
Single Machine Inserted Idle Time Scheduling
with Release Times and Due Dates

Natalia Grigoreva

Department of Mathematics and Mechanics, St.Petersburg State University, Russia
n.s.grig@gmail.com

Abstract. The single machine scheduling problem is considered in which each
task has a release dates, a processing time and a due date. The objective is to
mimimize the maximum lateness. Preemption is not allowed. Scheduling prob-
lem 1|rj |Lmax is a NP-hard problem. We define an IIT (inserted idle time)
schedule as a feasible schedule in which a processor is kept idle at a time when
it could begin processing an operation. We propose an approximate IIT algo-
rithm named ELS/IIT (earliest latest start/ inserted idle time) and branch and
bound algorithm, which produces a feasible IIT schedule for a fixed the max-
imum lateness L. In order to optimize over L we must iterate the scheduling
process over possible values of L. New dominance criteria are introduced to cur-
tail the enumeration tree. By this approach it is generally possible to eliminate
most of the useless nodes generated at the lowest levels of decision tree.

1 Introduction

The problem of minimizing the maximum lateness while scheduling tasks to single
processor is a classical combinatorial optimization problem. Following the 3-field clas-
sification scheme proposed by Graham et al. [1], this problem is denoted by 1|rj |Lmax.
This problem relates to the scheduling problem [2], it has many applications, and it
is NP -hard [3]. The approximation algorithms for single processor scheduling problem
were given by Potts[4], Hall and Shmoys [5]. This algorithms used extended Jackson’s
rule with some modifications. The problem is solved by the extended Jackson’s rule:
whenever the machine is free and one or more tasks available for processing, schedule
an available task with earliest due data.

This algorithms construct an nondelay schedule. A nondelay schedule has been
defined by Baker[6] as a feasible schedule in which no processor is kept idle at a time
when it could begin processing a task. An inserted idle time schedule (IIT) has been
defined by J.Kanet and V.Sridharam [7] as a feasible schedule in which a processor is
kept idle at a time when it could begin processing a task. J.Kanet and V.Sridharam [7]
reviewed the literature with problem setting where IIT scheduling may be required.

In [8] we considered scheduling with inserted idle time for m parallel identical
processors and proposed branch and bound algorithm for multiprocessor scheduling
problem with precedence-constrained tasks. In [9] we proposed the approximation IIT

Copyright c⃝ by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Kononov et al. (eds.): DOOR 2016, Vladivostok, Russia, published at http://ceur-ws.org

Single Machine Inserted Idle Time Scheduling 337

algorithm for P |rj |Lmax problem. The goal of this paper is to propose IIT schedule for
1|rj |Lmax problem. We propose an approximate IIT algorithm named ELS/IIT (earli-
est latest start/ inserted idle time) and branch and bound algorithm, which produces
a feasible IIT(inserted idle time) schedule for a fixed maximum lateness L. The algo-
rithm may be used in a binary search mode to find the smallest maximum lateness. A
new method for evaluating partial solutions, selecting the next task and new ways of
reducing the exhaustive search was designed.

We consider a system of tasks U = {u1u2, . . . , un}. Each task is characterized by
its execution time t(ui), its release time r(ui) and its due dates D(ui). Release time
r(ui) is the time at which the task is ready for processing. Due date D(ui) specifies
the time limit by which the task should be completed. Set of tasks is performed on one
processor. Task preemption is not allowed.

A schedule for a task set U is the mapping of each task ui ∈ U to a start time
τ(ui). Maximum lateness of schedule S is the quantity

Lmax = max{τ(ui) + t(ui)−D(ui)|ui ∈ U}.

First, we propose an approximate IIT algorithm named ELS/IIT (earliest latest
start/ inserted idle time). Then by combining the ELS/IIT algorithm and B&B method
this paper presents BB/IIT algorithm which can find optimal solutions for single pro-
cessor scheduling problem.

2 Approximate algorithm ELS/IIT

For each task ui, we know the earliest starting time r(ui) and the latest start time
vmax(ui) = D(ui)− t(ui), which is a priority of task. Let k tasks have been put in the
schedule and partial schedule Sk have been constructed.

