

Copyright © by the paper's authors. Copying permitted for private and academic purposes.

 In: A. Kononov et al. (eds.): DOOR 2016, Vladivostok, Russia, published at http://ceur-ws.org

Binary Cut-and-Branch Method for Solving Linear

Programming Problems with Boolean Variables

Yu. A. Mezentsev

Novosibirsk State Technical University, Russia

e-mail: mesyan@yandex.ru

Abstract. A numerical method is proposed for solving linear programming

problems with Boolean variables. The method is based on an iterative applica-

tion of a cutting-plane procedure that takes into account, as fully as possible, the

properties of the problems being solved. Heuristic procedures are applied for

the synthesis of cutting-planes as an intermediate step substantiating the con-

struction of a solution tree.

Keywords: integer programming, binary cuts, efficient algorithm, solution tree.

1 Introduction

Theoretical and applied studies in the field of discrete optimization (DO) do not lose

their relevance over the last fifty years. Although there are numerous and vigorously

developing avenues of research within the field, a major issue associated with the NP-

hardness of the majority of practically relevant DO problems has not yet been solved.

An analysis of the current challenges in this area and ways of addressing them can be

found, e.g., in a review paper by Leont'ev [1]. The recent trends in the development of

DO methods are well described in the proceedings of the 16th Baikal International

School–Seminar on optimization methods and their applications [2]. A systematic

modern view of problem formulations and optimization algorithms can be found in

well-known books by Western authors [3–6]. Special mention should be made of the

book written by Korte and Vygen [3], which is a fundamental work reflecting the

state and main directions in the development of DO methods as of the early 2000s,

except for random search methods. Tobias Achterberg’s doctoral thesis [7] may serve

as a guide to DO algorithms that are widely used in software packages developed in

North America and the EU. He considered the classical integer optimization method-

ologies, in particular cutting-plane methods (several types of cuts associated with

specific types of problems: covers, knapsacks, cliques, Gomory cuts, Chvátal–

Gomory cuts, etc.), branch and bound, branch and cut, and a series of heuristic algo-

rithms including several techniques of constraint programming. In addition, he pre-

sented the basic techniques used to prescreen options and reduce dimensions, which

were known as of 2007. All the DO methods and algorithms listed in the work have

Binary Cut-and- Branch Method for Solving Linear Programming Problems with Boolean Variables 73

been implemented in modern software optimization systems, such as IBM ILOG

CPLEX optimization studio [8].

The vast majority of algorithms that are used for solving DO problems, in particu-

lar those of integer linear programming, can be classified into three groups [1,7,9-14]:

(i) exact; (ii) approximate, and (iii) heuristic. According to their construction princi-

ples, the algorithms of the first and second groups may, in turn, be conventionally

divided into (i) exhaustive search algorithms, (ii) dynamic programming, (iii) matroid

optimization and greedy algorithms, and (iv) linearization. Many of the algorithms

use hybrid schemes combining several principles.

The modern metaheuristics used in solving DO problems are described, e.g., in

[10–12]. Usually, this term refers to a rather heterogeneous group of computational

techniques, such as constraint programming (CP) [3, 7] and various modifications of

random search methods in combination with local descent, including evolutionary

(genetic) algorithms, ant colony algorithms, and annealing simulations (sometimes in

combination with neural network algorithms). Most of the currently used techniques

that belong to these groups can be found in [10, 12].

However, to date, no efficient algorithms have been proposed for exact solution of

general DO problems, including linear programming problems with Boolean variables

(LPPs with BVs).

There is a long and successful history of specialized algorithms for solving special

DO problems that are compact reducible or directly belong to the class of mixed pro-

gramming problems with Boolean variables. These include, e.g., location problems,

network problems, trajectory problems, and various subclasses of scheduling theory

problems (with fixed, nonfixed, and uncertain routes), cutting and packing problems,

clique problems, knapsack problems, cover problems, and many other problems with

relevant practical applications [15]. At present, the most intensive efforts are focused

on these areas of the DO theory and applications. As a rule, there are attempts to de-

sign approximate or asymptotically accurate efficient algorithms. There has been

substantial progress in the construction of special algorithms for solving the above

problems [2, 3, 7].

