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Abstract. In this paper, we investigate application of various options of algo-

rithms with greedy agglomerative heuristic procedure for object clustering 

problems in continuous space in combination with various local search meth-

ods. We propose new modifications of the greedy agglomerative heuristic algo-

rithms with local search in SWAP neighborhood for the p-medoid problems and 

j-means procedure for continuous clustering problems (p-median and k-means). 

New modifications of algorithms were applied to clustering problems in both 

continuous and discrete settings. Computational results with classical data sets 

and real data show the comparative efficiency of new algorithms for middle-

size problems only. 

Keywords: p-median · k-means · p-medoids · Genetic algorithm · Heuristic op-

timization · Clustering 

1 Introduction 

Problems of automatic groupping of objects in a continuous space with defined dis-

tance measure function between two points are the most widely applied clustering 

models. The k-means problem is most popular clustering model in which it is required 

to split N objects into k groups so that the sum of squares of distances from objects to 

the closest center of a group reaches its minimum. Centers (sometimes called by cen-

troids) are unknown points in the same space. Other popular clustering model is the p-

median problem [9] which has similar setting but instead of the sum of distance 

squares, sum of distances has to be minimized. Thus, in the k-means problem, a 

measure of distance is the squared Euclidean distance. The similarity of the continu-

ous p-median problem and k-means problem was emphasized by many researchers 

[25, 12, 16, 13]. 

There exists a special class of discrete optimization problems operating concepts 

of the continuous problems called p-medoid problem [19] or discrete p-median prob-

lem [37]. Such clustering problems can be considered as location problems [34, 28] 

since the main parameters of such continuous and discrete problems are coordinates 

of objects and distance between them [10, 9]. Such problems arise in statistics (for 
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example, problems of estimation), statistical data processing, signal or image pro-

cessing and other engineering applications [20]. 

The formulation of the p-median problem [12, 7] is as follows: 

                       
        

       
            (1) 

Here,            is a set of known points (data vectors),            are un-

known points (centers, centroids),    are weight coefficients (usually equal to 1),      

is the distance function in a d-dimensional space [14, 9]. In most popular cases,      

is squared Euclidean distance, Euclidean or Manhattan metric. 

The center of each cluster (group) is the solution of the 1-median (Weber) prob-

lem for this cluster. If the distance measure is squared Euclidean distance (  
 ) then the 

solution is [12]: 

       
             

       (2) 

Here,              ,                         . 

Such p-median, k-means and k-medoids problems are problems of general optimiza-

tion: objective function is non-convex [8]. Moreover, they are NP-hard [11, 2, 33, 40, 

41, 15]. The most popular ALA procedure for such problems is based on the Lloyd 

algorithm [30] also known as standard k-means procedure [32]. Nevertheless, many 

authors offered faster methods based on this standard procedure [46, 1] for data sets 

and data streams. The ALA and similar procedures are algorithms sequentially im-

proving the known solution. They are not true local search algorithms in strict sense 

since the new decision is searched not necessarily in a ε-neighborhood of the known 

solution. 

The modern literature offers many heuristic methods [36] for seeding of the initial 

solutions (sets of centers) for the ALA procedure which are  various evolutionary 

methods and random search methods such as k-means++ procedure [4].  

Popular idea is use of the genetic algorithms (GA) and for improving of results of 

local search [18, 27, 39]. In case of GAs, authors use various methods of coding of 

solutions which form a "population" of the evolutionary algorithm. Hosage and 

Goodchild [17] offered the first genetic algorithm for the p-median problem on a net-

work. Rather precise but very slow algorithm based on special greedy agglomerative 

heuristics was offered by Bozkaya, Zhang and Erkut in 2002 [46]. 

Rather precise and fast algorithm with the greedy agglomerative heuristic recombina-

tion procedure for the p-median problem on a network was offered by Alp, Erkut and 

Drezner in 2002 [3]. This algorithm was adapted for the continuous problems by 

Neema et al. in 2011 [39]. At each iteration, this algorithm generates initial solutions 

for the local search procedure. Thus, this approach becomes extremely slow with 

growth of number of clusters p. Other method of recombination is offered by Sheng 

and Liu (2006) [43]. These algorithms work quicker, however, they are less precise. 

Also Lim and Xiu in 2003 offered the genetic algorithm based on recombination of 

subsets of centers of the fixed length [29].  
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The genetic algorithm with greedy heuristics [3] does not provide use of a mutation 

procedure which is common for GAs [38]. 

