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Abstract. The paper is devoted to discrete optimization of the viscous heat-
conducting fluid flows. In the problem under consideration we want to create a
flow with desired properties using optimal heating or cooling on some bound-
ary sections. Optimal control approach reduces this problem to the constrained
minimization. In this case the cost functional describes the objectives, mathe-
matical model is the constraint and temperature boundary value is the control.
If the flow is unsteady and the objectives data is discrete we need to use dis-
crete optimization methods for numerical solution of this problem. We propose
new numerical algorithm that does not use the first order necessary optimality
conditions and based on the finite dimensional minimization.
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1 Introduction

Optimization problems in hydrodynamics have a large number of applications in sci-
ence and engineering. Usually these problems are formulated as minimization problems
for suitable cost functionals and can be analyzed and solved by applying a unified ap-
proach based on the constrained optimization theory (see, for example, [1–6]). The
same approach can be applied for inverse and parameter estimation problems [7].

Numerical optimization for complicated mathematical models is connected with
a number of difficulties. When we solve the minimization problem the solution must
satisfy the nonlinear system of partial differential equations. Usually a constrained
minimization problem is rewritten as an unconstrained minimization problem using the
Lagrange multipliers. Then one can formally calculate the derivatives of the Lagrangian
and derive the necessary optimality conditions. However, numerical solution of the
optimality system for nonstationary mathematical models is very difficult therefore we
propose a new numerical algorithm to solve minimization problem under consideration.
In this algorithm we calculate the state and the control simultaneously at each time
step. This approach does not require iterations and it is simpler to implement.
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2 Problem Statement

In the bounded two-dimensional domain Ω on the time interval (0, tmax) we consider
the following dimensionless system of partial differential equations

∂v

∂t
+ (v · ∇)v − 1

Re
∆v +∇p =

Gr

Re2
T j in Ω, (1)

divv = 0 in Ω, v|t=0 = v0 in Ω, (2)

v = g on Γin, v = 0 on Γ0 ∪ Γc, pn− 1

Re

∂v

∂n
= 0 on Γout, (3)

∂T

∂t
+ v · ∇T − 1

RePr
∆T = 0 in Ω, T |t=0 = T0 in Ω, (4)

T = 0 on Γin, T = φ on Γc,
∂T

∂n
= 0 on Γ0 ∪ Γout (5)

describing the time evolution of the viscous heat-conducting fluid flow. Here v, p and T
are the dimensionless velocity, pressure and temperature, j = {0, 1} is the unit vector
directed upwards. Reynolds number Re, Grashof number Gr and Prandtl number Pr
are dimensionless parameters of this problem.

In this paper we shall consider the unsteady flow in the open cavity (see Fig. 1).
The boundary Γ consists of four parts: inlet section Γin, outlet section Γout, solid walls
Γ0 and control section Γc. For the velocity vector v we prescribe the inflow parabolic
profile g on Γin, no-slip boundary condition on Γ0 ∪ Γc and ”do nothing” boundary
condition on the outlet Γout. The temperature boundary value φ on the control section
Γc will play the role of control.

Fig. 1. Flow domain.
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In our optimization problem we want to obtain the velocity field v close to a given
”optimal” vector field vd using temperature boundary control on Γc. We assume that
values of the vector vd are given only at fixed times t1, t2, . . . , tN = tmax. So we have
a discrete set of data and need to solve the discrete optimization problem.

2.1 Time Discretization

At the beginning we split the time interval (0, tmax) into N parts (tn−1, tn) of length
τn = tn − tn−1, n = 1, 2, . . . , N and write the following semidiscrete approximation for
the problem (1)–(5):

vn − vn−1

τn
+ (vn−1 · ∇)vn − 1

Re
∆vn +∇pn =

Gr

Re2
Tnj in Ω, (6)

divvn = 0 in Ω, v0 = v0 in Ω, (7)

vn = g(tn) on Γin, vn = 0 on Γ0 ∪ Γc, pnn− 1

Re

∂vn

∂n
= 0 on Γout, (8)

Tn − Tn−1

τn
+ vn−1 · ∇Tn − 1

RePr
∆Tn = 0 in Ω, T 0 = T0 in Ω, (9)

Tn = 0 on Γin, Tn = φ(tn) on Γc,
∂Tn

∂n
= 0 on Γ0 ∪ Γout. (10)

Here vn, pn, Tn (n = 1, 2, . . . , N) are the new unknown functions that depend only
on the space variables. Let us note that we use an implicit difference scheme for time
discretization. It ensures the stability of our numerical solutions even for large time
intervals.