Let be tmin(k) the time of the termination of the processor after completion all tasks
from the partial schedule Sk. The approximate schedule is constructed by ELS/IIT
algorithm as follows:

1. Select the task u0, such as vmax(u0) = min{vmax(ui)|ui /∈ Sk}.
2. If idle(u0) = r(u0)−tmin(k) > 0 then choose a task u∗ /∈ Sk, which can be executed

during the idle time of the processor without increasing the start time of the task
u0.
Namely define the start time of task ui as τ(ui) = max{tmin(k), r(ui)} then set
d(ui) = τ(ui) + t(ui) and find task u∗ such as

vmax(u
∗) = min{vmax(ui)|d(ui) ≤ r(u0), ui /∈ Sk}.

3. If the task u∗ is found, then we assign to the processor the task u∗, otherwise the
task u0.

Suppose that Lopt denotes the maximum lateness of optimal schedule, while LELS

denotes the the maximum lateness when the tasks are sequenced using ELS/IIT heuris-
tic. We are interested in seeing how much worse LELS can be compared to Lopt. In
what follows we will prove the following worse-case bound. Let T =

∑n
k=1 t(k) and

tmin = min{t(ui)|ui ∈ U}.

338 Natalia Grigoreva

Lemma 1.
LELS − Lopt

Lopt +Dmax
≤ 1− tmin

T
.

Proof. Suppose that the sequence π = (l1, l2, ..., ln) is generated using ELS/IIT algo-
rithm. In schedule π let task lj be the task with maximum lateness, then LELS = τ(lj)+

t(lj)−D(lj). Then we can find the task li such as LELS = r(li) +
∑j

k=i t(lk)−D(lj),
where 1 ≤ li ≤ lj ≤ ln. If there is a choice, it is assumed that lj is as small as possible
and that li is as large as possible. Then either task li is the first task in the schedule
or the processor will be idle before the beginning of task li. Consider tasks from li to
lj in the sequence π. If for all i ≤ k ≤ j − 1 it is true that

D(lk)− t(lk) ≤ D(lk+1)− t(lk+1)

then

D(li)− t(li) ≤ D(lj)− t(lj).

Otherwise we can find k such as i ≤ k ≤ j − 1 and task lk such as

D(lk)− t(lk) > D(lk+1)− t(lk+1).

But for k + 1 ≤ u ≤ j − 1 we have that

D(lu)− t(lu) ≤ D(lu+1)− t(lu+1).

Then τ(lk) < r(lk+1) and τ(lk) + t(lk) ≤ r(lk+1). Hence during the application of
ELS/IIT algorithm task lk+1 begins at its release date τ(lk+1) = r(lk+1), which
contradicts the choice of task li. If k = j − 1 and task lj begins at its release date
τ(lj) = r(lj) then schedule π is optimal schedule.

In either case we have from the construction of schedule that

D(li)− t(li) ≤ D(lj)− t(lj).

On the other hand

Lopt ≥ r(li) + t(li)−D(li) ≥ r(li) + t(lj)−D(lj)

and

Lopt ≥ T −Dmax.

Then

LELS − Lopt ≤ r(li) +

j∑
k=i

t(lk)−D(lj)− r(li)− t(lj) +D(lj) =

j−1∑
k=i

t(lk).

Then
LELS − Lopt

Lopt
≤

∑j−1
k=i t(lk)

T
≤ 1− tmin

T
.

Single Machine Inserted Idle Time Scheduling 339

To illustrate ELS heuristic we consider the following example. There are two task:
r1 = 0; t1 = T −1;D1 = T −1; r2 = 0; t2 = 1;D2 = 1+ δ. Then ELS/IIT algorithm will
schedule the large task first and maximum lateness LELS = T − 1− δ. But maximum
lateness of optimal schedule Lopt = 1.