Today, however, there are no known efficient algorithms for finding an accurate

solution of the general DO problem, including the general linear programming prob-

lem with Boolean variables.

This work is also focused mainly on the development of methods for solving

mixed linear programming problems with Boolean variables and is a direct develop-

ment of the questions discussed in [13, 14]. The object of research is a problem of the

form

 () maxTx c x   , (1)

 Ax b , 0 1x  , (2)

 2
nx I , (3)

which is a linear programming problem with Boolean variables. Conditions (3) speci-

fy that the solution belongs to one of the vertices of a unit hypercube of dimension n ;

74 Yurii Mezentsev

, , 0, 1c x ; are vectors of the same dimension (0 is a zero vector and 1 is a vector of

ones).

This approach does not lead to a loss of generality since any integer programming

problem can be compactly reduced to an LPP with BVs [13].

In [13], an original numerical method was presented for solving this kind of prob-

lems, the main idea of which is a consistent building of a system of binary cuts (BCs)

for the relaxed problem (1)–(2) so that the basis matrix of the complemented inequali-

ty system (2) would eventually become totally unimodular, which guarantees the

fulfillment of conditions (3) in achieving the objective (1).

This method uses a heuristic BC synthesis procedure, which does not guarantee the

building of correct cuts at each step and, therefore, uses implicit cyclic enumeration

for the right-hand sides of the cuts. Numerical experiments showed that, along with

advantages, the method has a number of drawbacks, the main of which is that the

optimum points of problem (1)–(3) may be cut off.

This deficiency was addressed by applying a number of new rules of BC synthesis

and supplementing the method by a branching procedure [14]. The aim of this paper

is to discuss the results obtained in [13, 14].

2 Main Principles of the Binary Cut-and-Branch Method

Suppose
0x is the solution of the relaxed problem (1)–(2),

 
 is the integer part of

the number, and 0  0T x , where j  1,0,1  , 1,j n
. Then any inequality of

the form

 0
T x  , j  1,0,1  , 1,j n , 0   0 , (4)

is called a binary cut for problem (1)–(2). Strictly speaking, such a cut is not exactly

binary because the vector  may contain components (1) other than zeroes and

ones. However, since problem (1)–(3) can always be normalized in such a way that

the coefficients of the objective function (1) would be nonnegative: 0, 1,jc j n  , it

can be assumed for j in (4) that j  0,1 , 1,j n [13]. Thus, (4) transforms into

inequalities also known as covers (they are usually applied in solving the covering

problem [3]).

The thus reduced problem (1)–(3) can be written as:

 () maxTx c x C    , (5)

 Ax b , 0 1x  , (6)

 2
nx I , (7)

Binary Cut-and- Branch Method for Solving Linear Programming Problems with Boolean Variables 75

In this case the coefficients in the left-hand part of any i-th cut (4) have the proper-

ty {0,1}, 1,i
j j n   [13]. Let

0x be the solution of problem (5)–(6), then a BC with

respect to system (6) is

 0
T x  , j   0, 1 , 1,j n , 0   0 , 0 

0T x , (8)

and the complementary BC system for the system of constraints (6) is

 Dx   , (9)

where
D

D i
j

m n



  , {0,1}, 1,i

j j n   is the coefficient matrix of the binary

system, and the vector composed of the right-hand parts of the cuts  is defined in

accordance with (8).

If
D has the property of total unimodularity and all cuts (9) are valid (

D is a

part of the basis matrix of system (6),(9)), then at
Dm n ,

D includes the basis

matrix and the optimal solution of the LP problem (5),(6),(9) is the optimal solution

of the LPP with BVs (5)–(7).

Like in Gomory algorithms, any active constraints, i.e., inequalities that form the

basis system (6), (9) given an optimal solution of the current problem and inequalities

ensuing from the basis inequality system, can act as generating constraints. If
0x is

the solution of the relaxed problem (5)–(6), then

 0
T x  , 0  0T x , (10)

Expression (10) can be a generating inequality only if
B

j i ij

i I

a 



  , 0i  ,

where , B
ija i I are the coefficients of the basis part A and i are the nonnegative

weights of the basis constraints. In particular, if i are the dual estimates of con-

straints (6), then j jc  , 1,j n . The generating inequalities are also promising in

the case when i are the reciprocals of any norm of the constraint vectors (e.g., Eu-

clidean norm).

