentially new (nondefinable) concepts/relations are
inserted. The task is to design good axioms to specify the new ones from
core theory.

An interesting case occurs in the task of ATP-aided cleaning of logic databases.
The bottom-up change generation in ontologies -due to the analysis of track
interaction among the Knowledge Base, the ATP and the user- induces ontolo-
gical revision. It can simulate new elements in ontology to be inserted (such as
Skolem noise [2]). We analyze here a slightly different problem, which appears
when the user is the person who decides to insert a new concept by collecting a
set of data.

The extension by definition is the basis of definitional methodologies for build-
ing formal ontologies. It is based on the following principles [7]:

Ontologies should be based upon a small number of primitive concepts.
These primitives should be given definite model theoretic semantics.
Axioms should only be given for the primitive concepts.

Categorical axiom sets should be sought.

The remaining vocabulary of the ontology (which may be very large), should
be introduced purely by means of definitions.

G o o~

In this paper, the first three principles are assumed. The fourth one will be
replaced by lattice categoricity. Categoricity is a strong requirement that can be
hard to achieve and to preserve. Even when it is achieved, the resultant the-
ory may be unmanageable (even undecidable) or unintuitive. This phenomenon
might suggest that we restrict the analysis of completeness to coherent parts of
the theory. However, it is not a local notion: since minor changes commit the
categoricity and it is expensive to repeat the logical analysis.

With respect to the last principle, starting with a basic theory, it seems
hard to define a new concept /relationship. It is better to consider it only as the
starting point to build an ontology, thinking thus that we are in early steps of
the process, where ontological insertions are necessary.

Finally (although it is not the topic of this paper), we would like to add
that an ontological insertion should be supported by a good theory about its
relationship with the original ontology. It should as well be supported by a nice
way of expanding a representative class of models of the source theory to the



new one. This class of models must contain the intended models (those that the
ontology designer wants to represent). It can be required an interpretation of the
new elements which should be formalised, and an re-interpretation of the older
ones, which must be compatible with basic original principles.

3 Lattice categorical theories

In order to solve in practice the several logical problems ontological insertion
raises we will analyze the categoricity of the structure of the concepts of the
ontology. We are going to take into account compatibility which has been pre-
viously mentioned, and we are going to try to obtain definitions of the concepts
inserted in the new ontology. We will analyze categoricity of structure of the
concepts of ontology. For the sake of clarity, we suppose that the set of concepts
has a lattice structure. Actually, this is not a constraint: there are methods to
extract ontologies from data which produce such structure (such as the Formal
Concepts Analysis [13]) and, in general, the ontology is easy to be extended by
definition, verifying lattice structure. Although we think about Description Log-
ics [5] as ontological language (the logical basis for ontology languages as OWL,
see http://www.w3.org/TR/owl-features/), the definitions are useful for full
first order logic (FOL), so we give the definitions in FOL language.

On the one hand, a lattice categorical theory is the one that proves the lat-
tice structure of its basic relationships. This notion is weaker than categoricity or
completeness. On the other hand, lattice categoricity is a reasonable requirement:
the theory must certify the basic relationships among the primitive concepts. In
[8] we argued that completeness can be replaced by lattice categoricity to facil-
itate the design of feasible methods for extending ontologies. Let us summarize
these ideas.

Given a fixed FOL language, let C = {C4,...,Cy} be a (finite) set of concept
symbols, let T be a theory (in the general case, definable concepts in T can be
considered). Given M = T, we consider the structure L(M,C), in the language
Le ={T,L,<}+{c1,...,cn}, whose universe are the interpretations in M of
the concepts (interpreting ¢; as CM), T is M, 1 is §) and < is the subset relation.
Recall that L(M,C) is requested to have a lattice structure is a basic desiderata
that we assume from now on for every theory we consider. This requirement
simplifies the examples.

