
Approximating Two-Machine Flow Shop Problem

with Delays when Processing Times Depend

Only on Machines

Alexander Ageev and Alexei Baburin

Sobolev Institute of Mathematics, pr. Koptyuga 4, Novosibirsk, Russia
ageev@math.nsc.ru, ababur@sicex.ru

Abstract. We study the two-machine flow shop problem with (minimum) de-
lays.The current best approximation factor achieved for this problem is 11/6 ≈

1.833 (due to Karuno and Nagamochi; their algorithm runs in time O(n log n)).
Our main result is a 1.628-approximation algorithm for the case when process-
ing times depend only on machines. This case is strongly NP-hard even when
all processing times are equal. The running time of our algorithm is O(n2).

Keywords: approximation algorithm, scheduling problem, flow shop, mini-
mum delays, worst-case ratio

Introduction

In the two-machine flow shop problem with (minimum) delays there are two machines
available from time zero onwards for processing n jobs. Each machine can process at
most one job at a time. Each job j consists of two operations; the second operation
must start no earlier than lj time units after the completion of the first operation. The
first (second) operation has to be executed by machine 1 (machine 2) and processing
the first (second) operation takes time p1j (p2j). The objective is to minimize the
makespan, or the schedule length, that is the maximum job completion time. As in
[13], we denote this problem by F2 | lj | Cmax.

The problems with minimum delays arise, in particular, in manufacturing where
there may be a transportation time from one production facility to another, and in
computer systems where the output of a task on one processor may require a commu-
nication time so as to become the input to a subsequent task on another processor.

The first result related to F2 | lj | Cmax is due to Johnson [5] who presents an
O(n log n) algorithm for F2 || Cmax. Johnson [6] and Mitten [10] show that a modifica-
tion of Johnson’s algorithm for F2 || Cmax can be used to find an optimal permutation
schedule, i.e., the schedule in which the jobs are executed by each machine in the same
order. If all delays are equal, the set of optimal schedules contains a permutation sched-
ule. However, this is not the case when there are at least two distinct delay values (see
[6]. Kern and Nawijn [8] consider a single-machine problem with two operations per jobs

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Kononov et al. (eds.): DOOR 2016, Vladivostok, Russia, published at http://ceur-ws.org

326 Alexander Ageev and Alexei Baburin

and intermediate minimum delays. Following the extension [13] of the three-field nota-
tion scheme introduced by Graham et al. [4] we denote this problem by 1 | lj | Cmax. Yu
et al. [12, 13] show that this problem is equivalent to F2 | lj | Cmax. Kern and Nawijn [8]
show that 1 | lj | Cmax is weakly NP-hard. This result is strengthened to NP-hardness
in the strong sense for F2 | lj | Cmax by Lenstra [9], for F2 | lj , p1j = p2j | Cmax by
Dell’Amico and Vaessens [3], and for F2 | lj ∈ {0, l}, p1j = p2j | Cmax by Yu [12]. Yu
et al. [13] prove that F2 | lj, pij = 1 | Cmax is NP-hard in the strong sense. Dell’Amico
[2] presents several 2-approximation algorithms with running time O(n log n) where
n is the number of jobs. Karuno and Nagamochi [7] develop an 11/6 -approximation
algorithm with running time O(n log n). Ageev [1] presents a 3/2-approximation algo-
rithm for F2 | lj , p1j = p2j | Cmax. Zhang and van de Velde [14] present a PTAS for
F2 | lj | Cmax under the assumption that lmax ≤ µpmin where lmax is the maximum
delay, pmin is the smallest positive processing time of any operation and µ is a fixed
number (that is, it is not part of the problem instance).

The question whether there exists a polynomial-time algorithm for the problem
1 | lj | Cmax with a better approximation ratio remains open though it has been posed
by several researchers (see, for example, Strusevich [11]).