This problem can be solved using extended Jackon’s rule (EDD): whenever the
machine is free and one or more tasks are available for processing, schedule an available
task with earliest due date. We consider examples, in which EDD algorithm builds a
bad schedule, while ELS algorithm builds the optimal schedule and vice versa. For this
example extended Jackson’s rule (EDD heuristic) makes the optimal schedule. But if
we change example: r1 = 0; t1 = T − 1;D1 = T ; r2 = r; t2 = 1;D2 = 1, EDD heuristic
will schedule the large task first and maximum lateness LEDD = T − 1. ELS/IIT
algorithm generates optimal schedule LELS = r and Lopt = r;

The example 2 from [5] in table 1 demonstrates the worse-case instance for ap-
proximation algorithm B,which was proposed in [5]. There are five tasks, ri,ti,Di rep-
resent the release date, processing time and due date, respectively, of task i. Li =
τi + ti −Di and vmax(i) = Di − ti. ELS/IIT algorithm generates the optimal schedule

Table 1. Example 2

Task ri ti Di vmax(i)τi Li(ELS)

1 0 Q 2Q+ 2 Q+ 2 Q+ 2 0
2 1 Q 1 1−Q 1 Q
3 Q+ 1 1 0 -1 1 +Q Q+ 2
4 2Q+ 1 Q 2Q+ 1 Q+ 1 Q+ 3 Q+ 2
5 2Q+ 2 1 Q+ 1 Q 2Q+ 2 Q+ 2

(2, 3, 1, 5, 4) with the maximum lateness LELS = Q + 2. Algorithm B [5] generates
schedule (1, 2, 3, 4, 5) with the maximum lateness LB = 2Q+ 2.

3 Algorithm for constructing an optimal schedule

The branch and bound algorithm produces a feasible IIT schedule for a fixed maximum
lateness L. In order to optimize over L we must iterate the scheduling process over
possible values of L. Let Lopt be maximum lateness of optimal schedule. We defile
interval (a, b] such as a < Lopt ≤ b.

First we define the low bound of maximum lateness. We calculate two low bounds

LB1 = max{r(ui) + t(ui)−D(ui)|ui ∈ U}

and

LB2 = max{
n∑

i=1

t(ui)−Dmax}.

340 Natalia Grigoreva

Then the low bound of maximum lateness LB is

LB = max{LB1, LB2}.

The upper bound b =
∑n

i=1 t(ui) + rmax −Dmin [10]. Then Lopt ∈ (a, b].
Select z = ⌈(a+b)/2⌉ and use branch and bound method for constructing a feasible

schedule BB(U,D + z;S). If we find a feasible schedule then we take interval (a, z],
else we take interval (z, b] and repeat .

Algorithm SCHEDULE(U ;Sopt, Lopt)

1. Calculate a b.
2. While b− a > eps do
3. Set z := ⌈(a+ b)/2⌉.
4. We recalculate due dates D(ui) as D

∗(ui) = D(ui) + z, recalculate makespan

Dmax = max{D∗(ui)|ui ∈ U}

and the latest start times vmax(ui) = D∗(ui)− t(ui).
5. Use procedure BB(U,D∗;S,LS) for constructing a feasible schedule.
6. If we find feasible schedule S , then Srec := S; Lrec := LS and set b := LS , else set

a := z.
7. endwhile
8. Sopt := Srec, and Lopt := Lrec.

4 Branch and bound method for constructing a feasible
schedule BB(U,D∗;S)

The branch and bound algorithm produces a feasible IIT(inserted idle time) schedule
for a fixed maximum lateness L. In order to optimize over L we must iterate the
scheduling process over possible values of L.

For the formal description of the branch and bound method we must give a definition
of partial solutions. It is convenient to represent the schedule as a permutation of tasks.
For each permutation of tasks π = (ui1 , ui2 , . . . , uin), one can construct a schedule Sπ

as follows: the task is assigned to the processor at the earliest possible time. Partial
solution σk, where k the number of jobs will be regarded as a partial permutation
σk = (ui1 , ui2 , . . . , uik), which is determined partial schedule.

Definition 1. The solution γn = (l1, l2, . . . , ln) is called the extension of partial solu-
tions σk = (q1, q2, . . . , qk), if l1 = q1, l2 = q2, . . . , lk = qk.

Definition 2. A partial solution σk is called a feasible if there exists an extension of
σk, which is a feasible schedule.