The relationship between L(M,C) and the model M itself is based in two
facts. The first one, the lattice L can be characterized by a finite set of equa-
tions Ep, plus a set of formulas @¢ categorizing the lattice under completion.
The second one, there exists a natural translation I7 of these L¢-equations into

formulas in the FOL language so that if E is a set of equations characterizing
L(M,C) (so L(M,C) E E), then M |= II(E).

Definition 1. Let E be a L¢-theory. We say that E is a lattice skeleton (I.s.)
for a theory T if E verifies that

— There is M =T such that L(M,C) |E E + O¢, and



— E + O¢ has an unique model (modulo isomorphism,).

Every consistent theory has a lattice skeleton [8]. Roughly speaking, the existence
of essentially different lattice skeletons makes difficult to reason with the ontology
while the existence of only one would make it easy.

Definition 2. T is called o lattice categorical (l.c.) theory if whatever pair
of lattice skeletons for T are equivalent modulo Oc¢.

Note that if T is l.c. and E is a l.s. of T, then T' - II(E). Note also that every
consistent theory T' has an extension 7" which is lattice categorical: it suffices
to consider a model M = T, and then to find a set E of equations such that
Oc¢ + E has L(M,C) as only model. The theory T' + II(E) (and any consistent
extension of it) is l.c.

Finally, we can give a formalization of robust ontological extension, based in
the categorical extension of the ontology:

Definition 3. Given two pairs (T1, E1), (Ta, E2) we will say that (Ta, Es) is a
lattice categorical extension of (T, E1) with respect to the sets of concepts
C1 and Cy respectively, if C1 C Co and L(T»,Cs) is an Ei-conservative extension
Of L(Tl, Cl) .

For reasoning with the lattice of concepts it suffices to work with a lattice
skeleton, so, to simplify, we suppose throughout that T is the self L.s.

3.1 Cognitive support

Once formalized the notion of lattice categorical extension, we need to design
several functions to advise how to select the best 1.c. extension.

Assume that T is a theory, and L is the lattice defined by C in some M =T
From the point of view of ontology designer, such a model M is the intended
model that the ontology attempts to represent. Suppose that A = {hy,...h,}
is the set of facts on C, and the user wants to classify some elements that occur
in A by means of a new concept. We can suppose, to simplify the notation, that
every fact explicit in T belongs to A. Let U(A) be the universe determined by
A; that is, {a : exists C' € C [C(a) € Al}.

Given C € C in A, we consider

|C]4 :=|{a : C(a) € A}| and |C|2 :=|[{a € U(4) : TUA = C(a)}|.
Definition 4. The cognitive support of C with respect to A, T and L, is

_ HaeU(4) : 3i[C; <ECATUA E Ci(a)]}]

This support estimates the number of facts on the concept C entailed by T,
normalized by the size of the universe U(A). Because of the computational com-
plexity of logical reasoning, it can be hard in general to compute it: we need
to seek, by logical entailment, the cone of concepts defined by C. However, this
computation is trivial for lattice categorical theories:



Proposition 1. If T is lattice categorical, then sup%A(C) =

The proposition holds because if C; < C, then T = C; E C. Thus, if TU A =
Ci(a), then TU A = C(a).

From now on, we suppose that A is compounded by facts on atoms of the
lattice of concepts (that is, about the most specific concepts). Note, also, that if
T is l.c., then L is unique, and we will thus omit the superscript L in that case.

Corollary 1. If 7 = {C4,...,Cn} is a Jointly Exhaustive and Pairwise Dis-
joint (JEPD) set of concepts in L, then supr A(.) is a probability measure.

Proof. Tt is easily seen that Y., suph A(C) = 1.

The cognitive entropy of J is CH(J) = — Z supr, A(C) log supr, A (C).
CeJg

3.2 Entropy of ontological extensions

Suppose that the user decides that a set {a1,...,ar} C U(A) induces a new
concept D (provisionally, a notion). Such a notion might not be fully represented
by those elements. Also, it is possible that some of them do not belong to the new
concept, because of noise in the data. It might also be the case that the concept
is constrained by a set X of axioms introduced by the user. Furthermore it is also
possible that 7'+ X' is not 1. c., that is, this theory does not prove the intended
lattice induced by C U {D}. MACEA4 provides the collection {L1,..., Ly} of the
lattices induced by the models of T+ Y. Let T; be a lattice skeleton for L;
(i=1,...,m).

