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Abstract. The problem of identification of the soft sensors is considered. Using 

the active set method the problem of least squares with inequality constraints on 

the variables has been solved. As a result of using soft sensors, obtained taking 

into account constraints on the model coefficients, their efficiency as compared 

with soft sensors obtained without constraints is shown. 
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1 Introduction and statement of the problem 

The approach to solve the soft sensor model obtaining problem, taking into account 

inequality  constraints on the model coefficients, is described [1]. The obtained results 

are tested on industrial oil fractionation process for atmospheric distillation column. 

The soft sensor model coefficients for prediction of the key product quality are 

identified. 

The technological plant with several measured inputs 
Nuuu ,,, 21 

 
and one output 

)(y  is considered. The measured technological parameters (pressure, temperature, 

flow) are utilized as inputs. In practice, the amount of available process measured 

parameters to predict the quality of a product is much more than the required number 

of parameters. A priori knowledge of technological process allows to select necessary 

parameters. 

The problem of the soft sensor (SS) evaluation which is best predicting quality of 

products of crude distillation technological process is considered.  

The model of the soft sensor is obtained in the form of linear regression model for 

solution of  the problem [2]: 

 
     0 1 1 2 2( ) ... N Ny b bu b u b u      

, (1) 
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where 
jb  – j-th model coefficient, 0,1,...,j N , 

0b – constant term, N – the number 

of input variables,   - irregular timepoints of output measurement: ,...,, 321  , 

   01ii
, 2i ;   01

; 
0  - constant term;  - random component is 

limited by specific range.  

The determination coefficient (the part of explained deviations variance of the 

dependent variable from its mean value): 

  
i

a

ii ii yyyyR 222 )()(1  (2) 

and root mean squared error (RMSE): 

   2/1

1

2 /)( 


M

i ii MyyRMSE , (3) 

are used as criteria of identification on a given time interval, 

where iy  - the measured value of the output variable, 
iy  - the value is obtained 

based on the SS, 
ay  - the mean value of the measured output variable, M - the 

number of output measurement. The model is more consistent if the closer to unity the 

value of the coefficient of determination 2R , or the closer to zero the value of the 

RMSE.  

2 The proposed algorithm problem solution 

Let 
1 2[1, ( ), ( ),..., ( )]T

Nu u u  u  be a combined vector of measured input 

variables, 
0 1[ , ,..., ]T

N= b b bb  - vector of coefficients of the same dimension, the 

components of which reflect the contributions of the respective input variables. Then 

the equation (1) takes the form:  

 Ty  u b . 

We form the vector Y of dimension q from the output value y: 

 T

qyyy )](),...,(),([ 21 Y  

and the matrix U, containing the measured inputs uj, corresponding to output value y 

from (1): 
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and we write the matrix equation: 

 UbY  . 

We introduce error function: 

    E Y Y Y Ub , 

where Y  is the actual measurement of output, and minimize the objective function: 

 22 )( UbYEΨ  . (4) 

We obtain estimates of the parameters b  by least squares method: 

 1( )T Tb U U U Y . (5) 

The multicollinearity case, which occurs when there is almost a linear relationship 

between inputs, is considered. In this case the matrix UUC
T  is close to singular, 

so it is the smallest eigenvalue 0min   and the condition number is infinitely 

increased and causing the instability of the solution (5). If the 0min   then it 

corresponds the strict  multicollinearity [3]. In order to obtain a stable solution of the 

equation (5) it is necessary to reduce the condition number of the matrix C, for 

example, by adding thereto a diagonal matrix IB k   (k> 0). Then the solution is 

found in a class of ridge parameter estimates: 

 1( )T Tk  b U U I U Y . (6) 

The quality, obtained by (5-6) models, depends on the number of available output 

measurements. The length of training sample is often insufficient to obtain reliable 

results. Also, the available data contain significant measurement error of inputs and 

outputs, unmeasured influences. Taking into account constraints on the model 

coefficients 
jb  

allows to avoid these problems. When taking into account constraints 

on coefficients at input, the problem of least squares with simple constraints on the 

variables is solved: 

  
2

min max

min

.



 

Y Ub

b b b

 (7) 

The solution of the problem (7) is obtained by the active set numerical method [4]. 

The given constraints are reduced to the form: 

 
ˆAb b , 
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where
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Constraint ˆT

i iba b  call active in acceptable point b if ˆT

i iba b , and inactive if 

ˆT

i iba b , 
i

Ta - i-th row of A . 