We consider the special case where p1j = a and p2j = b for all jobs j, or problem
F2 | lj , p1j = a, p2j = b | Cmax. Notice that this problem remains strongly NP-hard
as it follows from the above mentioned result due to Yu et al. [13]. We present an
approximation algorithm, whose approximation ratio is bounded by min{1+ 2q+2

q+4 , 2−q}
where

q =
max{a, b} −min{a, b}

max{a, b} .

The algorithm can be implemented in O(n2) time. Since it can be shown that min{1+
2q+2
q+4 , 2 − q} < 1.628, this implies a 1.628-approximation for F2 | lj, p1j = a, p2j =

b | Cmax. For the case when a = b we get a 3/2-approximation. Note that the same
approximation factor for this case follows from the above mentioned result by Ageev
[1]. One of the ingredients of the algorithm is an observation that the length of any
reasonable schedule in F2 | lj | Cmax is at most twice the length of a shortest schedule.
The reasonable schedule (we further call them short) is meant to be the schedule
in which given an arbitrary order of executing jobs on machine 1 (machine 2), the
order of executing jobs on machine 2 (machine 1) is optimal if

∑

j p1j ≤
∑

j p2j (if
∑

j p1j >
∑

j p2j). Note that given a job order on one machine, finding an optimal
order on the other is equivalent to solving the trivial single-machine problem with
release times. As a by-product this observation provides a fairly simple 2-approximation
algorithm for solving F2 | lj | Cmax. The crucial part of our analysis is a lower bound for
the length of a shortest schedule which is a straightforward extension of an observation
due to Yu [12].

The paper is organized as follows. In Section 2 we introduce basic notation and
definitions. We also make a few observations and assumptions that do not restrict
generality. In Section 3 we give a simple 2-approximation for F2 | lj | Cmax. In
Section 4 we present an approximation algorithm for F2 | lj , p1j = a, p2j = b | Cmax.

Title Suppressed Due to Excessive Length 327

1 Preliminaries

Before proceeding to the main part we introduce basic notation and make some obser-
vations and assumptions that do not restrict generality. An instance of F2 | lj | Cmax

consists of a set of jobs J = {1, . . . , n}. Each job j ∈ J consists of two operations
O1,j and O2,j whose lengths will be denoted by aj and bj , respectively. For each j ∈ J
operation O2,j is separated from O1,j by a delay of length at least lj time units. For any
j ∈ J , we denote by σ(1, j) and σ(2, j) the starting times of O1,j and O2,j , respectively.
Note that

σ(2, j) ≥ σ(1, j) + aj + lj .

for all j ∈ J . For a schedule σ = (σ(1, 1), σ(2, 1), . . . , σ(2, n)), denote by Cj(σ) the
completion time of job j in σ; then Cj(σ) = σ(2, j) + bj . The length of a schedule σ
is Cmax(σ) = maxj∈J Cj(σ). Let A =

∑

j∈J aj , B =
∑

j∈J bj, and L = maxj∈J lj . Let
C∗

max denote the length of a shortest schedule.
Observe that any feasible schedule for an instance of F2 | lj | Cmax can be replaced

by a schedule such that it has the same orders of jobs on machines and the same length
but both machines process the jobs without idle times. Thus we may assume that both
machines process the jobs without idle times and machine 1 starts processing at time
0. Then any feasible schedule σ defines a pair of permutations (ϕ, ψ) of the set J such
that ϕ specifies the order of processing operations on machine 1 and ψ specifies that
on machine 2. More specifically, ϕ(k) (ψ(k)) is the k-th job executed by machine 1
(machine 2) (see Fig 1). Thus if (ϕ, ψ) is the pair of permutations of a schedule σ, then

ϕ

ψ(1)

(1) ϕ (2)

ψ(2)

(3)ϕ

ψ(3)

ϕ (n)

ψ(n)

t=0 t

Fig. 1. ϕ(k) (ψ(k)) is the k-th job executed by machine 1 (machine 2)

σ(1, ϕ(1)) = 0 and for any k = 2, . . . , n,

σ(1, ϕ(k)) = σ(1, ϕ(k − 1)) + aϕ(k−1),

σ(2, ψ(k)) = σ(2, ψ(k − 1)) + bψ(k−1).