Now, we focus our attention on a concrete level of the Ontology, where we
intend to insert the new concept. The level will be a JEPD J = {C4,...,Cy} of
the lattice L verifying that if the new concept D contains some of them,

Jn={CieJ : C;<" D} #1

then J; = (J \ erb") U {D} is a JEPD in L;. Since T; is a l.c. extension of T,
the support of D is easy to achieve:

Theorem 1. In above conditions, supr, A(D) = Z sup%,A(Ci)
ceds

To estimate the conditional entropy of the new extension, we consider a
natural definition of conditional support:
_HaeU(Q) : TUAEC(@)AT;UA | C'(a)}]
- CI2

supT;,T,A (C'|C) :



This support allows to estimate the amount of new information produced by
the extension by standard methods; through the conditional entropy associated
to the two probability measures. The conditional cognitive entropy is :

CH(J|T:) =- Y supr,a(C'|C)logsupr, a(C'|C)
c'eJg
cCed:

This sum can be simplified (assuming 0log0 = 0): if C = C" or C,C’' € J, then
supr, T,A(C'|C) log supr, T,.A(C'|C) =0

and the following property holds:

|2
|C

Proposition 2. In above conditions, supr, ,A(C'|C) =

A
T;
This entropy is similar to Kullback-Leibler distance or relative entropy (see [15]),
but using the entailment to classify the elements. It is known that it is minor
than the initial entropy. In [12] similar entropies are used, but based on proba-
bilistic assignation. Finally, in order to estimate what is the best extension for
our purposes, it is necessary to compute the The Shannon’s diversity index

for each L;. This index normalizes the amount of information produced by the
extension, and is defined as

\_ CHWJIIR)
T = g1

The interpretation of the index is as follows: if we select L; with minimum
IH(J;), the new information produced by the new concept is minor. This option
is the cautious one: the reparation of the source ontology is ligth and we do not
expect big changes in the representation of the intended model. If we select L;
with an upper IH(J), the change of the information is more relevant; we select
such an extension if we regard as robust the specification of the concept given
by X together with the facts. In general, we have to chose the l.c. extension with
minor index. Intuitively, in this way we do not change too much the information
of the initial ontology.

4 An example

We would like to show a short example in the field of Qualitative Spatial Reason-
ing (QSR). Region Connection Calculus (RCC) [11] is a well-known mereotopo-
logical approach to QSR, that we can consider to be a robust ontology. For
RCC, the spatial entities are non-empty regular sets. The primary relation be-
tween them is connection, C(z,y), with intended meaning: “the topological clo-
sures of x and y intersect”. The basic axioms of RCC are 4; := Vz[C(z, z)]
and A, := Vz,y[C(z,y) = C(y,z)] jointly with a set of definitions on the main
spatial relations (fig. 1), and other axioms not used here (see [11]).



DC(z,y) +» ~C(z,y) (z is disconnected from y)

P(z,y) «<» Vz[C(z,z) = C(z,9)] (z is part of y)
PP(z,y) <> P(z,y) A ~P(y, ) (z is proper part of y)
EQ(z,y) +> P(z,y) A P(y,z) (z is identical to y)
O(z,y) & 3z[P(z,2) A P(z,y)] (z overlaps y)
DR(z,y) < =0(z,y) (z is discrete from y)
PO(z,y) < O(z,y) N —~P(z,y) N ~P(y,z) (z partially overlaps y)
EC(z,y) « C(z,y) A ~O(z,y) (z is externally connected to y)

TPP(z,y) <+ PP(z,y) A3z[EC(z,z) A EC(z,y)] (z is a tangential prop. part of y)
NTPP(z,y) <> PP(z,y) A ~3z[EC(z,z) A EC(z,y)] (z is a non-tang. prop. part of y)

Fig. 1. Axioms of RCC

We have proved (using MACE4 and OTTER) that the set of formulas E
given in the figure 2 categorises under completion the lattice of the RCC-spatial
relationships (given in fig. 3). The set of binary relations formed by the eight
(JEPD) relations given in figure 3 is denoted by RCC8. If this set is thought to
be a calculus, all possible unions of the basic relations are also used. Another
interesting calculus is RCC5, based on {DR, PO, PP, PPi, EQ}.

