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Abstract. We consider a special case of the Euclidean m-clustering problem,
namely the problem of clustering on the real axis with given capacities of sepa-
rate clusters. We prove that the problem considered is NP-hard. An example of
non-optimality of the solution obtained for the problem with connected clusters
is presented. A special case of the problem with connected clusters is solved by
exact algorithm with running time O(mn2m) that is, depending linearly on n
if m is fixed.
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1 Introduction

Clustering is the classification of patterns (observations, data items, or feature vectors)
into groups (clusters). The clustering problem has been addressed in many contexts
and by researchers in many disciplines [1]–[4], [6]–[7].

However, clustering is a difficult combinatorial problem.
We consider a special case of Euclidean clustering problem, namely the problem of

clustering on the real axis.
Consider a set X = {xi} of n elements (points) on the real axis. Each point x ∈ X

has a weight w(x).
The set of points is divided into m disjoint subsets (clusters) C1, C2, . . . , Cm.
For each cluster Ck, one of the points x̄(Ck) on the axis is selected as the center

of this cluster, depending on the subset of points included in the cluster and on the
cluster cost function ρ(x, x̄(Ck)). Further we will consider the cost function in the form

ρ(x, y) = α+ (1− α)||x− y||,

where ||x − y|| is the distance between the points x, y ∈ X on the line, α is some
non-negative constant, that is less or equal 1.
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As an example of selecting the cluster center may be the following point

x̄(Ck) = arg min
y∈Ck

∑
x∈Ck

w(x)ρ(x, y). (1)

Another example of selecting a cluster center is the so-called centroid of the set Ck:

x̄(Ck) =
1

|Ck|
∑
x∈Ck

x. (2)

Each cluster Ck has the weight capacity W , where W ≥ 1
m

∑
x∈X w(x).

Denote the costs associated with the cluster Ck by

f(Ck) =
∑
x∈Ck

w(x)ρ(x, x̄(Ck)).

m-CLUSTERING Problem Formulation:
Given:

– a set X = {xi} of n elements (points) on the real axis,
– a natural number m ≤ n,
– a weight function w : X → R,
– the cluster weight capacity W ,
– a cost function ρ : E → R,

Find: a partition of the set X = {xi} into disjoint subsets (clusters) C1, C2, . . . , Cm

such that
m∑

k=1

f(Ck) → min
{Ck}

, (3)

subject to
Ck ∩ Ck′ = ∅, k ̸= k′, ∪m

k=1Ck = X, (4)∑
x∈Ck

w(x) ≤ W, k = 1, . . . ,m. (5)

2 Algorithmic analysis of the m-clustering problem (6)–(8)

2.1 NP-hardness of the problem

Statement The m-clustering problem (6)–(8) is NP-hard.
Proof. Formulate the following Bin-Packing Problem in the verification form (BPP-

ver).
Given: A finite set U of items with nonnegative numbers w1, . . . , wn, and a positive
integer bin capacity B.
Question: Is there a partition of U into disjoint sets B1, . . . , Bm such that the sum of
the items in each Bk is B or less?
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It is known that the Bin-Packing Problem is NP-hard [5].

Consider the particular case of the m-clustering problem ((6)–(8) for α = 1, and
B = W :

m∑
k=1

∑
x∈Ck

w(x) → min
{Ck}

, (6)

subject to

Ck ∩ Ck′ = ∅, k ̸= k′, ∪m
k=1Ck = X), (7)∑

x∈Ck

w(x) ≤ W, k = 1, . . . ,m. (8)

It easy to see that the solution of the NP-hard problem BPP-ver polynomially
reduces to the problem (6)–(8).

2.2 An example of an non-optimal solution to problem (6)–(8

Given: A set of elements X = {0, 10, 10 + ε, 20}
with the weights of elements {5, 9, 1, 4}, m = 2, B = 13, k = 1, 2 .

Find: A partition of the set of elements into m = 2 disjoint subsets C1 and C2

solving the minimization problem

min
{Ck}

m∑
k=1

∑
xi∈Ck

w(xi)ρ(xi, x̄(Ck)) (9)

subject to the capacity constraints (5) in two special cases:

CASE 1: selecting the cluster center by formula (2). It is easy to see that the optimal
solution of problem (3)–(5) is is given by the disjoint clusters clusters C1 = {0, 10+ ε},
C2 = {10, 20}.

With connectivity requirement, we obtain
C1 = {0}, C2 = {10, 10 + ε, 20} with the sum of w2 +w3 +w4 = 14 > B = 13, which
does not satisfy constraint (5).

CASE 2: selecting the cluster center by formula (1). In this case, we have the same
solution as in the previous case.

3 Dynamic Programming for the special m-clustering
problem

Next will also address the problem (3)–(5) under the additional conditions:
(a) connectivity of clusters on the real line;
(b)

∑
xi∈Ck

wi ≤ Bk, k = 1, . . . ,m, where
∑m

k=1 Bk ≥
∑n

i=1 wi;
(c) |Ck| = Lk, k = 1, . . . ,m, where L1 + . . .+ Lm = n;
(d) α = 1.
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The connectivity conditions mean that if any two points belong to the same cluster,
then all points between them must belong to this clust too :

xq ≤ xi1 , . . . , xir ≤ xp, andxq, xp ∈ Ck ⇒ xi1 , . . . , xir ∈ Ck. (10)

Problem (3)–(5) can be solved with an exhausting search among all m! different
location of the clusters on a real line from point x1 to point xn. The following means of
dynamic programming is done in time O(mn2m), which is considerably less than m!.

By Y µ denote the set of m-vectors Y µ = (y1, y2, . . . , ym), yk ∈ {0, 1}, such that

m∑
k=1

yk = µ.

The initial problem in the set of points {x1, x2, . . . , xn} is denoted by
⟨
n,m, Y m

⟩
.

Along with this, also consider the family of problems

{
⟨
i, µ, yµ

⟩
, 1 ≤ i ≤ n, yµ ∈ Y µ, 1 ≤ µ ≤ m}

for the subsets {x1, x2, . . . , xn} of the real axis, 1 ≤ i ≤ n.

The problem
⟨
n,m, Y m

⟩
is solved by Dynamic Programming using the recurrence

relations:

for µ = 1:

Fi(1, Y
1) =

{
min

1≤k≤n
{fk(i− Lk, i) | i = Lk,

∑
xi∈Ck

wi ≤ Bk};

∞, if there is no k satisfying the specified conditions.

1 ≤ k ≤ m, 1 ≤ i ≤ n;

when µ > 1:

Fi(µ, Y
µ) = min

1≤k≤m
{Fi−Lk

(µ− 1, Y µ − ek) + fk(i− Lk, i)},

1 ≤ i ≤ n, 1 < µ ≤ m.

Here fk(i − Lk, i) is the associated cost for the cluster Ck = {xj |n − Lk < j ≤ i}.
Whenever the condition

∑
xi∈Ck

wi ≤ Bk fails, we set fk(i− Lk, i) equal to ∞.

The time complexity of the algorithm can be estimated as follows:

mn
m∑

µ=1

|Y µ| = mn
m∑

µ=1

Cµ
m = O(mn2m).

If the number of clusters is fixed there is no decision under the given constraints.

Remark. In the case of final response Fn(m,Y m) = ∞, decision under the given
conditions is missing.
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4 Conclusions

1) We prove that the considered problem is NP-hard.
2) We present an example of non-optimality of the solution obtained for the problem

with connected clusters.
3) To solve a special case of the problem with connected clusters an exact algorithm

is constructed with the computational complexity O(mn2m) that is, depending linearly
on n if m is fixed.
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