Note that for any j ∈ J , ϕ−1(j) (ψ−1(j)) means the order number in which job j is
processed on machine 1 (machine 2). We will further represent the permutations ϕ and
ψ by the sequences (ϕ(1), . . . , ϕ(n)) and (ψ(1), . . . , ψ(n)).

For any pair of permutations (ϕ, ψ), denote by [ϕ, ψ] the unique schedule having the
shortest length among all feasible schedules that run jobs according to the permutations
(ϕ, ψ). We say that σ is an early schedule if σ = [ϕ, ψ]. Note that given a pair of

328 Alexander Ageev and Alexei Baburin

permutations (ϕ, ψ), the early schedule [ϕ, ψ] can be found in linear time. Indeed, to
find σ it suffices to determine x = σ(2, ψ(1)). For any k = 1, . . . , n we have

σ(2, ψ(k)) = x+

k−1
∑

i=1

bψ(i) ≥ σ(1, ϕ(k)) + aϕ(k) + lϕ(k).

Thus x = min{σ(1, ϕ(k)) + aϕ(k) + lϕ(k) −
∑k−1
i=1 bψ(i) : k = 1, . . . , n}, which can be

found in linear time.
It is easy to see that a schedule σ is feasible if and only if

min{σ(2, j)− σ(1, j)− aj − lj : j ∈ J} ≥ 0.

Observe that for a schedule σ with the job permutations (ϕ, ψ)

min{σ(2, j)− σ(1, j)− aj − lj : j ∈ J} = 0 (1)

if and only if σ = [ϕ, ψ].

2 Short schedules

Let σ be a feasible schedule for an instance of F2 | lj | Cmax. Since the length of a
shortest schedule is at least the maximum machine load and the maximum job length,

C∗
max ≥ Λ = max{A,B,max

j∈J
{aj + bj + lj}}. (2)

We say that a feasible schedule is short if it has the shortest length among all schedules
with the same (fixed) order of processing the operations on machine 1 when A ≤ B
and if it has the shortest length among all schedules with the same (fixed) order of
processing the operations on machine 2 when A > B. It is clear that any optimal
schedule is a short schedule.

Given a job order on machine 1, a corresponding short schedule can be found in
O(n log n) time (it is obviously equivalent to solving the single-machine scheduling
problem with release times). The following theorem shows that the length of any short
schedule is at most twice the length of a shortest schedule, thereby providing a fairly
simple 2-approximation algorithm for solving F2 | lj | Cmax.

Theorem 1. Let I be an instance of F2 | lj | Cmax and let σ be a short schedule of I.

Then Cmax(σ) ≤ (1 + min{A,B}
Λ

)C∗
max.

Proof. Since the problem is symmetric with respect to the machine indices and the
time axis, it suffices to consider the case when A ≤ B. Let (ϕ, ψ) be the pair of job
permutations corresponding to σ and let (ϕ∗, ψ∗) be that corresponding to an optimal
schedule σ∗. Consider the schedule σ′ whose pair of jobs permutations is that of σ∗

and such that all operations on machine 2 start exactly A time units later than in σ∗.
In other words, for any j ∈ J ,

σ′(1, j) = σ∗(1, j),

σ′(2, j) = σ∗(2, j) +A. (3)

Title Suppressed Due to Excessive Length 329

It is clear that σ′ is a feasible schedule. Note that by (2) A = A
Λ
Λ ≤ A

Λ
C∗

max. Thus by
the construction of σ′,

Cmax(σ
′) = Cmax(σ

∗) +A ≤ Cmax(σ
∗) +

A

Λ
C∗

max = (1 +
A

Λ
)C∗

max. (4)

Now consider the schedule σ′′ whose pair of jobs permutations is (ϕ, ψ∗) and such
that σ′′(2, ψ∗(1)) = σ′(2, ψ∗(1)). Thus the schedule σ′′ may differ from the schedule
σ′ on machine 1 and coincides with σ′ on machine 2. Since the completion time of the
last operation on machine 1 is A for all schedules, σ′′(1, j) ≤ σ∗(1, j) +A and so