T=CuD POC-PN-PiNn-DR  DR=ECUDC
NTPP C -TPPMN~-PiN-DR C=0UEC TPPC -PiN-DR
O=POUPUP; EQ C -PPin—-DR Pi=EQU PPi
TPPiC ~-NTPPiN-DR P=EQUPP NTPPi C -DR
PPi=TPPiUNTPPi EC C -~DC PP =TPPUNTPP

Fig. 2. A skeleton for RCC

Suppose that if we insert a new spatial uncertain relation D expressing
“« and y have a tsometric overlapping relation”; that is, D covers partial over-
lapping PO and extentional equality EQ relationships. That is, proper part is
not possible between isometric objects. This is suggested by the study of spatial
relationships among identical objects (e.g. the 2-D spatial configuration of a set
of coins). Thus, we consider that the new relation D satisfies

RCC + {¥a2Vy(PO(z,y) — D(z,y)),Y2Vy(EQ(z,y) = D(z,y))}

or, in terms of skeleton, E + {PO C D,EQ C D}. MACE4 produces seven l.c.
extensions (classified according to their lattices in fig. 4). All these extensions
can be mereotopologically interpreted [10]. Suppose that the set that motivates
the extension is:
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DC(a,b) EC(ab)  PO(ab) TPP(a,b)

TPPi(ab) NTPP(ab) NTPPi(ab)  EQ(ab)

Fig. 3. The lattice of spatial relations of RCC (left) and he relations of RCC8 (right)

PO(m1,m2) EQ(ma2,m3) EQ(m3z,ms) PO(mi,m3) DC(ma, me)
A= DC(m3,m5) PO(m5,m1) NTPP(cl,m3) EC(CQ,ml) TPP(CQ,C5)
DC(Cl,Cz) TPP’i(Cg,,Cg) NTPP(TYLQ,C4) DC(ml,Cg) TPP(Cl,Cg)

In this case, |U(A)| = 15, and the basic JEPD is the set J = {PO, PP, EQ, PP4,
EC,DC}%. In each L;, J; is a JEPD, so we can assign conditional entropy and
Shannon’s diversity index to each extension.Thus, T» = E + {D = POU EQ} is
the selected l.c. extension because it has the minimum Shannon’s index. On the
other hand, the user’s notion might be inconsistent. For instance, if the user’s
proposal for X' is {PO C D,EQ C D,P C D,D C O}, then there is not any
L.c. extension, a fact that we have certified using MACE4 and OTTER.

5 Closing Remarks

Although it is usual to study entropy for associating data to concepts in Ontology
Learning, it is not usual to consider the provability from ontology like a factor, as
we do. However, we think, that it will be a key issue in the SW. There are other
approaches, but they deal with probabilistic objects. J. Calmet and A. Daemi
also use entropy in order to revise or compare ontologies [9] [12]. This is based on
the self taxonomy defined by the concepts but provability from specification is
not regarded. Conditional entropy has already been considered in the similar task
of Abductive Reasoning for learning qualitative relationships/concepts (usually
in probabilistic terms, see e.g. [6]). The main difference between this approach
and ours is that we work with probability mass distribution of probable facts
from ontological specifications.

Finally, it should be noted that only some distributions of data will induce
the user to decide an ontological insertion. Therefore, although once the distri-
bution of data is determined, the method is fully formalized, the soundness of
the extensions still depends on human decisions.
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