The sufficient minimum conditions for simple constraints are as follows: 

1. max*min
bbb  , max*min

FRFRFR bbb   

2. *( ) 0T

FR  U Y Ub  

3. )( *

min

min
UbYUλ  T

, min 0i λ , min,,1 ti  , (8) 

max *

max ( )T λ U Y Ub , max 0i λ , max,,1 ti   

4. 
FR

T

FRUU  is positive definite, 

where *b - the minimum point of the solution of problem (7); subscript FR indicates 

that in the vector and matrices the elements and columns with index numbers 

corresponding to the index numbers of b  elements, that have not met the boundary 

values (7), are used; subscript min, max, indicates that the in matrix only the columns 

with index numbers corresponding to the index numbers of b  elements, taking the 

appropriate minimum or maximum boundary value, are used. t
min

,, t
max

.- number of 

active upper and lower limits respectively; min
λ , max

λ - vectors of Lagrange 

multipliers corresponding to the lower and upper active constraints. 

To start the method of the active set it is necessary to determine the starting point 

using (6).  

The minimum point 
*b  for the search algorithm for iteration k is: 

1. Performance verification of the stop conditions. (Reaching the performance errors 

of conditions (8), constraints on the number of iterations). 

2. Selection of a logic branch. Does it make sense to remove any constraint of the set 

of active constraints list. The condition of performance of a condition 3 in (8) is 

checked. If the condition is not satisfied for some of the vector element, constraint 

is excluded from the list of active constraints. 

3. The calculation of the search direction 
kp . Like (4) solves the problem 

 
2

min k FR FR Y Ub U p . Calculate the non-zero  1 kN t  - dimensional vector 
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FRp  and the direction of search   FRFR

T

k pAp  , where 
kt  - the number of active 

constraints on k iteration. 

4. Calculate the step length 
k . From 

FR

FR

FR

FR

FR
b

p

p
Ψ

b

b
ˆ





















 diagonal matrix 

Ψ  is calculated, 
FRb̂ - consists of the elements b̂  which aren't active constraints, 

elements b̂ , opposite boundary values in (7) for constraints in the active set, are 

excluded from 
FRb̂ . The  mink ii  Ψ  is an available minimum positive step 

from 
kb  along 

kp . The index j  of minimum positive diagonal element Ψ  is 

remembered. If 1k  , then 1k  , otherwise 
k k  . 

5. Constraint is added in the list of active constraints. If 
k  , then j  constraint 

ˆ
FRb  becomes active, it is necessary to add to the list. 

6. Recalculation approximation. 
1k k k k  b b p  is calculated,  and return to step 1 

of the algorithm is carried out. 

The influence of the process dynamics on the quality of the products is taken into 

account by the dynamic SS. The predictive model is represented as a sum of 

convolutions of plant inputs and a finite impulse response (FIR) hi (discrete analogues 

of the first degree Volterra kernels): 

 ,)()1(...)()1()()1()(
1

0

1

0 22

1

0 110

21















Nn

k NN

n

k

n

k
kukhkukhkukhhy   (9) 

where 
0h – constant term,   - irregular timepoints of output measurement: 

,...,, 321  ,    01ii
, 2i ;   01

; 
0   - constant component;  - 

random component is limited by the specific range.  

Let T

NNN nuunuu )]1(),...,(),...,1(),...,(,1[ 111  u  - the combined 

vector of measured input variables of dynamic SS (DSS) with dimensionality 

 


N

k knq
1

1  where 
kn  - is a number of values of k-th input, 

  т

1110 )(...,),1(...,),(...,),1(, NNN nhhnhhhh  - vector FIR of the same dimension, the 

components of which reflect the contributions of the respective input variables of 

DSS. Then the equation (9) takes the form:  

 hu  Ty . 

We form the vector Y of dimension q from the output value y: 

 T

qyyy )](),...,(),([ 21 Y  

and the matrix U, containing the measured inputs uj, corresponding to output value y 

from (9): 
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Then write the matrix equation: 

UhY  . 

We introduce the error function: 

UhYYYE  , 

where Y  is the actual measurement of output, and minimize the objective function: 

 22 )( UhYEΨ  . (10) 

The constraints on transient response components are written as: 

 maxmin sss  , (11) 

where   т

111 )(...,),1(...,),(...,),1( NNN nssnsss ,  тminmin

1

min ...,, Nsss  , 

 тmaxmax

1

max ...,, Nsss  . 

The transient response components s are related with the components of the 

impulse response h by the relations: 

   ,)(
1 


k

i jj ihks  ,,,2,1 Nj   
 .,,1 jnk   (12) 

The constraints (11) are reduced to: 

 shA ˆ
~
 , (13) 
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The sufficient minimum conditions are as follows: 

1. shA ˆ
~
 , ACTACT shA ˆ

~
  
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2. 0)(* * UhYUZ
T T  (14) 

3.   )( *1
UhYUAAAλ 

 T

ACT

T

ACTACT
, 0iλ , ti ,,1  

4. ZZ TT
UU  is positive definite, 

where *h - is the minimum point, the solution of problem (10) with constraints (13); 

subscript ACT indicates that in vector, matrix only the elements, rows with index 

numbers corresponding to the elements index numbers of active constraint in (13) are 

used; t - number of active constraints, λ - the vectors of Lagrange multipliers 

corresponding to the active constraints, Z - matrix the columns of which is basis of 

the feasible direction of search for equality constraints (13). The  matrix Z  is formed 

by the variable-reduction technique. [4]. 