σ′′(1, j) + aj + lj ≤ σ∗(1, j) + aj + lj +A

≤ σ∗(2, j) +A

(by (3)) = σ′(2, j) = σ′′(2, j)

for all j ∈ J . It follows that σ′′ is a feasible schedule. Since σ′ and σ′′ coincide on
machine 2, Cmax(σ

′′) = Cmax(σ
′). However, since σ and σ′′ have the same jobs permu-

tation ϕ on machine 1 and σ is a short schedule, we have that Cmax(σ) ≤ Cmax(σ
′′).

Finally, by (4) we obtain

Cmax(σ) ≤ Cmax(σ
′′) = Cmax(σ

′) ≤ (1 +
A

Λ
)C∗

max.

⊓⊔

Given a feasible schedule σ, we will denote by σ a short schedule whose order of jobs
on machine 1 coincides with that of σ if A ≤ B and whose order of jobs on machine 2
coincides with that of σ if A > B. As it was mentioned above, σ can be found in
O(n log n) time.

3 Algorithm for F2 | lj, p1j = a, p2j = b | Cmax

In this section we present an approximation algorithm for the special case of the prob-
lem when p1j = a and p2j = b for all j ∈ J . Recall that for brevity we set aj = p1j and
bj = p2j .

Since the the case when a ≤ b trivially reduces to the case when a ≥ b (and vice
versa), we will further assume that a ≥ b. Recall that this case of the problem remains
strongly NP-hard as it follows from the NP-hardness result due to Yu et al. [13].

We now proceed to the description of the algorithm. The algorithm successively
constructs k schedules, selects a schedule having minimum length among them and
outputs the short schedule obtained from it. The schedules are generated by cyclic
shifts of operations executed on machine 1 while the operations on machine 2 are
executed in a fixed order. The idea behind the construction is to apply Lemma 1 (see
below) in the worst-case analysis.

330 Alexander Ageev and Alexei Baburin

Algorithm SPECIAL

Step 0. Sort the jobs in nondecreasing order of delays. For convenience, we will further
assume that

l1 ≤ l2 ≤ . . . ≤ ln = L. (5)

Step k. For k = 1, . . . , n construct the schedule σk = [ϕk, ψ] where ψ = (1, . . . , n) and
ϕk = (k + 1, . . . , n, 1, . . . , k) if k ≤ n− 1 and ϕn = (1, . . . , n) (see Fig. 2).

Pick out a schedule σ ∈ {σ1, . . . , σn} having the shortest length and construct a sched-
ule τ = σ. Output τ .

t=0 t

1 knk+1

1 k k+1 n

Fig. 2. The schedule constructed at Step 2 of algorithm SPECIAL

Running time. As it was shown in Section 2, the early schedule σk for each k =
1, . . . , n can be constructed in linear time. Furthermore, as it was noticed in Section 3,
the schedule σ can be obtained from σ in O(n log n) time. Thus the total running time
of the algorithm is O(n2).

Approximation ratio. We first show a lower bound for C∗
max that will play a crucial

role in establishing an upper bound on the approximation ratio of algorithm Special.
The lemma below is a straightforward extension of an observation due to Yu [12, 13]
(Lemma 2 in [13]).

Lemma 1.

C∗
max ≥

⌈ (a+ b)(n+ 1)

2
+

∑

j∈J lj

n

⌉

(6)

Proof. Let σ be a feasible schedule with the job permutations ϕ and ψ. Then for any
j ∈ J ,

Cmax(σ) ≥ σ(1, j) + aj + lj +

n
∑

k=ψ−1(j)

bψ(k)

=

ϕ−1(j)
∑

k=1

aϕ(k) + lj +
n
∑

k=ψ−1(j)

bψ(k).