In [21], authors propose the GA with greedy agglomerative heuristic using floating 

point alphabet. Most GAs for p-median problems [39] use the integer alphabet for 

coding of initial  solutions of the  ALA procedure by numbers of corresponding data 

vectors. In [21], authors encode the interim solutions in a form of sets of points (cen-

ters) in the d-dimensional space which are changed by the ALA procedure. Such 

combination of greedy agglomerative heuristics and ALA procedure allows algorithm 

to receive more precise results. 

In this paper, we propose further modification of the genetic algorithm with greedy 

heuristic which includes combination of the greedy agglomerative heuristic proce-

dures with local search in wider neighborhoods such as SWAP neighborhood. 

2 Known algorithms 

The ALA procedure includes two simple steps:  

Algorithm 1. ALA procedure.  

Required: data vectors A1...AN, k initial cluster centers X1...Xk. 

1. For each center Xi, determine its cluster Ci as a subset of the data vectors for 

which this center Xi is the closest one.          
     

                 

2. For each cluster   
                    , recalculate its center Xi (i.e., solve 

the Weber problem). 

3. Repeat Step 1 unless Steps 1, 2 made no change in any cluster. 

 

Many papers propose approaches to improve the speed of the  ALA algorithm [1] 

such as random sampling [35] etc.  

The GA with greedy heuristic [3, 23] with modifications [39, 21, 24] can be de-

scribed as follows. 

Algorithm 2. GA with greedy heuristic for p-median and p-medoid problems.  

Required: Population size NPOP. 

1. Generate (randomly with equal probabilities or using the k-means++ procedure) 

NPOP initial solutions ,,N,...χχ
POPN }1{1     POPi ,Ni==pχ 1  which are sets of data 

vectors used as initial solutions for the ALA procedure. For each of them, run the 

ALA procedure and estimate the values  χF fitness
 
of the objective function (1) for 

the results of the ALA procedure, save these values to variables .1 POPN,...,ff  

2. If the stop conditions are reached then STOP. The solution if the set of the ini-

tial centers *i
χ corresponding the minimal value of fi. For estimating the final solu-

tion, run the ALA procedure for *i
χ . 

3. Choose randomly two indexes 2121 }1{ k,k,Nkk ,  . 

4. Form an interim solution 
21 kkc χ=χχ  . 



Combinations of the Greedy Heuristic Method and Local Search Algorithms   443 

 

5. If  >pχc  then go to Step 7: 

6. Perform the greedy agglomerative heuristic procedure (Algorithm 3) for cχ  
with elimination intensity parameter σ.  

7. If ciPOP =χ:χ,Ni }1{ then go to Step 2. 

8. Choose an index }1{3 POP,Nk  . Authors [21] use a simple tournament selec-

tion procedure: choose randomly }1{54 POP, ,Nkk  , if 
54 kk >ff then 43=kk , other-

wise 53=kk .  

9. Replace 
3kχ  and corresponding objective function value: ck =χχ

3
, 

 cfitnessk χ=Ff
3

. Go to Step 2. 

The greedy agglomerative heuristic is realized as follows: 

Algorithm 3. Greedy agglomerative heuristic. 

Required: initial solution cχ , elimination parameter σ. 

1.For each cχj  do: 

1.1. Form a set }{ j\=χχ с


. For each data vector }...,AA{A N,i 1 , choose the 

closest center  ji

χ,j=

- ,XALmin arg=C
-

i

1

. Form 
-  sets of data vectors for each of 

which the center is its closest center:   =jC|,Ni=С i
clust
j

 1 ; for each cluster 

,1 с
clust-
j χ,j=,С  calculate its center Xj

-
, and then calculate 

  .,AXLw=f i
-
k

χk
i

N
i

-
j min1


  

1.2. Next iteration 1. 

2. Sort the set of pairs (j,   .,AXLw=f i
-
kχki

N
i

-
j min1

 ) in ascending order of 

-
jf , form a set Eelim of the first N

elim
 indexes of data vectors from this arranged set. 

From this set Eelim, eliminate indexes i such that ijLAAEj jie  ,: minlim . 

Here, Nelim=[ σ (| cχ |-p)]+1. The value of parameter Lmin is equal to 0.1-0.5 of the 

average distance between two data vectors. We use .)),((2,0
min ji AALL  Parame-

ter σ regulates the process of eliminating of the elements from the interim solution. 