Multiplying equations in (6), (7), (9) by the corresponding test functions, integrat-
ing over Ω and using Green’s formula for certain terms we obtain a variational formula-
tion of the problem (6)–(10). It consists in finding functions vn, pn, Tn (n = 1, 2, . . . , N)
satisfying equations

(vn − vn−1,w)

τn
+ ((vn−1 · ∇)vn,w) +

1

Re
(∇vn,∇w)− (pn,divw) (11)

+
Gr

Re2
(Tnj,w) = 0 ∀w ∈W, (χ,divvn) = 0 ∀χ ∈ X, (12)

vn = gn on Γin, vn = 0 on Γ0 ∪ Γc, (13)

(Tn − Tn−1, s)

τn
+ (vn−1 · ∇Tn, s) +

1

RePr
(∇Tn,∇s) = 0 ∀s ∈ S, (14)

Tn = 0 on Γin, Tn = φn on Γc. (15)

Here the function v0 = v0, θ0 = θ0 are determined from the initial conditions of the
problem (1)–(5); gn = g(tn), φn = φ(tn); (·, ·) is the scalar product in the space L2(Ω).
If we already know all values at time t = tn−1 then this problem is linear for unknowns
(vn, pn, Tn). We will use this linearity in the construction of our numerical algorithm.
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Fig. 2. Uncontrolled flow in the cavity.

Appling the finite element method for space disctretization we can solve the problem
(11)–(15) numerically. Uncontrolled flow in the cavity for Reynolds number Re = 10
at time t = 10 is shown in Fig. 2.

We can clearly see a large vortex occupying most of the cavity. Most of the fluid
will never leave the cavity. In this case we have a stagnant zone in which the suspended
particles are accumulated. We want to suppress this vortex. Therefore we choose the
potential flow with zero vorticity as the desirable vector field vd. Usually the moving
bottom wall is used for flow control (see [8, 9]). In this study we consider the heat-
conducting fluid an can use the temperature boundary control. This control can be
more effective then tangential velocity because the temperature can affect the entire
fluid volume by means the buoyancy effect.
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3 Discrete Optimization

Let Ωd ⊆ Ω be the subset of Ω (subdomain, surface or curve in the two-dimensional
case). It will play the role of the observation set in our optimization problem for the
system (11)–(15). At time step t = tn the problem of finding the boundary function φn

for the vector field vnd = vd(tn) is reduced to the minimization of the quality functional

J(vn, φn) =
1

2

∫
Ωd

|vn − vnd |2dΩ +
µ

2

∫
Γc

(φn)2dΓ, (16)

depending on the boundary function φn and corresponding velocity vector vn. Here
µ = const ≥ 0 is the small regularization parameter.

The following method is based on the main idea of [10] where an optimal boundary
control problem for the stationary Navier-Stokes equations was solved using the finite
dimensional minimization approach.

We will find the unknown function φn in the following form:

φn =

M∑
i=1

kiφi. (17)

Here {φi}Mi=1 are the given basic functions on Γc while ki, i = 1, 2, . . . ,M are the
unknown coefficients that must be found at each time step. The corresponding velocity
vector then can be written as

vn = wn +

M∑
i=1

kivi. (18)

Here wn is the solution for homogeneous boundary conditions in (15) while vi (i =
1, . . . ,M) are the solutions corresponding φn = φi in (15) and homogeneous boundary
conditions in (13). Then the functional (16) can be written as

J(vn, φn) =
1

2

∫
Ωd

|vn − vnd |2dΩ +
µ

2

∫
Γc

(φn)2dΓ =
1

2

∫
Ωd

(
wn − vnd +

M∑
i=1

kivi

)2

dΩ

+
µ

2

∫
Γc

(
M∑
i=1

kiφi

)2

dΓ =
1

2

M∑
i=1

M∑
j=1

aijkikj −
M∑
j=1

bjkj +
1

2
c.

Here the coefficients

aij = (vi,vj)Ωd
+ µ(φi, φj)Γc

, bj = (vnd −wn,vj)Ωd
, c = ‖vnd −wn‖2Ωd

(19)

can be easily calculated by known functions φi, vi, v
n
d and wn.