However, in the general case, the notion of a valid BC [13] is not equivalent to that

of a valid Gomory cut. Now we define the conditions that must be met by a valid BC.

Consider an auxiliary problem:

 () maxTz z   , (11)

 Az b , 0 1z  , (12)

76 Yurii Mezentsev

 0()z  
 

, (13)

where
0z is the optimal solution of (11)–(12) and  is the right-hand part of (8).

There are three possible outcomes.

1.
0 0z x . In this case, (8) is called a strong cut [14].

2.
0 0z x and 0T x 

 
0()z 

 
. Then (8) is a slack valid cut.

3.
0 0z x and 0T x 

 
0()z 

 
. In these circumstances there is a positive in-

teger residue 0 0() 0Tz x       
   

, and the inequality 0T Tx x  
 

 is an

invalid cut. Then T x  with the right-hand part of (13) does not make sense since

it would not be active if added to problem (5)–(6).

It can be shown that the so-called strong BCs are a special case of Gomory cuts

[14]. They do not always exist for this class of problems. This fact is illustrated by the

following example.

Example 1. 1 2() 3 2 maxx x x   

 1 22 2.3x x  ,

 1 22.5 3 3.325x x  ,

 1 2 0.8x x  , 2
1 2 2,x x I .

In the relaxed problem, the latter condition is replaced by 0 1,jx  1,2j  . Its

optimal solution is 0() (0.85,0.6)Tx  and max 3.75  .

The objective function of problem (11)–(12) is 1 1() maxz z z    .

The solution of the auxiliary problem 0() (0.53,1)Tz  is not
0x ; however,

1 2 1x x  is a valid cut.

In Fig. 1 the boundaries of constraints (6) are shown in solid lines; the level lines

of the objective function are given in dashed lines; and the boundaries of the generat-

ing inequity and slack BC are shown in dash-dot lines. In this example there is no

strong BC. In contrast to strong BCs, slack ones always exist.

The proof of the existence theorem is based on the convexity property of polyhe-

dron (6) and the fact that there is always inequality (4), which cuts off any set of adja-

cent vertices in a unit hypercube from (6) (0 1x ).

Binary Cut-and- Branch Method for Solving Linear Programming Problems with Boolean Variables 77

Fig. 1. Example of a slack valid cut.

There are no Gomory cuts corresponding to a slack BC. Theoretically, any such cut

can only be built using a finite sequence of Gomory cuts. From this perspective, the

slack BCs are not exactly slack.

3 Binary Cut Formation Algorithms

It has not yet been possible to suggest a polynomial complexity algorithm for the

synthesis of reliably valid BCs. However, a number of heuristic rules and procedures

(of varying difficulty) can be proposed for solving the synthesis problem in a sense of

good binary cuts.

A good cut is, naturally, any valid BC or a cut with a minimum integer residual  .

1) Rule of nonzero coordinates for the previous (current) relaxation.

The rule is used to calculate the coefficients in the left-hand part of the BC:

0

0

1, if 0

0, if 0

j
j

j

x

x


 
 



 (14)

0 0.5 1 1.5
0

0.5

1

1.5

0  x
1
  1

0
 

 x
2
 

 1
(x

1
,x

2
)=3x

1
+2x

2
->max

 =3x
1
+2x

2
max

 3x
1
+2x

2
=3.75

 x
1
+x

2
1

 2x
1
+x

2
2.3

 2.5x
1
+2x

2
3.325

 x
1
-x

2
0.8

78 Yurii Mezentsev

The right-hand part is calculated according to (8).

2) Rule of the nearest cut to the generating inequality. This rule is reduced to solv-

ing the following problem:

find the coefficients {0,1}, 1,j j n   that maximize the relation

2 2

()
T

k
 


 

 (15)

At first glance, this problem is not simpler than the original LPP with BVs (5)–(7)

since the number of “rational” options alone for the desired cut is greater than the

total number of combinations of variables in (5)–(7). However, in reality there is no

need for an exhaustive search through solution options. There is a complexity algo-

rithm (log)O n n [13] for finding an exact solution, which is based on sorting [14].