By taking into account that aj ≡ a and bj ≡ b, it follows that

Cmax(σ) ≥
1

n

(

∑

j∈J

(

ϕ−1(j)
∑

k=1

aϕ(k) + lj +

n
∑

k=ψ−1(j)

bψ(k)
)

)

Title Suppressed Due to Excessive Length 331

=
1

n

(

∑

j∈J

ϕ−1(j)
∑

k=1

aϕ(k) +
∑

j∈J

n
∑

k=ψ−1(j)

bψ(k)

)

+

∑

j∈J lj

n

=
1

n

(

a
∑

j∈J
ϕ−1(j) + b

∑

j∈J
(n− ψ−1(j) + 1)

)

+

∑

j∈J lj

n

=
1

2n

(

an(n+ 1) + bn(n+ 1)
)

+

∑

j∈J lj

n

=
(n+ 1)(a+ b)

2
+

∑

j∈J lj

n
.

By combining (6) with (2), we obtain the following lower bound:

C∗
max ≥ LB = max{a+ b+ L, an,

(a+ b)(n+ 1)

2
+

∑

j lj

n
}. (7)

We now proceed to establishing an upper bound on the length of the schedule
returned by algorithm Special.

Lemma 2. For any k = 1, . . . , n,

Cmax(σk) ≤ max{Xk, Yk} (8)

where Xk = a(n− k) + b+ L and Yk = an+ b(n− k + 1) + lk.

Proof. Let 1 ≤ k ≤ n. Note that by construction σk satisfies (1). Since σk(1, k) =
a(n− 1) and σk(1, n) = a(n− k − 1), (1) implies that

min{σk(2, k)− an− lk, σk(2, n)− a(n− k)− ln} ≥ 0.

We now claim that in fact

min{σk(2, k)− an− lk, σk(2, n)− a(n− k)− ln} = 0. (9)

Assume to the contrary that σk(2, k) > an+ lk and σk(2, n) > a(n− k) + ln. Assume
first that 1 ≤ j ≤ k. Then

σk(1, j) = σk(1, n) + a+ a(j − 1) = a(n− k − 1) + aj = a(n− k + j − 1)

and σk(2, j) + b(k − j) = σk(2, k). Since lj ≤ lk and a ≥ b, it follows that

σk(2, j)− σk(1, j) = σk(2, k)− b(k − j)− a(n− k + j − 1)

> an+ lk − b(k − j)− a(n− k + j − 1)

= lk + (a− b)(k − j) + a

≥ lj + a,

i. e., σk(2, j)− σk(1, j)− lj − a > 0. Assume now that k + 1 ≤ j ≤ n. Then σk(1, j) =
a(j − k − 1) and σk(2, j) + b(n− j) = σk(2, n). Similarly to the above, we have

σk(2, j)− σk(1, j) = σk(2, n)− b(n− j)− a(j − k − 1)

> a(n− k) + ln − b(n− j)− a(j − k − 1)

= (a− b)(n− j) + ln + a

≥ lj + a,

332 Alexander Ageev and Alexei Baburin

which means that σk(2, j) − σk(1, j) − lj − a > 0. Summing up, we arrive at the
conclusion that σk(2, j)− σk(1, j)− lj − a > 0 for all j ∈ J , which contradicts the fact
that σk is an early schedule.

By the claim, either σk(2, k) = an + lk, or σk(2, n) = a(n − k) + ln. If the former
holds, then

Cmax(σk) = σk(2, k) + b(n− k + 1) = an+ lk + b(n− k + 1) = Yk.

If the latter is true, then

Cmax(σk) = σk(2, n) + b = a(n− k) + ln + b = Xk.

Thus (8) does hold true, as required. ⊓⊔
Theorem 2. Let I be an instance of the problem F2 | lj , p1j = a, p2j = b | Cmax and

τ be a schedule output by algorithm SPECIAL. Then

Cmax(τ) ≤ min{1 + 2q + 2

q + 4
, 2− q}C∗

max (10)

where q = a−b
a

.

Proof. First, observe that since τ is a short schedule, by Theorem 1

Cmax(τ) ≤ (1 +
b

a
)C∗

max = (2 − q)C∗
max.