In order to start the method of the active set it is necessary to determine the starting 

point (using a solution of the problem (10) without any constraints, with subsequent 

correction of coefficients 
ih  that does not fall under the constraints (13)). 

The search algorithm of minimum point *h  for iteration k is: 

1. Performance verification of the stop conditions (reaching the performance errors of 

conditions (14), constraints on the number of iterations). 

2. Selection of a logic branch. Does it make sense to remove any constraint of the set 

of active constraints list. The condition of performance of a condition 3 in (14) is 

checked. If the condition is not satisfied for some of the vector element, constraint 

is excluded from the list of active constraints and it is need to recalculate 
kZ . 

3. The calculation of the search direction 
kp . Like (4) solves the problem 

 2min Zkk pUZUhY  . Calculate the non-zero   


N

k kk tn
1

1  - dimensional 

vector 
Zp  and the direction of search 

Zkk pZp  , where 
kt  - the number of active 

constraints on k iteration. 

4. Calculate the step length 
k . From   spΨhA ˆ~~

 k
 diagonal matrix Ψ  is 

calculated. Calculated  iik Ψmin  - a minimum non-negative available step 

from 
kh  along 

kp , where i  is the index number of element, which is not active 

constraints in (13) and is not element of opposite boundary values (11) for 

constraints in the active set, 
kp~ consists from elements of 

kp without first element. 

The index j  of minimum positive diagonal element of 
iiΨ  is remembered. If 

1k , then 1k , otherwise 
k k  . 

5. Constraint is added to the list of active constraints. If 
k  , then j  constraint 

ˆ
FRs  becomes active and recalculate 

kZ . 

6. Recalculation approximation. The 
1k k k k  h h p  is calculated and return to 

step 1. 
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3 The influence of constraints of parameters of soft sensors 

model 

A priori knowledge about the process and industrial step test (when the value of the 

one control variables is changed at fixed others) allow to define the value of 

constraints. 

In order to investigate the influence of constraints on the quality of the obtained 

static soft sensor model we compare solutions of the equations (6) and constrained 

optimization problem (7). One and the same value of the ridge coefficient is used. 

The Fig. 1 and Table 1 show the results of the performance of the static models on 

the test sample for the bubble-point temperatures of the target product (BP) when a 

model obtained on the training sample, consisting of a number of measurements 

specified in the Table 1. In the verification sample of models the number of 

measurements is equal to 420. 

Table 1. Results of the performance of the static models 

The number of 

measurements in the 

training sample 

Without use  

constraints 

With use  

constraints
 

R
2
 RMSE R

2
 RMSE 

30 0,188 1,790 0,604 1,249 

 

Fig. 1. Comparative study of static soft sensor models performance 
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In order to investigate the influence of constraints on the quality of the obtained 

dynamic soft sensor model we compare solutions of the optimization problem (10) 

and optimization problem (10) with constrains (13). One and the same value of the 

ridge coefficient is used. 

The Fig. 2 and Table 2 show the results of the performance of the dynamic models 

on the test sample for the dew-point temperatures of the target product (DP) when a 

model obtained on the training sample, consisting of a number of measurements 

specified in the Table 2. In the verification sample of models the number of 

measurements is equal to 650. 

Table 2. Results of the performance of the dynamic models 

The number of 

measurements in the 

training sample 

Without use con-

straints 

With use con-

straints
 

R
2
 RMSE R

2
 RMSE 

700 0,327 1,456 0,634 1,074 

 

Fig. 2. Comparative study of dynamic soft sensor models performance 

The estimation of improvements of the prediction quality by the criterion RMSE of 

static model obtained with the constraints on the parameters of SS is 100(1,79 - 

1,249) / 1,79  30% compared to the model without constraints. The estimation of 

improvements of the prediction quality by the criterion RMSE of dynamic model 

obtained with the constraints on the parameters of SS is 100 · (1,456– 1,074)/ 1,456  

25 % compared to the model without constraints. 
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Conclusion 

The using the method of the active set, taking into account constraints on the 

model coefficients can improve quality of the evaluated SS models. 

The test of the proposed approach to solving the problem of obtaining a soft sensor 

model for industrial crude oil distillation unit is showed that the decrease root mean 

square error on the test sample can be not less than 25%. 
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