The two heuristics in Example 1 make it possible to construct a valid cut. Howev-

er, there are numerous counterexamples wherein the application of (14) and (15) does

not lead to the synthesis of valid BCs [13].

The underlying ideas of (14) and (15) can be developed by using second-level heu-

ristics. In addition to (11)–(13), an alternative indication can be used to identify a

valid BC. Consider a problem:

 () maxTx c x C    (16)

 Ax b , 0 1x  , (17)

 0() 1T x x   , (18)

where 0 0() Tx x  
 

 and
0x is the solution of (5)–(6).

If problem (16)–(18) has a solution, then the cut 0()T x x  is invalid. Con-

versely, if (16)–(18) has no solution due to the inconsistency of system (17)–(18),

then 0()T x x  is a valid cut.

In Example 1, it is easy to see that the additional constraint 1 2 2x x  renders the

inequality system inconsistent and 1 2 1x x  is a valid cut.

3) Selection in a set of estimates for the variables of the current relaxation.

Let
0
j be the estimates for the variables jx in (5)–(6), which are defined as opti-

mal dual estimates for the variables 1jx  , 1,j n .
0
j are the estimates for the

constraints in the dual of (5)–(6). It follows from the complementary slackness condi-

tions that
0 0j  if

0 1jx  and
0 0j  if

0 1jx  . Note that the case
0 0j  and

Binary Cut-and- Branch Method for Solving Linear Programming Problems with Boolean Variables 79

0 1jx  may only take place if there are alternative optima in the current relaxation.

Let the fines for raising jx to one (jh) and reducing it to zero (jh) be used as esti-

mates for the basis variables jx in the case 00 1jx 

If the coefficients of the expansion row of the lth basis variable in the optimal table

are denoted by
0
lj

a and the corresponding coefficient of the column containing the

right-hand parts by 0(1)
l

x  , then an accurate estimate of the fine for reducing lx to

zero can be obtained by adding to the transformed problem a constraint

0 0

1

n

jlj l
j

a x



   , where j are the nonbasis variables in the optimal table. An accu-

rate estimate of the fine for raising lx to one is obtained by adding a constraint

0 0

1

1
n

jlj l
j

a x



  to the transformed problem. Calculating these two estimates is

rather time-consuming because of the need to solve additional LP problems. There-

fore, it makes sense to confine the analysis to the minimum estimates [12], which can

be defined as follows:

0
0

00
max

j
l l

lj

c
h x

a

 
 

   
 

 

,
0

0
00

max (1)
j

l l
lj

c
h x

a

 
 

    
 
 

.

In the general case, both fines are calculated according to the relations:

0 0

0
0 0

00

0

, if 1,

max , if 0 1,

0, if 0.

l l

j
l l l

lj

l

x

c
h x x

a

x





 

  
  

      
  

 

 

0

0
0 0

00

0 0

0, if 1,

max (1), if 0 1,

, if 0.

l

j
l l l

lj

l l

x

c
h x x

a

x



 

  
  

       
  

 

 

Then the priority of the coordinate lx in a cut can be determined, e.g., as shown

below:

0 0

0 0
0 0 0

0 00 0

0 0

, if 1,

max max (1), if 0 1,

, if 0.

l l

j j
l l l l

lj lj

l l

x

c c
h x x x

a a

x





 

 

    
    

           
    

   

 

 (19)

80 Yurii Mezentsev

Relation (19) can be used to estimate all the coordinates and introduce, according

to , 1,jh j n , a nonstrict-order relationship over the entire set of , 1,jx j n . This

makes it possible to build and estimate a variety of alternative cuts (8) rather than

only one cut, as in (14) and (15).

According to (19), the entire set of variables can be split into three disjoint subsets,

which are sorted descendingly: , 1,jh j n . Let 1n , 2n , and 3n be the number of

elements in each subset, with all 1, 1,jx j n belonging to the first subset, jx ,

1 1 21,j n n n   belonging to the second subset, and jx , 1 2 1,j n n n   belong-

ing to the third subset.