On the other hand, by the definition of short schedule, Cmax(τ) = Cmax(σ) ≤ Cmax(σ).
Thus, to prove the theorem it suffices to justify the following inequality:

Cmax(σ) ≤
(

1 +
2q + 2

q + 4

)

C∗
max. (11)

For k = 1, . . . , n, let θ(k) = Yk −Xk. Since

θ(k) = an+ b(n− k + 1) + lk − a(n− k)− b− L

= (a− b)k + bn+ lk − L,

θ(k) is a non-decreasing function of k and θ(n) = an > 0, i. e., Yn > Xn. Thus the
following two cases are possible: either Yk ≥ Xk for all k = 1, . . . , n, or there exists an
index r ∈ {1, . . . , n− 1} such that Yr < Xr and Yk ≥ Xk for all k = r + 1, . . . , n.

Case 1: Yk ≥ Xk for all k = 1, . . . , n. Then by the construction of σ,

Cmax(σ) ≤
∑n
k=1 Cmax(σk)

n
≤

∑n
k=1 Yk
n

=
ann+

∑n
k=1 b(n− k + 1) +

∑n
k=1 lk

n

= an+ b
n+ 1

2
+

∑n
k=1 lk
n

=
a(n− 1)

2
+ a

n+ 1

2
+ b

n+ 1

2
+

∑n
k=1 lk
n

(by (7)) ≤ 3

2
C∗

max. (12)

Title Suppressed Due to Excessive Length 333

Case 2: there exists an index r ∈ {1, . . . , n − 1} such that Yr < Xr and Yk ≥ Xk

for all k = r + 1, . . . , n. Then by the construction of σ,

Cmax(σ) ≤ min
{

∑n
k=r+1 Cmax(σk)

n− r
, Cmax(σr)

}

≤ min{S1, S2} (13)

where

S1 =

∑n
k=r+1 Yk

n− r
=
an(n− r) +

∑n
k=r+1 b(n− k + 1) +

∑n
k=r+1 lk

n− r
, (14)

S2 = Xr = a(n− r) + b+ L. (15)

Set t = n− r and µ = t
n
. Then by (15) and (7),

S2 ≤ t

n
an+ b+ L ≤ (1 + µ)C∗

max. (16)

Moreover, by rearranging the expression (14) we obtain that

S1 = an+ b(n+ 1)− b
n+ r + 1

2
+

∑n
k=r+1 lk

n− r

= a
n+ r − 1

2
+ a

t+ 1

2
+ b

t+ 1

2
+

∑n
k=n−t+1 lk

t

= R+
(

a
n+ 1

2
+ b

n+ 1

2
+ βµ

)

+
1

2

(

a
t+ 1

2
+ b

t+ 1

2
+ β

)

+ β(
1

2
− µ)

where β = 1
t

∑n
k=n−t+1 lk and

R = a
2n− t− 1

2
+ a

t+ 1

4
+ b

t+ 1

4
− a

n+ 1

2
− b

n+ 1

2

= a
2n− t− 3

4
− b

2n− t+ 1

4
.

By (2),

R ≤ 2n− t

4
(a− b) =

2n− t

4n
anq =

2− µ

4
anq ≤ 2− µ

4
qC∗

max.

Furthermore, by Lemma 1 we have

a
n+ 1

2
+ b

n+ 1

2
+ βµ =

(a+ b)(n+ 1)

2
+

∑n
k=n−t+1 lk

n
≤ C∗

max.

Now consider the instance I ′ of the problem formed by the subset of jobs {n − t +
1, . . . , n} with the same parameters as in I. It is clear that the length of a shortest
schedule in I ′ is at most C∗

max whereas by Lemma 1, it is bounded from below by

a
t+ 1

2
+ b

t+ 1

2
+ β = a

(a+ b)(t+ 1)

2
+

∑n
k=n−t+1 lk

t
.

So we obtain that

a
t+ 1

2
+ b

t+ 1

2
+ β ≤ C∗

max.