Value 0 means sequential deleting of elements (centers, centroids, medoids) one by 

one. The default value 0.2 makes the algorithm work faster which is important if val-

ue of p is comparatively large (p>10). 

3. Eliminate Eelim from cχ : .E\=χχ limecc  and return. 

 

Value of the objective function is calculated depending as follows: 
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Algorithm 4. Calculating the objective function value  χF fitness . 

Required: initial solution χ = }{ 1 p,...,XX . 

1. Run the ALA procedure or the PAM procedure with the initial solution χ  to 

gen new set of centers }{ 1 p,...,XX . 

2. Return    .,AXLw=χF ij
,pj

i
N
ifitness nim

}1{
1




 
Step 4 of Algorithm 2 generates an interim solution set with cardinality up to 2p 

from which we sequentially eliminate elements (Step 6) until we reach cardinality 

equal to p. At each iteration, the value Ffintess is calculated up to 2p times. Thus, the 

local search procedure is started up to p
2
 in each iteration of the greedy heuristic re-

combination. In the case of the k-medoid problem, the computational complexity 

increases. In this case, we must calculate 

.)a(a=x
d

k
ji

clust
jCj

clust
jCi

j,k  
 1

2
min  

Instead of the ALA procedure, we can use faster PAM procedure. Nevertheless, its 

complexity also depends on p and N. 

3 Combination with alternative local search algorithms 

The structure of Algorithm 4 can be described as three nested loop. 

The first of them performs iterations of iteration of strategy of global search (for 

the GA, this is execution of evolutionary operators of random selection and starting 

the crossingover procedure, however, other metaheuristics can be also applied [22]). 

The second nested loop performs the iterations greedy heuristic procedure until the 

feasible solution is reached. The third nested loop within this procedure provides es-

timation of  consequences of eliminating each of elements of the intermediate deci-

sion. 

The steps realizing greedy agglomerative heuristics are launched in combination 

with one of the existing algorithms of local search. Thus, for the continuous problems, 

it can be the ALA procedure  or other two-step procedures of the alternating location 

and allocation, for example, the  j-means or h-means procdure. Search in different 

types of neighborhoods can be applied to the discrete clustering problems. The PAM 

procedure (Partition around Medoid, i.e. neighborhood of the given quantity of the 

closest data vectors), ALA procedure (wider neighborhood: all data vectors of a clus-

ter), or search in wider SWAP or K-SWAP-neighborhoods can be applied to the p-

medoid problem.  

For the p-median, p-medoids and k-means problems, we can use the ALA proce-

dure as a local search procedure [44, 31]. The PAM procedure is a search algorithm in 

neighborhood of each of medoids consisting of the solutions received by changeover 

of a medoid by one of pPAM of the closest data vectors. In our research, we used pPAM 

=3. However, experiments did not reveal any universal advantage of each of methods: 
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PAM allows to have a good result quicker case of a small number of large clusters, 

ALA procedure is more efficient in the case of small clusters. 

Meanwhile, there are many other efficient local search methods the discrete clus-

tering problems [45, 42, 26]. Long ago it was noted [42] that very precise solutions 

can be obtained with the algorithms based on search in a SWAP neighborhood formed 

by changeover of a medoid by any data vector. In many cases, search in this neigh-

borhood allows to receive exact solutions [26]. Computing complexity of one itera-

tion of such procedure lies within O(pN
2
). Traditionally, this procedure is applied to 

rather small data sets (N <5000). Larger neighborhoods such as K-SWAP (changeo-

ver of K medoids with other data vectors), certainly, are capable to increase the ex-

pected accuracy of the result received after the single start of such procedure, but time 

expenses grow so fast that even in the 2-SWAP neighborhood, search is possible for 

very small data sets only. In the case when K=p, search in this neighborhood degener-

ates into the full search and gives the exact solution. 

The greedy genetic algorithms mentioned in this paper (including Algorithm 2) 

use the ALA procedure (as it was mentioned above, in the case of the p-medoid prob-

lem, PAM procedure is also possible). In this research, we add search in SWAP 

neighborhood to this procedure . Algorithm 5 can be used instead of the ALA proce-

dure option in Algorithms 2 and 4. 

 

Algorithm  5. Local search combination for the greedy heuristic algorithm. 