For each task ui, we know the earliest starting time r(ui) and the latest start time
vmax(ui) = D(ui) − t(ui), In order to make the feasible schedule, it is necessary that
each task ui ∈ U, the start time of its execution τ(ui) satisfies the inequality

r(ui) ≤ τ(ui) ≤ vmax(ui).

Single Machine Inserted Idle Time Scheduling 341

In order to describe the branch and bound method it is necessary to determine the
set of tasks that we need to add to a partial solution, the order in which task will be
chosen from this set and the rules that will be used for eliminating partial solutions.

Let I be the total idle time of processor in the feasible schedule S of length Dmax,
then I = Dmax −

∑n
i=1 t(ui).

For a partial solution σk we know for task idle(ui)— idle time of processor before
start the task ui.

At each level k will be allocated a set of tasks Uk, which we call the the ready tasks.
These are tasks that need to add to a partial solution σk−1, so check all the possible
continuation of the partial solutions.

Definition 3. Task u /∈ σk is called the ready task at the level k, if r(u) satisfies the
inequality r(u)− tmin(k) ≤ I −

∑
u∈σk

idle(ui).

The main way of reducing of the exhaustive search will be the earliest possible
identification unfeasible solutions.

Definition 4. Let the task ucr /∈ σk is such as vmax(ucr) = min{vmax(u)|u /∈ σk}.
The task ucr /∈ σk is called the delayed task for σk, if vmax(ucr) < tmin(k).

Below we formulate and proof the rules of deleting unfeasible partial solutions.

Lemma 2. Let delayed task ucr for a partial solution σk exists, then

1. The partial solution σk is unfeasible.
2. For any task u, such as max{tmink − 1, r(u)}+ t(u) > vmax(ucr) a partial solution

σk−1 ∪ u is unfeasible.
3. If max{tmin(k − 1), r(ucr)} + t(ucr) > vmax(uk) then the partial solution σk−1 is

unfeasible.

Proof. 1. This follows from definition the delayed task.
2. Let tmin(k) is the time of ending all tasks which are included in a partial solution

σk

If the task ucr is delayed task, then vmax(ucr) < tmin(k).
After cancelation of the last scheduled task uk, algorithm returns to the partial

solution σk−1. Processor ends all task at time tmin(k − 1). If we add a task u to the
partial solution σk−1 on step k, we must assign the task ucr on the processor on step
k + 1. Therefore should be performed

max{tmin(k), r(u)}+ t(u) ≤ vmax(ucr).

3. Consider two cases.
3.1 vmax(uk) ≤ vmax(ucr). If the task ucr is delayed task, then vmax(ucr) < tmin(k).
After deleting the task uk, the task ucr is assigned to processor. Processor ends all

it’s task at time tmin(k) = max{tmin(k − 1), r(ucr)}+ t(ucr).
On lemma max{tmin(k − 1), r(ucr)}+ t(ucr) > vmax(uk), then the task uk will be

the delayed task for partial solution σk = σk−1 ∪ ucr.
3.2. If vmax(uk) > vmax(ucr) then the partial solution σk−1 ∪ ucr was tested early

and it was unfeasible. For any solution σk−1 ∪ u task uk or task ucr will be delayed
task. The partial solution σk = σk−1∪u is unfeasible for all u, then the partial solution
σk−1 is unfeasible.

342 Natalia Grigoreva

Algorithm 1 BB/IIT algorithm

1: Set k := 1; tmin(0) := 0; σ0 = ∅;
2: while (k > 0) and (k < n+ 1) do
3: Determine the task ucr such as vmax(ucr) = min{vmax(u)|u /∈ σk−1};
4: if vmax(ucr) ≤ tmin(k) then
5: Compute EST = est(σk−1);
6: if EST ≤ 0 then
7: Select the task u0, use ELS/IIT procedure
8: Set the task u0 on processor and create partial solution σk = σk−1 ∪ u0

9: else
10: Perform step back and create the partial schedule σk−1

11: else
12: Delete all unfeasible partial solution by using Lemma 2
13: end if
14: end if
15: end while
16: if k = 0, then
17: Maximum lateness of optimal schedule is greater then LS .
18: end if
19: if k = n, then
20: We find feasible schedule S = σn and its maximum lateness is equal LS

21: end if

Another method for determining unfeasible partial solutions based on a compari-
son of resource requirements of tasks and processor power. In this case we propose to
modify the algorithm for determining the interval of concentration [11] for the com-
plete schedule. We apply this algorithm to a partial schedule σk and determine its
admissibility.