As a result, we have the finite dimensional minimization problem for variables ki,
i = 1, 2, . . . ,M . Solution of this problem can be found by solving the following system
of linear algebraic equations:

M∑
i=1

aijki = bj , j = 1, 2, . . . ,M. (20)
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Substituting aij and bj in this system and using (18) we obtain the following equalities

(vn − vnd ,vj)Ωd
+ µ(φn, φj)Γc

= 0, j = 1, 2, . . . ,M.

that have a clear meaning. If µ = 0 then the difference vn − vnd must be orthogonal to
all functions vj in subdomain Ωd. Solving the system (20) and substituting ki in (17)
we find the boundary temperature φn on the n-th time step.

3.1 Numerical Algorithm

Proposed numerical algorithm can be written as follows.
Step 0. Choose M basic functions φi on Γc. Set initial values v0 and T 0. Set n = 1.
Step 1. Assuming that vn−1 and Tn−1 are already known, solve M + 1 linearized

boundary value problems to find vi, i = 1, . . . ,M and wn.
Step 2. Calculate aij and bj by (19). Solve linear system (20) to find ki.
Step 3. Calculate φn by (17). Solve linear boundary value problem (11)–(15) to find

vn, pn, Tn.
Step 4. If n < N then set n := n+ 1 and go to step 1.
Let us note that this algorithm does not use the first order necessary optimality con-

ditions (see [1, 3, 4, 6, 7]) and it is simpler to implement. It can be efficiently parallelized
because M+1 boundary value problems to find wn and vi are solved independently. It
must be noted that at each time step we find the control and the state simultaneously.

3.2 Computational Results

Now let us consider some computatiomal results for optimization of viscous heat-
conducting fluid flow in the open cavity (see Fig. 1). In this problem we find optimal
heating or cooling of the control boundary section Γc to create the velocity v closed
to the given vector field vd in the subdomain Ωd. We want to suppress large vortex
(see Fig. 2) in the cavity therefore we choose the potential flow with zero vorticity
as the desirable vector field vd. The observation set Ωd occupies the entire cavity. In
these computations Reynolds number Re = 10, Grashof number Gr = 104 and Prandtl
number Pr = 7. The dimensionless time interval (0, tmax) was chosen as (0, 20) with
N = 100.

The controlled flow at time t = 10 is shown in Fig. 3. It is clearly seen that the
vortex is fully suppressed and the main flow covers the whole cavity.

Corresponding temperature values on the bottom boundary of the cavity are shown
in Fig. 4. This is a dimensionless temperature deviation from the values given on the
inlet boundary section.

Fig. 5 shows obtained temperature controls on the left (solid line) and right (dotted
line) boundaries of the cavity. It is easy to notice that temperature on the right part
is higher than on the left part.

These figures help us to understand the basic effect of the temperature bound-
ary control. We see cooling on the left boundary and heating on the right boundary.
Therefore the cold fluid with a higher density moves downwards along the left wall.
The heated fluid with lower density goes up along the right wall. Heating and cooling
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Fig. 3. Controlled flow in the cavity.

change the fluid density and thus affect the fluid flow. Let us note that in order to
take into account of such effects we need to consider more sophisticated mathematical
model in comparison with the works of other authors devoted to the boundary control
problems for Navier-Stokes equations.

The open source software freeFEM++ [11] was used for the discretization and
numerical solving boundary value problems by the finite element method. The main
goal of the computational experiments was to determine the dependence of the solution
accuracy on the choice of the problem parameters. We choose different ways to specify
the given velocity data vd. For example, the observation domain Ωd can coincide with
the whole flow domain or can be some subdomain. The location of the small observation
domain with fixed size can be also very important. Numerical experiments show that
the solution is more accurate if the observation domain Ωd is located closer to the
control boundary Γc. The number of basis functions M also affects the numerical
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Fig. 4. Temperature T (x) on the bottom boundary of the cavity.

solution. Based on the analysis of computational results we can choose optimal values
and develop some recommendations for future applications.

4 Conclusion

In this paper we considered the discrete optimization problem for the unsteady viscous
heat-conducting fluid flows. This problem consists in creating a flow with desired prop-
erties using optimal heating or cooling on some boundary sections. We have proposed
new numerical algorithm that does not use the first order necessary optimality con-
ditions and based on the finite dimensional minimization. Computational experiments
have shown the ability to change the flow with small Reynolds numbers by means of
the temperature boundary control.
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Fig. 5. Temperature T (y) on the left and right boundaries of the cavity.
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