Required: initial solution   which is a set of centers, centroids or medoids. 

Step 1. Run the ALA procedure (or the PAM procedure) from the initial solution 

 . Store the new value of  . 

Step 2. If Step 1 did not improve the solution then STOP and return  . 

Step 3. Form array I of numbers           , shuffle this array randomly. 

Step 4. For each      do: 

Step 4.1. Store i=Ii’.Store      . 

Step 4.2. Store                               )). Here,    is the ith 

center or centroid or medoid in the solution, Aj  is the  jth data vector. 

Step 4.3. If               ))<F  )), then store               and go 

to Step 1. 

 

Steps of this algorithm combine search in SWAP neighborhood (Steps 4-4.3) with 

the ALA procedure (Step 1). While the PAM procedure is a simple local search algo-

rithm, the ALA procedure is not a true local search algorithm. However, it improves 

an existing solution step by step similarly to the local search algorithm.  

For the continuous problems (k-means, p-median) there exists the j-means proce-

dure [16] similar to search in SWAP neighborhood which scope is also restricted to 

comparatively small problems. This procedure is reduced to changeover of cen-

ters/centroids by one of data vectors with the subsequent continuation of search by 

standard ALA procedure. It is easy to note that this principle of search is realized by 

Algorithm 5. Thus, Algorithm 5 realizes alternation of ALA or PAM procedure with 

search in SWAP neighborhood for the discrete problems and the j-means procedure 

for the continuous ones. 
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We will apply Algorithm 5 instead of Algorithm 4 for solving discrete and contin-

uous problems as a part of genetic algorithms with greedy heuristic (Algorithm 2). 

For testing purposes, we use the real data and the generated data sets collected by 

department of processing of the speech and images of computing School of Universi-

ty of Eastern Finland and a repository of machine training of UCI, and also data of 

tests of EEE components for spaceships [20]. 

4 Computational experiments 

In our experiments, we used the Depo X8Sti computer (6-core CPU Xeon X5650 2.67 

GHz, 12Gb RAM). We launched each algorithm with each data set 30 times. 

In Fig. 1, 2 and Table 1, some results of computing experiments are provided. 

With number of vectors of data N>10000, the attempts to apply Algorithm 5 as a part 

of the genetic algorithm with greedy heuristics were unsuccessful since the single 

start of Algorithm 5 required time exceeding all time limit of for the GA.  

Dynamics of change of the best known value of the objective function shows that 

for small discrete problems (N <1000), application of Algorithm 5 has advantage in 

comparison with Algorithm 4. Moreover, for such problems, application of Algo-

rithm 5 even as a separate algorithm, without use of the genetic algorithm has ad-

vantage in comparison with the genetic algorithm with greedy heuristics in a combi-

nation with Algorithm 4. 

Middle-size problems (N<10000) show other situation. In certain cases, the genet-

ic algorithm with greedy heuristics even without application of search in SWAP 

neighborhood shows the best results. In other cases, application of search in SWAP 

neighborhood is repaid but application of this type of local search as a part of the 

genetic algorithm leads to further improving of result. Moreover, in certain cases, 

simpler recombination procedures of the genetic algorithm such as the genetic algo-

rithm with a recombination of fixed length subsets [43] yield the best results in com-

parison with GA with greedy heuristics. This is most evident for problems with Bool-

ean and categorical data. Nevertheless, the obtained results are comparable by accura-

cy and use of the GA with greedy heuristics can be competitive for problems with 

1000<N<10000. 

For the continuous problems, (except the smallest ones with N<1000), application 

of algorithms with greedy heuristics in a combination with Algorithm 5 is quite justi-

fied in the majority of practical cases.  

5 Conclusions 

Application of search in SWAP neighborhood (and probably wider neighborhoods) 

can be competitive in the case of the small problems, but is not competitive for large-

scale problems (N>10000). Experiments show that this effect does not depend on the 

heuristic used for constructing the initial population. As a rule, obtaining an accepta-

ble result is decelerated in case of using SWAP procedure. The exception is some 

problems with Jacquard metric and Hamming metric. Depending on problem parame-
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ters (N, p, d, metric) and time limit and accuracy requirements, various local search 

procedures are more or less efficient. The most important factor in the case of the 

large-scale problems is time consumption for a single run of the SWAP local search 

procedure.  