We consider time intervals [t1, t2] ⊆ [tmin(k), Dmax].
For all tasks ui /∈ σk we find minimal time of its begin: v(ui) = max{r(ui), timek}.

Let L([t1, t2]) be a length of time interval [t1, t2].
Let Mk(t1, t2) be the total minimal time of tasks in time interval [t1, t2], then

Mk(t1, t2) =
∑

ui /∈σk

min{L(xk(ui)), L(y(ui))},

where

xk(ui) = [v(ui), v(ui) + t(ui)] ∩ [t1, t2],

y(ui) = [vmax(ui), vmax(ui) + t(ui)] ∩ [t1, t2].

Let
est(σk) = max

[t1,t2]∈[tmin(k),Dmax]
{Mk(t1, t2)− (t2 − t1).}

Lemma 3. If est(σk) > 0 then a partial solution σk is unfeasible.

The pseudo-code of Branch and bound method for constructing a feasible schedule
BB(U,D;S) is shown in Algorithm 1.

Single Machine Inserted Idle Time Scheduling 343

5 Conclusions

In this paper we propose IIT schedule for 1|rj |Lmax problem. We propose an ap-
proximate IIT algorithm named ELS/IIT (earliest latest start/ inserted idle time) and
branch and bound algorithm, which produces a feasible IIT(inserted idle time) schedule
for a fixed maximum lateness L. The algorithm may be used in a binary search mode
to find the smallest maximum lateness. We compare IIT algorithm and algorithms
which use extended Jackson’s rule. We can see, that algorithms build good schedule
for various examples, so combining the two approaches, we can get the best solutions
for all examples.

References

1. Graham R.L., Lawner E.L. and R. Kan. Optimization and approximation in deterministic
sequencing and scheduling: A survey // Ann. of Disc. Math. 1979. Vol. 5, 10. P. 287–326.

2. P. Brucker. Scheduling Algorithms, (1997).
3. Lenstra J.A.,R. Kan. and Brucker P. Complexity of machine scheduling problems//Ann.

of Disc. Math. 1977, 1 P.343–362.
4. Potts C.N. Analysis of a heuristic for one machine sequencing with release dates and

delivery times// Operational Research. 1980. V.28 No. 6, P. 445–462.
5. Hall L.A., Shmoys D.B. Jackson’s rule for single-mashine scheduling: making a good heuris-

tic better// Mathematics of operations research. 1992. V.17., No.1. P 22–35.
6. K.R.Baker. Introduction to Sequencing. John Wiley & Son, New York(1974).
7. J. Kanet and V. Sridharan. Scheduling with inserted idle time:problem taxonomy and

literature review, Oper.Res 48 (1), pp.99-110, (2000).
8. Grigoreva N.S. Branch and bound method for scheduling precedence constrained tasks on

parallel identical processors // Lecture Notes in Engineering and Computer Science: Proc.
of The World Congress on Engineering 2014, WCE 2014, 2–4 July, 2014, London, U.K., P.
832–836.

9. Grigoreva N.S. Multiprocessor Scheduling with Inserted Idle Time to Minimize the Max-
imum Lateness// Proceedings of the 7th Multidisciplinary International Conference of
Scheduling: Theory and Applications. Prague, MISTA. 2015, P. 814–816.

10. Mastrolilli M. Efficient approximation schemes for scheduling problems with release dates
and delivery times//Journal of Scheduling.2003.6,P.521–531.

11. Fernandez E., Bussell B. Bounds the number of processors and time for multiprocessor
optimal schedules //IEEE Trans. on Computers. 1973, Vol. 4, 11 P. 745–751.