Consider a totality  of 2n vectors of dimension n

1 (1,1,...,1,0,0,...,0)  (contains 1 1n  original ones),

2 (1,1,...,1,1,0,...,0)  (contains 1 2n  original ones),

2 (1,1,...,1,1,1,...,0)
n  (contains 1 2n n original ones).

For each vector there is a nonincreasing estimate 2, 1,jh j n .

Thus, to find the coefficients of the best cut (8) in the totality  , it is sufficient to

consistently synthesize from one to 2n BCs until either the conditions intrinsic in

regular cuts are met or there are no more elements left in  .

4) Selection in a set of the nearest cuts.

Relation (15) allows an even simpler search and estimation of a set of alternative

cuts. To this end, it is sufficient to arrange the components of the vector  in de-

scending order (the new vector is denoted by ) and consider a totality  of n

vectors of dimension n

1 (1,0,...,0)  ,

2 (1,1,0,...,0)  ,

(1,1,...,1,0,0,...,0)j  (contains j original ones),

(1,1,...,1)n  .

Each
j is set in correspondence with ()jk  from (15). Then, the discrete func-

tion ()jk  uniquely defines the priority of each of the (alternative) cuts with the

coefficients
j . Here

2 2

()
T j

j

j
k

 


 
 , 1,j n . This function has a strict maxi-

mum. Therefore, to find the coefficients of the best set in the totality  , there is no

Binary Cut-and- Branch Method for Solving Linear Programming Problems with Boolean Variables 81

need to analyze all , 1,j j n  . It is enough to compare cuts (8) at the maximum

point ()jk  with those built at the nearest points (vectors)
j to the right and left.

4 Cut-and-Branch Algorithms

A simplest algorithm is based on heuristics (14) and (15). Therefore, it is not guar-

anteed that the cuts being constructed are valid. This circumstance calls for the use of

a branching scheme for the solutions of a sequence of relaxed LP problems (5)–(6).

Algorithm A1

1. Suppose that we have obtained the solution of the original relaxed problem (5)–

(6):
0x and 0()x . If

0x is an integer, the algorithm stops. Otherwise, it goes to

step 2.

2. At step t we select the vertex with the maximum estimate ()rx for probing. If

the list of vertices is empty, the problem does not have an integer solution. The algo-

rithm stops. If the vertex with the maximum estimate ()rx contains an integer solu-

tion
rx , it is the optimal one. The algorithm stops. Otherwise:

3. We create two new candidates for each of which the current matrix
D is sup-

plemented, according to procedures (14) or (15), by the only cut (8) or (18), respec-

tively.

4. We use the principle applied in the auxiliary problem (16)–(18) and solve a pair

of alternative subproblems with the cuts (1) ()t T rx x   and

(1) () 1t T rx x    .

5. Their solutions
1tx 

 and
2tx 

 and estimates 1()tx  and 2()tx  are saved

by adding them to the list of the tree vertices. If any of the candidates has no solution,

it is withdrawn from the list of the vertices.

6. We increase the step number (: 1t t ) and go to step 2.

If we use the more complex heuristic rules of BC synthesis, which are presented

above, the algorithm should be correspondingly modified. This concerns mostly steps

3 and 4, which require the consideration not of a single pair but a set of pairs of alter-

native cuts. Statistical data on the efficiency of applying the heuristic rules of BC

synthesis in algorithm A1 are given in Table 1.

Table 1. Efficiency of applying the heuristic rules of BC synthesis

Rule

Percentage of regular cuts in the

total number

minimum maximum average

(1) by nonzero coordinates for the previous

relaxation
17 42 31

82 Yurii Mezentsev

(2) selection of the nearest cut 21 63 39

(3) selection in a set of estimates of variables 34 100 57*

(4) selection in a set of the nearest cuts 43 100 65*

* requires experimental verification

Consider an example of the application of algorithm A1.

Example 2 [13]. Find 3
1 1 3 7(, ,), , 1,3T

jx x x x x I j   under the conditions

1 2 32 4x x x   ,

1 24 3 2x x  ,

1 2 33 2 3 12x x x    ,

1 2 33 3 maxx x x     .