334 Alexander Ageev and Alexei Baburin

Summing up, we arrive at the following inequality:

S1 ≤ 2− µ

4
qC∗

max +
3

2
C∗

max + β(
1

2
− µ).

Thus from (13), (16), and the last inequality we obtain

Cmax(σ) ≤ min{(1 + µ)C∗
max,

2− µ

4
qC∗

max +
3

2
C∗

max + β(
1

2
− µ)}.

It follows that Cmax(σ) ≤ 3
2C

∗
max if µ ≤ 1

2 and

Cmax(σ) ≤ min{1 + µ,
2− µ

4
q +

3

2
}C∗

max

if µ > 1
2 . Thus Cmax(σ) ≤ (1 + µ∗)C∗

max where µ∗ satisfies

2− µ∗

4
q +

3

2
= 1 + µ∗,

which implies that µ∗ = 2q+2
q+4 . Together with (12) this implies (11), as required. ⊓⊔

Observe that

min{1 + 2q + 2

q + 4
, 2− q} ≤ (2 − q′)

where q′ satisfies
q′2 + 5q′ − 2 = 0.

By resolving this quadratic equation, we get q′ = − 5
2 + 1

2

√
33 and so

min{1 + 2q + 2

q + 4
, 2− q} ≤ (2 +

5

2
− 1

2

√
33) =

9−
√
33

2
< 1.628.

Thus we have the following

Corollary 1. Algorithm SPECIAL solves F2 | lj , p1j = a, p2j = b | Cmax with an

approximation factor of 9−
√
33

2 < 1.628 in O(n2) time. In the case when a = b the

approximation ratio of algorithm Special is bounded by 1.5. ⊓⊔

References

1. Ageev A.A.: A 3/2-approximation for the proportionate two machine flow shop scheduling
with minimum delays. In: Approximation and Online Algorithms, LNCS, vol.4927, pp.
55–66 (2008)

2. Dell’Amico M.: Shop problems with two machines and time lags. Operations Research 44,
777–787 (1996)

3. Dell’Amico M., Vaessens R.J.M.: Flow and open shop scheduling on two machines with
transportation times and machine-independent processing times is NP-hard. In: Materiali
di discussione 141, Dipartimento di Economia Politica, Università di Modena (1996)

Title Suppressed Due to Excessive Length 335

4. Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G.: Optimization and ap-
proximation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics 5, 287–326 (1979)

5. Johnson S.M.: Optimal two- and three-stage production schedules with setup times in-
cluded. Naval Research Logistics Quarterly 1, 61–68 (1954)

6. Johnson S.M.: Discussion: Sequencing n jobs on two machines with arbitrary time lags.
Management Science 5, 293–298 (1958)

7. Karuno Y., Nagamochi H.: A better approximation for the two-machine flow shop schedul-
ing problem with time lags. In: Algorithms and Computation, LNCS, vol. 2906, pp. 309–
318 (2003)

8. Kern W., Nawijn W.M.: Scheduling multi-operation jobs with time lags on a single ma-
chine, In: U. Faigle and C. Hoede (eds), Proceedings of the 2nd Twente Workshop on
Graphs and Combinatorial Optimization, Enschede, 1991.

9. Lenstra J.K: Private communication, 1991.
10. Mitten L.G.: Sequencing n jobs on two machines with arbitrary time lags. Management

Science 5, 293–298 (1958)
11. Strusevich V.A.: A heuristic for the two-machine open-shop scheduling with transporta-

tion times. Discrete Applied Mathematics 93, 287–304 (1999)
12. Yu W.: The two-machine shop problem with delays and the one-machine total tardiness

problem. Ph.D. thesis, Department of Mathematics and Computer Science, Technische
Universiteit Eindhoven (1996)

13. Yu W., Hoogeveen H., Lenstra J.K.: Minimizing makespan in a two-machine flow shop
with delays and unit-time operations is NP-hard. J. Sched. 7, 333–348 (2004)

14. Zhang X., van de Velde S.: Polynomial-time approximation schemes for scheduling prob-
lems with time lags. J. Sched. 13, 553–559 (2010)