 

 

p-medoids problems 

 

 

Fig. 1. Comparative results of algorithms.  1 – local SWAP search multistart, 2 – GA with 

greedy heuristic (PAM as a local search procedure), 3 – Algorithm 2 with σ=0 (in combination 

with SWAP search), 4 – Algorithm 2 with σ =0.2 (in combination with SWAP search), 5 – GA 

with fixed length subset recombination [43,29], 6 –PAM procedure multistart 
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A) p-medoids problems 

 
B) p-median problems 

 

Fig. 2. Comparative results of algorithms.  1 – local SWAP search multistart (j-means in the 

case of p-median problem), 2 – GA with greedy heuristic (PAM or ALA as a local search pro-

cedure), 3 – Algorithm 2 with σ=0 (in combination with SWAP search or j-means), 4 – Algo-

rithm 2 with σ =0.2 (in combination with SWAP search or j-means), 5 – GA with fixed length 

subset recombination [43], 6 – ALA or PAM procedure multistart 
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Table 1. Comparative results for p-median problems, 30 runs. 

Data set, its parameters  p and 

distance 
measure 

Algorithm (see 

below) 

Time

, 
sec.. 

Average result Std. deviation  

Testing results for 

electronic chip 

1526TL1, N=1234, 
d=120. 

p=14,  

l2
2 

 

ALA multistart 

j-means multistart 

GA FL+ALA 
GA FL+j-means 

GA GH+ALA 

GA GH+j-means 

15 

15 

15 
15 

15 

15 

150,124869801 

150,533299444 

149,954679652 
151,280175427 

149,78736565* 

151,082443691 

0,384203928 

0,598587789 

0,172789313 
0,982922979 

0,03157532* 

0,654212395 

 

 

p=10, 

l2
2 

 

ALA multistart 

j-means multistart 

GA FL+ALA 
GA FL+j-means 

GA GH+ALA 

GA GH+j-means 

15 

15 

15 
15 

15 

15 

198,375350991 

198,426881563 

198,377650812 
198,450402498 

198,359747028 

198,35421865* 

0,018643710 

0,044039446 

0,024878118 
0,032311263 

2·10-14* 

0,0070903 

 p=6, 
l2

2 
ALA multistart 
j-means multistart 

GA FL+ALA 

GA FL+j-means 
GA GH+ALA 

GA GH+j-means 

15 
15 

15 

15 
15 

15 

362,70701636* 
362,70401636* 

362,70401636* 

362,704156850 
362,704051312 

362,704051312 

0* 
0* 

0* 

0,000344112 
0* 

0* 

UCI Mopsi Joensuu, 
N=6014, d=2. 

p=10, 
l2 

ALA multistart 
j-means multistart 

GA FL+ALA 

GA FL+j-means 
GA GH+ALA 

GA GH+j-means 

15 
15 

15 

15 
15 

15 

359,680203232 
359,545287242 

359,545250068 

361,435624000 
359,410460803 

359,41036391* 

3,964320582 
0,208756158 

2,526439494 

0,208770779 
0,177992934 

0* 

 p=4, 
l2 

ALA multistart 
j-means multistart 

GA FL+ALA 

GA FL+j-means 
GA GH+ALA 

GA GH+j-means 

15 
15 

15 

15 
15 

15 

596,825210394 
596,825217410 

596,82520843* 

596,825208927 
596,825283111 

596,825283111 

0,000000442 
0,000004148 

0,000000388 

0,000000574 
0* 

0* 

BIRCH-3, N=100000, 

d=2. 

p=100, 

l2
2 

ALA multistart 

j-means multistart 
GA GH+ALA 

GA GH+j-means 

30 

3000 
30 

30 

3,7513245·1013 

3,7711179·1013 
3,740432·1013* 

- 

116786778766 

158613580914 
21699776156* 

- 

 p=50, l2
2 GA FL+ALA 

GA FL+j-means 

GA GH+ALA 

GA GH+j-means 

30 
30 

30 

 30 

9,0099578·1013 
- 

8,902789·1013* 

- 

9545892119 
- 

0* 

- 

 p=20, l2
2 GA FL+ALA 

GA FL+j-means 

GA GH+ALA 

GA GH+j-means
 

30 
30 

30 

30 

3,303278·1014* 
- 

3,3049972·1014 

- 

0* 
- 

0* 

- 

Notation: GA FL is the GA with fixed length subset recombination [43], GA GH 

is the GA with greedy heuristic. The best result is marked by “*”. 
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