Let us reduce this problem to an LLP with BVs with the normalization  . Suppose

that

1

L

j l jl
l

x x



  , (1,2,4)l  ,
, 1,3, 1,3

.
1 , 1,3, 2

jl
jl

jl

x j l
x

x j l

   
 

  

The transformed problem has the form:

find 9
11 12 33 2(, ,...,), , 1,3, 1,3jlx x x x x I j l    under the conditions:

 11 12 13 21 22 23 31 32 332 4 8 2 4 2 4 3x x x x x x x x x         

11 12 13 21 22 234 8 16 3 6 12 23x x x x x x     

 11 12 13 21 22 23 31 322 4 3 6 12 3 6x x x x x x x x          3312 21 maxx   .

Algorithm A1 with the use of the third heuristics generates the following BC sys-

tem (the cuts are given in the order in which they are formed):

 1y  11 12 13 21 22 23 31 32 330 0 1 0 0 0 0 0 0 0x x x x x x x x x        

 2y  11 12 13 21 22 23 31 32 330 1 0 1 1 1 0 0 0 3x x x x x x x x x        

 3y  11 12 13 21 22 23 31 32 331 0 0 1 1 1 0 0 0 3x x x x x x x x x        

 4y  11 12 13 21 22 23 31 32 330 0 0 0 1 1 0 1 1 3x x x x x x x x x        

 5y  11 12 13 21 22 23 31 32 330 0 0 0 1 1 1 0 1 3x x x x x x x x x        

 6y  11 12 13 21 22 23 31 32 330 0 0 0 0 1 0 1 1 2x x x x x x x x x        

 7y  11 12 13 21 22 23 31 32 331 1 0 1 1 1 1 1 1 4x x x x x x x x x        

All the cuts except for the last one are regular. Figure 2 shows the solution tree for

this example. The numbers near the vertices are the values of the objective functions

in the optimal solutions of the subproblems.

As a result, we obtain the solutions of the transformed and original problems

 * (0, 0, 0, 1, 1, 1, 0, 0, 1)Tx  , *() 12x  .

 * (0, 0, 0, 0, 0, 0, 0, 0, 1)Tx  , * (0, 0, 4)Tx  , and *() 12x  .

Binary Cut-and- Branch Method for Solving Linear Programming Problems with Boolean Variables 83

Fig. 2. Tree of solutions and cuts.

5 Comparative Performance Evaluations

There are no a priori lower bounds for the performance of the algorithms used for

solving NP-hard LPPs with BVs. Nevertheless, we will try to compare the perfor-

mance of algorithm A1 with other search algorithms on the basis of upper bounds.

The upper bound for the complexity of solving an LPP with BVs, which is the

same for all exhaustive search algorithms, is: 2nN  , where N is the number of

relaxed subproblems which need to be solved to reliably determine the accurate opti-

mum and n is the number of Boolean variables in the problem. Such a complexity

estimate can be provided, e.g., by exhaustive search and dynamic programming meth-

ods. In BB, N corresponds to the maximum number of end vertices of the solution

tree. Since the length of any branch of the tree from the initial vertex to the end one is

()O n , then the upper bound for the complexity of BB is higher than for exhaustive

search: ()2n
bbN O n .

Let bcN be the upper bound for the complexity of A1. As shown in [14], the upper

bound for the number of binary cuts necessary to find the optimum of an LPP with

D

14

 14 01 y 11 y

 14 32 y42 y

 13,6 33 y 43 y

 13,6 34 y44 y

 13,1 35 y45 y

 12 26 y36 y

9,11 12 47 y57 y

84 Yurii Mezentsev

BVs under the condition that all the cuts are valid is 2()O n . The proportion of valid

BCs in their total number is a measure of efficiency of a heuristics, which is used in

algorithm A1. We denote this proportion by , 0 1   . Then

2 (1)()2 n
bcN O n  is the upper bound for the complexity of algorithm А1. Let us

now return to Table 1, from which we derive an a posteriori estimate for the guaran-

teed number of valid BCs, which is 30% of the total number of BCs. Thus, we have

an efficiency estimate for the first heuristics 0.3  , and the overall estimate is,

hence, 2 0.7()2 n
bcN O n .

The third and fourth heuristics allow for an increase in the efficiency of the cuts.

The results obtained may also affect the lower bounds and potentially suggest that the

efficiency of A1 is many times greater than that of all the known integer optimization

algorithms. For example, let us compare bbN and bcN :

0.3

2 0.7

()2 2
/

()()2

n n

bb bc n

O n
N N

O nO n
  . If we assume that 1000n  , the complexity bcN

is 86 orders of magnitude lower than bbN .

We also note that if  tends to unity, А1 becomes an efficient integer optimization

algorithm.

6 Conclusions

Experimental evidence was obtained for the reliability of the binary cut-and-branch

method. The applicability of the method for solving mixed integer optimization prob-

lems has been successfully tested in experiments. The simplest versions of the BC

synthesis procedure were tested. An understanding was reached as to the development

prospects of the proposed approach to solving computationally hard optimization

problems. As regards the possibility of creating an efficient exact numerical method

based on this approach, it should be noted that the mere existence of a solution tree is

not identical to the fundamental impossibility of solving an LPP with BVs in polyno-

mial time. If the current number of tree vertices at any iteration depends polynomially

on the dimension and the length of each branch (the number of intermediate vertices)

to any end vertex is also a polynomial of the dimension of the original problem, the

proposed method is effective. While the second condition is confirmed experimental-

ly, meeting the first one requires an increase in the efficiency of BC synthesis proce-

dures.

References

1. Leont’ev V.K. Discrete optimization, Zh. Vychisl. Mat. Mat. Fiz., 2007, vol. 47, N 2, pp.

338–352.

2. Proceedings of the 16th Baikal International School-Seminar of optimization methods and

their applications, Irkutsk: ISEM SO RAN, 2014.

Binary Cut-and- Branch Method for Solving Linear Programming Problems with Boolean Variables 85

3. Korte B., Vygen J. Combinatorial optimization. Theory and algorithms. Springer, 2002.

572 p.

4. Du D., Pardalos P. (eds.) Handbook of combinatorial optimization. Supplement vol. A,

Kluwer academic publishers, 1999. 649 p.

5. Du D., Pardalos P. (eds.) Handbook of combinatorial optimization. Supplement vol. B.

Springer, 2005, 403 p.

6. Schrijver A. Theory of linear and integer programming. Wiley, 1999, 483 p.

7. Achterberg T. Constraint integer programming, Genehmigte Dissertation doktor der Natur-

wissenschaften. Technischen Universitat Berlin, 2007, 418 p.

8. IBM ILOG CPLEX V12.5 User's Manual for CPLEX. IBM Corporation, 2012 – 952 p.

9. Zaslavskii A.A., Lebedev S.S. Nodal-vector method in integer programming [in Russian],

Preprint # WP/2000/94, Moscow: TsEMI RAN, 2000, 81 p.

10. Glover F., Kochenberger G.A. eds. Handbook of metaheuristics. Kluwer academic publish-

ers, 2003 – 560 p.

11. Vasil’ev I.L., Klimentova K.B. Branch-and-cut method for a facility location problem with

clients’ preference orderings, Diskret. Analiz. Issled. Operatsyi, 2009, vol. 16, N 2, pp. 21–

41.

12. Rutkovskaya D., Pilin’skii M., Rutkovskii L., Neural networkd, genetic algorithms, and

fuzzy systems [in Russian], Noscow: Goryachaya Liniya – Telekom, 2006, 452 p.

13. Mezentsev Yu.A., Efficient algorithm of integer programming, Nauch. Vest. Novosib. Gos.

Tekh. Univ., 2009, N 2(35), pp. 91–114.

14. Mezentsev Yu.A., Binary cut-and-branch method in binary programming, Dokl. Akad.

Nauk. Vyssh. Shkoly RF, Novosibirsk: Novosib. Gos. Tekh. Univ., 2011, N 1(16), pp. 12-

25.

15. Mezentsev Yu.A. Effective numerical methods for solution of discrete optimization prob-

lems management [in Russia] Serija "Monografii NGTU", Novosibirsk: NSTU, 2015, 275 p.

ISBN 978-5-7782-2689-0

